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Abstract: The time series of interbeat intervals of the heart reveals much information about disease
and disease progression. An area of intense research has been associated with cardiac autonomic
neuropathy (CAN). In this work we have investigated the value of additional information derived
from the magnitude, sign and acceleration of the RR intervals. When quantified using an entropy
measure, these time series show statistically significant differences between disease classes of Normal,
Early CAN and Definite CAN. In addition, pathophysiological characteristics of heartbeat dynamics
provide information not only on the change in the system using the first difference but also the
magnitude and direction of the change measured by the second difference (acceleration) with respect
to sequence length. These additional measures provide disease categories to be discriminated and
could prove useful for non-invasive diagnosis and understanding changes in heart rhythm associated
with CAN.
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1. Introduction

Biological signals, including electrocardiograms (ECG) or the electrical activity of the heart,
exhibit complex dynamics which are characterized by nonlinearity and nonstationarity and often
include random noise due to movement artefacts [1]. Heartbeat time series associated with health and
disease have been extensively investigated, where time and frequency domains, as well as nonlinear
methods, are being proposed and summarized in a number of communications [2–11].

Physiological dynamics of the heartbeat time series change with healthy aging [12,13] and disease,
but also during different activities such as sleeping [14,15] and exercise [16–21]. Other changes in
dynamics can be attributed to pathology including cardiovascular disease and heart failure [22–24],
diabetes [25], depression [26,27] and Parkinson’s disease [24,28,29]. For all physiological and
pathophysiological models of autonomic function, heart rate variability (HRV) is calculated from the
cardiac interbeat intervals (IBI) of the time series. All models assume that the extrinsic modulation
of the heartbeat by the autonomic nervous system (ANS) and the endocrine system affect HRV
by either increasing the interbeat interval (parasympathetic influence), or decreasing the interbeat
interval (sympathetic influence), or a combination of both. Disturbance of the ANS modulation by
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pathophysiological processes, such as oxidative stress, can then lead to the characteristic changes in
sympathovagal input to the heart associated with cardiac autonomic neuropathy (CAN).

1.1. Heartbeat Interval Time Series

Non-invasive methods that are independent of patient cooperation are preferable in the diagnosis
of CAN, but still require further research to confirm their sensitivity and specificity in stratification of
CAN progression. The most common method currently used is heart rate variability analysis [30,31].
HRV is a useful indication of the health of the cardiovascular system, and is commonly used in assessing
the regulation of cardiac autonomic function. HRV has been described by a variety of measures such
as time domain, frequency domain, and non-linear dynamic (NLD) measures. However, time domain
and power spectral density determination are not suitable for the analysis of non-linear and long-range
correlated time signals [32]. Application of new signal processing techniques based on NLD, on the
other hand, provides supplementary information (i.e., hidden underlying mechanisms) regarding
physiological and pathophysiological processes involved in cardiovascular function and pathology.
Two components of a time series in particular, being the sign and magnitude, allow further investigation
into the characteristics of the time series and have been discussed previously [33–35].

1.2. Decomposition of the RR Interval Time Series

The current work is based on Ashkenazy [33], who introduced a decomposition algorithm of the
RR interval time series by calculating the beat-to-beat increment or first difference (∆RR = RRn − RRn−1).
The first difference series is then decomposed into the magnitude and sign of the increments (|∆RRRR|

and sign (sign∆RR) respectively).
Here, we extend this work by introducing the acceleration, defined as the difference between two

successive differences, i.e.,

∆2RR = (RRn −RRn−1) − (RRn−1 −RRn−2) (1)

∆2RR = RRn − 2RRn−1 + RRn−2 (2)

Velocity is defined as the rate of change in the RR interval length and therefore the first order
difference (∆RR). Acceleration is then the second order difference (∆2RR). The second difference or
acceleration is a measure of the change of RR points with respect to time and indicates the instantaneous
acceleration of the heart rate. We propose that acceleration represents an additional descriptive term for
a time series. The scaling properties in sign, magnitude and acceleration can then be analyzed by HRV
measures, which define the temporal organization of the original time series. Previously detrended
fluctuation analysis (DFA) was applied to the sign and magnitude time series [33]. Here, we analyze,
sign, magnitude and acceleration using the multiscale Rényi entropy [36–38].

1.3. The Rényi Entropy

Entropy measures can be used to quantify the diversity, uncertainty, or randomness of a system,
and are hence considered as beneficial tools for analyzing nonlinear time series, including those of
short duration, towards identifying underlying pathology [39–41]. Global entropy measures, such as
approximate entropy (ApEn) [42] and sample entropy (SampEn) [43], were adapted from the correlation
dimension [44,45] and Kolmogorov entropy [46]. RR time series, however, are multifactorial and
display multiscale characteristics, and thus neither ApEn nor SampEn are ideal for such types of
biosignal processing. Nonlinear, multiscale dynamic systems can however be described by scaling
exponents [47], as well as several multiscale measures [48,49]. Rényi entropy has several advantages.
The major advantage of Rényi entropy is that it is robust for short time series, nonlinearity and
nonstationarity. The Rényi entropy introduced here also has the advantage of addressing how the
probabilities are calculated by applying a density method rather than a histogram method, which is
the standard for calculation of multiscale entropy [49].
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In the current work we use the Rényi entropy, which generalizes the Shannon entropy [50] and is
defined as:

H(α) =
1

1− α
log2

 n∑
i=1

pαi

 (3)

where pi is the probability that a random variable takes a given value out of n values, and α is the
order of the entropy measure [50]. H(0) is simply the logarithm of n. As α increases, the measures
become more sensitive to the values occurring at higher probability and less to those occurring at lower
probability, which provides a picture of the RR length distribution within a signal. The probability,
p, can be estimated for any sub-sample of RR intervals, by considering the sub-sample as a point
embedded in a multi-dimensional space. The sub-sample is assigned a density measure by evaluating
other sub-samples in its vicinity. This addresses the coarse-graining problem for the determination of
scaling behavior in biosignal time series inherent in previous applications of the entropy measures by
applying a Gaussian kernel [49,51]. The Gaussian kernel is calculated as the sum of all contributions
from other RR sub-samples with index j:

ρi =
1

σ
√

2π

n∑
j=1

e−
dist2i j
2σ2 (4)

where σ is the dispersion of the function, and replaces the tolerance as suggested by Costa [48].
We designate the number of RR intervals in the sub-sample as π (not to be confused with the irrational
number pi), and use the Euclidean distance measure in π dimensions:

disti j =
π∑

k=0

(
xi+k − x j+k

)2
. (5)

Here, we investigate the efficacy of applying multiscale Rényi entropy as a measure of HRV with
respect to the sign, magnitude and the rate of change (acceleration) of the biosignal over time.

2. Methods

2.1. Patient Selection

Heart rate tachograms were obtained from data collected at the Charles Sturt Diabetes
Complications Screening Clinic (DiScRi), Australia [52] and were approved by the Charles Sturt
University Human Ethics Committee. Written informed consent was obtained from all participants.
A 20-min lead II ECG recording was taken from participants attending the clinic, using Powerlab
hardware with Chart 7 software (ADInstruments, Sydney) during the morning in an ambient
temperature room and after the participants were relaxed. Participants were comparable for age,
gender, and heart rate, and after initial screening, those with heart disease, presence of a pacemaker,
kidney disease or polypharmacy (including multiple anti-arrhythmic medications) were excluded from
the study. The status of CAN was defined using the Cardiac Autonomic Reflex Test battery criteria [53].
Each participant was assigned as either without CAN (71 participants), early CAN (67 participants) or
definite CAN (NN participants) [54,55].

2.2. ECG Recording and Obtaining the RR Intervals

From the 20-min RR tachogram, a 10 min segment was selected from the middle in order to
remove transient start up artefacts and movement at the end of the recording. The RR intervals
were then extracted from this shorter recording, and data were visually verified to not include any
missed, extra or misaligned (including ectopic) beat detections. No other information was used in
this study. The raw RR interval series for each participant was detrended based on smoothness
priors formulation [56]. For the purposes of an initial examination of the RR interval recordings,
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we have selected one recording from each of these three classes as follows. For each participant
class (Normal, Early and Definite), the Standard deviation of RR intervals in the time series were
calculated. For each participant, we calculated the difference between this and the Median values of
the Standard deviation obtained for all participants of the same class. We selected the RR time series
closest to the median for that class. The 10 min RR time series for these representatives are shown
in Figure 1. Horizontal scales are the same to allow comparison, but vertical scales are as indicated
on each graph. Figure 1 shows that the participant from the Normal class manifested RR intervals
with mostly low deviation from the mean, but some large excursions (standard deviation = 0.0357).
In comparison, the participant from the Definite class showed fewer large excursions (SD = 0.0173),
while the participant from the Early class was in between these (SD = 0.025926).
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Figure 1. RR interval time series of normal, early cardiac autonomy neuropathy (eCAN) and definite
CAN (dCAN).

2.3. Decomposition

The RR interval time series was decomposed into increment, magnitude, sign and acceleration,
as discussed above. Raw RR intervals were filtered and the trend was removed. Increments were
calculated as the difference between successive RR intervals. The magnitude, sign and acceleration of
the increments were then determined. Finally, the Rényi entropy was calculated for the sign, magnitude
and acceleration time series, using a variety of values for parameter sequence length π, exponent α,
and width of the kernel function σ. This results in four different measures:

• Rényi entropy calculated from a sequence of the magnitude of the difference in RR intervals
• Rényi entropy calculated from a sequence of the sign of the difference in RR intervals
• Rényi entropy calculated from a sequence of the acceleration of RR intervals

2.4. Calculating the Multiscale Rényi (MSRen) Entropy

The Rényi entropy was calculated for scaling exponents α of integer values from −5 to +5.
The entropy values were then normalized by dividing by log2 of the number of length of the RR
interval time series. A range of sequence lengths, π, was also used, and the dispersion of the Gaussian
function (σ) was varied in proportion. Sequence lengths of 1, 2, 4, 8 and 16 RR intervals were adopted,
with corresponding values of σ as 0.01, 0.02, 0.04, 0.08 and 0.16, respectively. A Mann-Whitney test was
performed to compare the Rényi value obtained for the Normal to that obtained for the Early CAN
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group, and a similar comparison between the Early CAN and the Definite CAN group, and between
the Definite CAN and the Normal group.

3. Results

For each patient group, we calculated the median value of the standard deviation of the RR
intervals and selected the patients with standard deviation of RR intervals closest to the median for
the group. The resulting three representative patients are used to illustrate the differences in sign,
magnitude and acceleration between Normal, Early CAN and Definite CAN. Figures 2–4 present a
sample of 100 filtered RR intervals and their decomposition, using data from the three representative
groups to illustrate the effect of working with the sign of the RR interval, first and second difference.
All vertical axes are numbered in seconds. It can be observed, for example, that the increment ∆RR (b)
varies between ±0.2 s with excursions up to 0.5 s, while the acceleration (e) varies between ±0.7 ms.
There are frequent reversals of sign (d) with some periods of a continuation of the same sign.
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Figure 2. An illustration of the composition of the raw 100 RR tachogram for participants without
CAN (Normal group). (a) The RR time series after filtering and pre-processing; (b) The increment
(∆RR = RRn − RRn−1) of the time series shown in (a); (c) The magnitude of the increment; (d) The sign
of the increment; (e) The acceleration (∆2RR = RRn − 2RRn−1 + RRn−2).
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Figure 3. An illustration of the composition of the raw 100 RR tachogram for a participant with Early
CAN. (a) The RR time series after filtering and pre-processing; (b) The increment (∆RR = RRn − RRn−1)
of the time series shown in (a); (c) The magnitude of the increment; (d) The sign of the increment;
(e) The acceleration (∆2RR = RRn − 2RRn−1 + RRn−2).

Figure 3 shows similar information from the representative participant with early CAN. The range
of variation in RR interval, ∆RR and |∆RR| can be observed to be much smaller than those in Figure 2,
indicating a smaller variance in the RR interval. In addition, the acceleration is large compared to the
representative with early CAN in Figure 3. The sign (Figure 2e) shows fewer changes in direction
compared to the representative with early CAN in Figure 3.

Figure 4 shows a sample of the information from a participant with definite CAN. The difference
in RR intervals (Figure 4b,c) can be seen to be even smaller than the example shown in Figure 2 or
Figure 3, while the acceleration (Figure 4e) also has a smaller range than the example from either the
Normal or Early group. The sign is different to either of the previous examples, as there appears to be
more frequent reversals in sign when compared to those examples, but there is less of a mixture of fast
and slow changes in sign.

In order to quantify these differences, the variation of each time series was evaluated, for each
participant in the study, using the Rényi entropy. A variety of values were used for the parameters
(sequence length π, exponent α and width of the kernel function σ).
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Figure 4. An illustration of the composition of the raw 100 RR tachogram for a person with Definite
CAN. (a) The RR time series after filtering and pre-processing; (b) The increment (∆RR = RRn − RRn−1)
of the time series shown in (a); (c) The magnitude of the increment; (d) The sign of the increment;
(e) The acceleration (∆2RR = RRn − 2RRn−1 + RRn−2).

Our results comparing Normal (N), Early (E) and Definite (D) CAN, based on the magnitude of
the difference of RR intervals for sequence length π set to 1, 2, 4, 8, 16, and for α = +5 applying the
Mann-Whitney tests obtained the smallest p-value (p < 0.0001) for the Definite to Normal comparison
with a sequence length of π = 1 values for ∆RR. Normal versus Early was best differentiated with
longer sequences of length π = 4 or π = 8, whereas for Early versus Definite the optimal sequence
length was again π = 1. Extracting the sign of a ∆RR sequence provides information on the linear
aspects of the traces but the separation of the classes is less pronounced as seen in the figures above
and results in the tables below and hence the p-values are much larger, indicating a lesser role of the
linear characteristics of the signals in differentiating CAN progression. Only Normal to Early CAN
was significantly different for a sequence length of π = 8, suggesting that the nonlinear, fractal-like
characteristics may play a larger role in CAN development.

Separating the classes based on the acceleration of ∆RR increments results in the smallest p-value
(8.13 × 10−5) obtained for the Mann-Whitney test comparing Definite CAN to Normal, and a sequence
length π = 4. For acceleration, separation of CAN progression improves with sequence length up to
π = 4, and then decreases again for all comparisons, except for Normal versus Early, where the best
separation is seen using π = 16. However, the best overall comparative results were found with π = 4.
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Table 1 concerns the magnitude of differences (|∆RR|) and shows p-values obtained from three
Mann-Whitney tests comparing Normal to Early (NE), Early to Definite (ED) and Definite to Normal
(DN), for different values of the Rényi parameters sequence length π, and exponent α. The width of
the kernel function σ was always chosen as π/100. Nearly all of these p-values are significant at the
p < 0.01 level, and some are extremely small, suggesting that these Rényi exponents show an effect for
all three of these comparisons.

Table 1. Classification results based on Rényi exponents applied to the magnitude of differences (|∆RR|).
Figures represent p-values for the results of Mann-Whitney tests for comparisons of Normal to Early
(NE), Early to Definite (ED) and Definite to Normal (DN). Values shown in bold are the smallest p-value
for each comparison (Table 1), while tests that were not significant are indicated by n.s.

Test π = 1 π = 2 π = 4 π = 8 π = 16

α = 1
NE 0.0001 <0.0001 <0.0001 0.0001 0.002
ED 0.004 0.006 0.02 n.s. n.s.
DN <0.0001 <0.0001 0.0002 0.002 0.03

α = 2
NE 0.0002 <0.0001 <0.0001 <0.0001 0.0007
ED 0.002 0.004 0.01 0.05 n.s.
DN <0.0001 <0.0001 0.0001 0.001 0.02

α = 3
NE 0.0002 <0.0001 <0.0001 <0.0001 0.0004
ED 0.003 0.005 0.009 0.004 0.2
DN <0.0001 <0.0001 <0.0001 0.001 0.01

α = 4
NE 0.0003 <0.0001 <0.0001 <0.0001 0.0003
ED 0.002 0.005 0.009 n.s. n.s.
DN <0.0001 <0.0001 <0.0001 0.0009 0.007

α = 5
NE 0.0003 <0.0001 <0.0001 <0.0001 0.0002
ED 0.002 0.005 0.009 0.02 n.s.
DN <0.0001 <0.0001 <0.0001 0.0007 0.006

In general, the smallest values are found for normal versus definite CAN as would be expected.
However, the table suggests that some values of the Rényi parameters are better than others at
demonstrating this effect. Generally, the sequence length of 2 provides the best separation for ED
(early–definite) and DN (definite–normal), but using π = 4 provides the best separation for NE
(normal–early). n.s.—not significant.

Table 2 illustrates results for acceleration and shows p-values obtained from three Mann-Whitney
tests for different values of sequence length π, and exponent α. The figures show an optimum value for
π = 4 and for a variety of values for α. For short sequence lengths, the p-value increases with increasing
α. For longer sequences the opposite is true.

The actual values of the Rényi entropy calculated from the magnitude of the increment of RR
intervals |∆RR|, using the parameters sequence length π = 4, and width of the kernel function σ = 0.04,
are illustrated in Figure 5. The exponent αwas varied so that −5 ≤ α ≤ 5. The inset highlights details of
the exponents corresponding to the positive values of α. Rényi entropy calculated for the class of Early
CAN lies in between those for the Normal and Definite classes.

Rényi entropy calculated from the acceleration of the RR intervals ∆2RR, using the parameters
sequence length π = 4, and width of the kernel function σ = 0.04 indicates a better separation for
positive α (Figure 6.).
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p-values for the results of Mann-Whitney tests for comparisons of Normal to Early (NE), Early to Definite
(ED) and Definite to Normal (DN). Values shown in bold are the smallest p-value for each comparison
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Test π = 1 π = 2 π = 4 π = 8 π = 16

α = 1
NE 0.003 0.0005 0.0002 0.0003 0.0005
ED n.s. 0.03 0.01 0.02 n.s.
DN 0.00147 0.0002 <0.0001 0.0005 0.004

α = 2
NE 0.007 0.0008 0.0003 0.0004 0.0004
ED n.s. 0.02 0.009 0.02 0.05
DN 0.002 0.0003 <0.0001 0.0003 0.001

α = 3
NE 0.01 0.001 0.0003 0.0005 0.0003
ED n.s. 0.03 0.007 0.02 0.04
DN 0.002 0.0004 <0.0001 0.0002 0.001

α = 4
NE 0.01 0.0009 0.0004 0.0005 0.0003
ED n.s. 0.03 0.007 0.02 0.03
DN 0.003 0.0004 <0.0001 0.0002 0.0009

α = 5
NE 0.01 0.001 0.0004 0.0006 0.0002
ED n.s. 0.03 0.007 0.02 0.03
DN 0.0038 0.0004 <0.0001 0.0001 0.0006
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4. Discussion and Conclusions

In physiological dynamic systems, various extended concepts of entropy, such as approximate
entropy (ApEn), sample entropy (SampEn), and multi-scale entropy have been developed to quantify
various physiological signals [42,43,57]. The major advantage of Rényi entropy is that it is robust for
short time series, nonlinearity and nonstationarity. The Rényi entropy introduced here also has the
advantage of addressing how the probabilities are calculated by applying a density method based on a
Gaussian kernel rather than a histogram method, which is the standard for calculation of multiscale
entropy. H(α) is the order of the Rényi entropy measure. As α increases, the measures become more
sensitive to the values occurring at higher probability and less to those occurring at lower probability,
which provides a picture of the RR length distribution within a signal [49]. Including acceleration in
our model then adds information about the heart rate variability by providing information not only on
the change in the system using the first difference but also the magnitude and direction of the change
measured by the second difference (acceleration) with respect to sequence length.

Heart rhythm is characterized by a scale-invariant, nonlinear dynamics displaying long-range
power-law correlations over a range of time scales [58,59] akin to 1/f [60] or fractal-like
scaling [1,39,47,57,58,61–65]. Fractal-like scaling analysis has been shown to indicate risk of adverse
cardiac events [66,67].

Bio signals quantifying cardiac interbeat intervals (RR intervals) exhibit complex dynamics that
vary with age and disease and can be characterized by scaling laws [12,68]. In healthy subjects,
RR interval time signals present large variability, which is a function of the numerous physiological
processes that influence heart rhythm, including ANS and neuroendocrine factors. Nonstationarity
and nonlinear dynamics characteristic of these signals are believed to be due to the complex interaction
between the two branches of the ANS, endocrine factors and the intrinsic cardiac control mechanisms.

Early identification of CAN is crucial for more effective clinical outcomes. Studies have shown
that the one of the earliest signs for a CAN diagnosis is the reduction of HRV. Thus, understanding
of the time series characteristics and selecting an appropriate method to analyze these signals and
interpret the results is paramount. A consistent finding of ours is that the most difficult two classes
to separate were Definite and Early CAN. This implies that patients in the early stages of CAN have
similar HRV features to those in the definite group. This may be a reflection that the existing CART
criteria are somewhat conservative in identifying CAN, or the two blood pressure tests included in the
CART battery indicative of sympathetic dysfunction do not clearly identify disease progression from
early to definite CAN, and that sympathetic dysfunction may already be a factor in early CAN [69].

The typical RR tachogram consists of linear and nonlinear portions, which overlap and lead to
the characteristic heart rate variability. In this work, we show that different components of the RR
tachogram are able to differentiate between the stages of CAN progression from normal and early
CAN to definite CAN. These different components rely on the fact that control of heart rate entails
changes in both a positive and negative directions. In particular, the magnitude and acceleration of
the changes in RR increments separate all three groups. Both of these series carry information on
the nonlinear properties of the interbeat interval time series and indicate that fractal-like or power
law dynamics within the biosignals become more prominent with disease progression. This complex
behavior is further illustrated by the larger and more often occurring deviations in acceleration.

Recent NLD methods continue to shed light on HRV changes under various physiological and
pathological conditions, providing valuable potential prognostic and diagnostic information and
complementing traditional time- and frequency-domain analyses. With the advent of multiple tools
and algorithms, it is critical to identify which of these methods should be selected and under which
conditions they should be applied. Our work aligns with previous work, confirming the efficacy of
complex measures for representing and quantifying heart rate variability. The current research has
focused on investigating the differences in successive RR intervals adopting interbeat acceleration as a
novel feature, which provides additional information about the nonlinearity of heartbeat regulation
and hence the identification of disease. The high degree of separation obtained between classes of



Entropy 2019, 21, 727 11 of 14

disease points to its diagnostic and risk stratification potential in cardiac autonomic neuropathy, and
provides a much less invasive test for this disease, with the advantages of faster diagnosis, better access
to treatment and more effective clinical outcomes.

Author Contributions: Conceptualization, H.F.J. and D.J.C. and K.K.; Methodology, H.F.J., D.J.C. and M.P.T.;
Formal Analysis, H.P.J., D.J.C., M.T. and K.K.; Investigation, H.F.J., D.J.C., M.P.T. and K.K.; Writing-Original Draft
Preparation, H.F.J., D.J.C., M.T. and K.K.; Writing-Review & Editing, H.F.J., D.J.C., M.P.T. and K.K.

Funding: MPT was (funded through an EFSD award) supported by EFSD/JDRF/Lilly.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.-K.; Stanley, H.E. Fractal dynamics in
physiology: Alterations with disease and aging. Proc. Natl. Acad. Sci. USA 2002, 99, 2466–2472. [CrossRef]
[PubMed]

2. Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of biological signals. Phys. Rev. E
2005, 71, 021906. [CrossRef] [PubMed]

3. Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and cross over
phenomena in nonstationary heartbeat time series analysis. Chaos 1995, 5, 82–87. [CrossRef] [PubMed]

4. Ivanov, P.C.; Rosenblum, M.G.; Peng, C.K.; Mietus, J.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Scaling
behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 1996, 383, 323–327.
[CrossRef] [PubMed]

5. Agelink, M.W.; Malessa, R.; Baumann, B.; Majewski, T.; Akila, F.; Zeit, T.; Ziegler, D. Standardized tests of
heart rate variability: Normal ranges obtained from 309 healthy humans, and effects of age, gender and
heart rate. Clin. Auton. Res. 2001, 11, 99–108. [CrossRef] [PubMed]

6. Bellavere, F.; Balzani, I.; De Masi, G.; Carraro, M.; Carenza, P.; Cobelli, C.; Thomaseth, K. Power spectral
analysis of heart-rate variations improves assessment of diabetic cardiac autonomic neuropathy. Diabetes
1992, 41, 633–640. [CrossRef] [PubMed]

7. Yeragani, V.K.; Srinivasan, K.; Vempati, S.; Pohl, R.; Balon, R. Fractal dimension of heart rate time series:
An effective measure of autonomic function. J. Appl. Physiol. 1993, 75, 2429–2438. [CrossRef]

8. Malik, M.; Camm, J. HRV Variability; Futura Publishing Co.: Armonk, NY, USA, 1995.
9. Electrophysiology, Task Force of the European Society of Cardiology the North American Society of Pacing.

Special report: Heart rate variability standards of measurement, physiological interpretation, and clinical
use. Circulation 1996, 93, 1043–1065. [CrossRef]

10. Teich, M.C.; Lowen, S.B.; Jost, B.M.; Vibe-Rheymer, K. Heart Rate Variability: Measures and Models; IEEE Press:
New York, NY, USA, 2001.

11. Khandoker, A.H.; Jelinek, H.F.; Moritani, T.; Palaniswami, M. Association of cardiac autonomic neuropathy with
alteration of sympatho-vagal balance through heart rate variability analysis. Med. Eng. Phys. 2010, 32, 161–167.
[CrossRef]

12. Pikkujämsä, S.M.; Mäkikallio, T.H.; Sourander, L.B.; Räihä, I.J.; Puukka, P.; Skyttä, J.; Peng, C.K.;
Goldberger, A.L.; Huikuri, H.V. Cardiac interbeat interval dynamics from childhood to senescence:
Comparison of conventional and new measures based on fractals and chaos theory. Circulation
1999, 100, 393–399. [CrossRef]

13. Schmitt, D.T.; Ivanov, P.C. Fractal scale-invariant and nonlinear properties of cardiac dynamics remain stable with
advanced age: A new mechanistic picture of cardiac control in healthy elderly. Am. J. Physiol. 2007, 293, 1923–1937.
[CrossRef] [PubMed]

14. Burr, R.L. Interpretation of normalised specrtal heart rate variability in sleep research: A critical review. Sleep
2007, 30, 913–919. [CrossRef] [PubMed]

15. Vanoli, E.; Adamson, P.B.; Ba, L.; Pinna, G.D.; Lazzara, R.; Orr, W.C. Heart rate variability during specific
sleep stages. A comparison of healthy subjects with patients after myocardial infarction. Circulation
1995, 91, 1918–1922. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.012579499
http://www.ncbi.nlm.nih.gov/pubmed/11875196
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://www.ncbi.nlm.nih.gov/pubmed/15783351
http://dx.doi.org/10.1063/1.166141
http://www.ncbi.nlm.nih.gov/pubmed/11538314
http://dx.doi.org/10.1038/383323a0
http://www.ncbi.nlm.nih.gov/pubmed/8848043
http://dx.doi.org/10.1007/BF02322053
http://www.ncbi.nlm.nih.gov/pubmed/11570610
http://dx.doi.org/10.2337/diab.41.5.633
http://www.ncbi.nlm.nih.gov/pubmed/1568534
http://dx.doi.org/10.1152/jappl.1993.75.6.2429
http://dx.doi.org/10.1161/01.CIR.93.5.1043
http://dx.doi.org/10.1016/j.medengphy.2009.11.005
http://dx.doi.org/10.1161/01.CIR.100.4.393
http://dx.doi.org/10.1152/ajpregu.00372.2007
http://www.ncbi.nlm.nih.gov/pubmed/17670859
http://dx.doi.org/10.1093/sleep/30.7.913
http://www.ncbi.nlm.nih.gov/pubmed/17682663
http://dx.doi.org/10.1161/01.CIR.91.7.1918
http://www.ncbi.nlm.nih.gov/pubmed/7895347


Entropy 2019, 21, 727 12 of 14

16. Hautala, A.J.; Makikallio, T.H.; Kiviniemi, A.; Laukkanen, R.T.; Nissila, S.; Huikuri, H.V.; Tulppo, M.P.
Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary
subjects. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H1747–H1752. [CrossRef] [PubMed]

17. Jelinek, H.F.; Huang, Z.Q.; Khandoker, A.H.; Chang, D.; Kiat, H. Cardiac rehabilitation outcomes following a
6-week program of PCI and CABG Patients. Front. Physiol. 2013, 4, 302. [CrossRef] [PubMed]

18. Kiviniemi, A.M.; Tulppo, M.P.; Eskelinen, J.J.; Savolainen, A.M.; Kapanen, J.; Heinonen, I.H.; Huikuri, H.V.;
Hannukainen, J.C.; Kalliokoski, K.K. Cardiac autonomic fucntion and high-intensity interval training in
middle-aged men. Med. Sci. Sports Exerc. 2014, 46, 1960–1967. [CrossRef] [PubMed]

19. La Rovere, M.; Mortara, A.; Sandrone, G.; Lombardi, F. Autonomic nervous system adaptations to short-term
exercise training. Chest 1992, 101, 299–303. [CrossRef] [PubMed]

20. Soares-Miranda, L.; Sandercock, G.; Valente, H.; Vale, S.; Santos, R.; Mota, J. Vigorous physical activity and
vagal modulation in young adults. Eur. J. Cardiovasc. Prevent. Rehab. 2009, 16, 705–711. [CrossRef]

21. Tulppo, M.P.; Mäkikallio, T.H.; Seppänen, T.; Laukkanen, R.T.; Huikuri, H.V. Vagal modulation of heart rate
during exercise: Effects of age and physical fitness. Am. J. Physiol. Heart Circ. Physiol. 1998, 274, H424–H429.
[CrossRef]

22. McLachlan, C.S.; Ocsan, R.; Spence, I.; Hambly, B.; Matthews, S.; Wang, L.; Jelinek, H.F. Increased total heart
rate variability and enhanced cardiac vagal autonomic activity in healthy humans with sinus bradycardia.
In Baylor University Medical Center Proceedings; Taylor & Francis: Oxford, UK, 2010; Volume 23, pp. 368–370.

23. Mäkikallio, T.H.; Huikuri, H.V.; Hintze, U.; Videbæk, J.; Mitrani, R.D.; Castellanos, A.; Myerburg, R.J.;
Møller, M.; DIAMOND Study Group. Fractal analysis and time- and frequency-domain measures of heart
rate variability as predictors of mortality in patients with heart failure. Am. J. Cardiol. 2001, 87, 178–182.

24. Huikuri, H.V.; Valkama, J.O.; Airaksinen, K.E.; Seppänen, T.; Kessler, K.M.; Takkunen, J.T.; Myerburg, R.J.
Frequency domain measures of heart rate variability before the onset of nonsustained and sustained
ventricular tachycardia in patients with coronary artery disease. Circulation 1993, 87, 1220–1228. [CrossRef]
[PubMed]

25. Khandoker, A.H.; Jelinek, H.F.; Palaniswami, M. Heart rate variability and complexity in people with diabetes
associated cardiac autonomic neuropathy. In Proceedings of the 2008 30th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008;
pp. 4696–4699.

26. Kemp, A.H.; Quintana, D.S.; Felmingham, K.L.; Matthews, S.; Jelinek, H.F. Heart rate variability in
unmedicated depressed patients without comorbid cardiovascular disease. PLoS ONE 2012, 7, e30777.
[CrossRef] [PubMed]

27. Carney, R.M.; Freedland, K.E. Depression and heart rate variability in patients with coronary artery disease.
Clev. Clin. J. Med. 2009, 76, S13–S17. [CrossRef] [PubMed]

28. Barbieri, R.; Citi, L.; Valenza, G.; Guerrisi, M.; Orsolini, S.; Tessa, C.; Diciotti, S.; Toschi, N. Increased instability
of heartbeat dynamics in Parkinson’s disease. In Computing in Cardiology; IEEE: Piscataway Township, NJ,
USA, 2013; Volume 40, pp. 89–92.

29. Kallio, M.; Suominen, K.; Bianchi, A.M.; Mäkikallio, T.; Haapaniemi, T.; Astafiev, S.; Sotaniemi, K.A.;
Myllylä, V.V.; Tolonen, U. Comparison of heart rate variability analysis methods in patients with Parkinson’s
disease. Med. Biol. Eng. Comput. 2002, 40, 408–414. [CrossRef] [PubMed]

30. Vinik, A.I.; Erbas, T.; Casellini, C.M. Diabetic cardiac autonomic neuropathy, inflammtion and cariovascular
disease. J. Diabetes Investig. 2013, 4, 4–8. [CrossRef] [PubMed]

31. Charles, M.; Fleischer, J.; Witte, D.R.; Ejskjaer, N.; Borch-Johnsen, K.; Lauritzen, T.; Sandbaek, A. Impact
of early detection and treatment of diabetes on the 6-year prevalence of cardiac autonomic neuropathy
in people with screen-detected diabetes: ADDITION-Denmark, a cluster-randomised study. Diabetiologia
2013, 56, 101–108. [CrossRef] [PubMed]

32. Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–808.
33. Ashkenazy, Y.; Ivanov, P.C.; Havlin, S.; Peng, C.K.; Goldberger, A.L.; Stanley, H.E. Magnitude and sign

correlations in heartbeat fluctuations. Phys. Rev. Lett. 2001, 86, 1900–1903. [CrossRef] [PubMed]
34. Ashkenazy, Y.; Ivanov, P.C.; Havlin, S.; Peng, C.K.; Yamamoto, Y.; Goldberger, A.L.; Stanley, H.E. Decomposition of

heartbeat time series: Scaling analysis of the sign sequence. Comput. Cardiol. 2000, 27, 139–142.

http://dx.doi.org/10.1152/ajpheart.00202.2003
http://www.ncbi.nlm.nih.gov/pubmed/12816748
http://dx.doi.org/10.3389/fphys.2013.00302
http://www.ncbi.nlm.nih.gov/pubmed/24198786
http://dx.doi.org/10.1249/MSS.0000000000000307
http://www.ncbi.nlm.nih.gov/pubmed/24561814
http://dx.doi.org/10.1378/chest.101.5_Supplement.299S
http://www.ncbi.nlm.nih.gov/pubmed/1576853
http://dx.doi.org/10.1097/HJR.0b013e3283316cd1
http://dx.doi.org/10.1152/ajpheart.1998.274.2.H424
http://dx.doi.org/10.1161/01.CIR.87.4.1220
http://www.ncbi.nlm.nih.gov/pubmed/8462148
http://dx.doi.org/10.1371/journal.pone.0030777
http://www.ncbi.nlm.nih.gov/pubmed/22355326
http://dx.doi.org/10.3949/ccjm.76.s2.03
http://www.ncbi.nlm.nih.gov/pubmed/19376975
http://dx.doi.org/10.1007/BF02345073
http://www.ncbi.nlm.nih.gov/pubmed/12227627
http://dx.doi.org/10.1111/jdi.12042
http://www.ncbi.nlm.nih.gov/pubmed/23550085
http://dx.doi.org/10.1007/s00125-012-2744-5
http://www.ncbi.nlm.nih.gov/pubmed/23064291
http://dx.doi.org/10.1103/PhysRevLett.86.1900
http://www.ncbi.nlm.nih.gov/pubmed/11290277


Entropy 2019, 21, 727 13 of 14

35. Ashkenazy, Y.; Lewkowicz, M.; Levitan, J.; Moelgaard, H.; Thomsen, P.E.B.; Saermark, K. Discrimination of
the healthy and sick cardiac autonomic nervous system by a new wavelet analysis of heartbeat intervals.
Fractals 1998, 6, 197–203. [CrossRef]

36. Jelinek, H.F.; Tarvainen, M.P.; Cornforth, D.J. Renyi entropy in the identification of cardiac autonomic
neuropathy in diabetes. Comput. Cardiol. 2012, 39, 909–911.

37. Kurths, J.; Voss, A.; Saparin, P.; Witt, A.; Kleiner, H.J.; Wessel, N. Quantitative analysis of heart rate variability.
Chaos 1995, 5, 88–94. [CrossRef] [PubMed]

38. Lake, D.E. Renyi entropy measures of heart rate Gaussianity. IEEE Trans. Biomed. Eng. 2006, 53, 21–27.
[CrossRef]

39. Voss, A.; Schulz, S.; Schroeder, R.; Baumert, M.; Caminal, P. Methods derived from nonlinear dynamics for
analysing heart rate variability. Phil. Trans. Math. Phys. Eng. Sci. 2009, 367, 277–296. [CrossRef] [PubMed]

40. Wessel, N.; Schumann, A.; Schirdewan, A.; Voss, A.; Kurths, J. Entropy measures in heart rate variability data.
In International Symposium on Medical Data Analysis; Springer: Berlin/Heidelberg, Germany, 2000; pp. 78–87.

41. Wessel, N.; Voss, A.; Malberg, H.; Ziehmann, C.; Voss, H.U.; Schirdewan, A.; Meyerfeldt, U.; Kurths, J.
Nonlinear analysis of complex phenomena in cardiological data. Herzschr. Elektrophys. 2000, 11, 159–173.
[CrossRef]

42. Pincus, S. Approximate entropy as a measure of system complexity. Proc. Nat. Acad. Sci. USA 1991, 88, 2297–2301.
[CrossRef] [PubMed]

43. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample
entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [CrossRef]

44. Grassberger, P. Finite sample corrections to entropy and dimension estimates. Phys. Lett. A 1988, 128, 369–373.
[CrossRef]

45. Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Physica 1983, 9, 189–208.
46. Eckmann, J.P.; Ruelle, D. Ergodic theory of chaos and strange attractors. In The Theory of Chaotic Attractors;

Springer: New York, NY, USA, 1985; pp. 273–312.
47. Ivanov, P.C.; Amaral, L.A.N.; Goldberger, A.L.; Havlin, S.; Rosenblum, M.G.; Struzik, Z.R.; Stanley, H.E.

Multifractality in human heartbeat dynamics. Nature 1999, 399, 461–465. [CrossRef]
48. Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of complex physiological time series.

Phys. Rev. Lett. 2002, 89, 068102. [CrossRef]
49. Cornforth, D.; Tarvainen, M.; Jelinek, H.F. How to Calculate Renyi Entropy from Heart Rate Variability,

and Why it Matters for Detecting Cardiac Autonomic Neuropathy. Front. Bioeng. Biotechnol. 2014, 2, 34.
[CrossRef] [PubMed]

50. Rényi, A. On measures of information and entropy. In Proceedings of the Fourth Berkeley Symposium on
Mathematics, Statistics and Probability; The Regents of the University of California: Oakland, CA, USA,
1961; pp. 547–561.

51. Xu, Y.; Ma, Q.D.Y.; Schmitt, D.T.; Bernaola-Galván, P.; Ivanov, P.C. Effects of coarse-graining on the scaling
behavior of long-range correlated and anti-correlated signals. Phys. A Stat. Mech. Appl. 2011, 390, 4057–4072.
[CrossRef] [PubMed]

52. Jelinek, H.F.; Wilding, C.; Tinley, P. An innovative multi-disciplinary diabetes complications screening
programme in a rural community: A description and preliminary results of the screening. Aust. J. Prim.
Health 2006, 12, 14–20. [CrossRef]

53. Spallone, V.; Bellavere, F.; Scionti, L.; Maule, S.; Quadri, R.; Bax, G.; Melga, P.; Viviani, G.L.; Esposito, K.;
Morganti, R.; et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic
neuropathy. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 69–78. [CrossRef] [PubMed]

54. Pop-Busui, R.; Evans, G.W.; Gerstein, H.C.; Fonseca, V.; Fleg, J.L.; Hoogwerf, B.J.; Genuth, S.; Grimm, R.H.;
Corson, M.A.; Prineas, R. The ACCORD Study Group. Effects of cardiac autonomic dysfunction on mortality risk in
the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Trial. Diabetes Care 2010, 33, 1578–1584. [CrossRef]

55. Flynn, A.C.; Jelinek, H.F.; Smith, M.C. Heart rate variability analysis: A useful assessment tool for diabetes
associated cardiac dysfunction in rural and remote areas. Aust. J. Rural Health 2005, 13, 77–82. [CrossRef]

56. Tarvainen, M.P.; Ranta-Aho, P.O.; Karjalainen, P.A. An advanced detrending method with application to
HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [CrossRef]

57. Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis: A new measure of complexity loss in
heart failure. J. Electrocardiol. 2003, 36, 39–40. [CrossRef]

http://dx.doi.org/10.1142/S0218348X98000249
http://dx.doi.org/10.1063/1.166090
http://www.ncbi.nlm.nih.gov/pubmed/12780160
http://dx.doi.org/10.1109/TBME.2005.859782
http://dx.doi.org/10.1098/rsta.2008.0232
http://www.ncbi.nlm.nih.gov/pubmed/18977726
http://dx.doi.org/10.1007/s003990070035
http://dx.doi.org/10.1073/pnas.88.6.2297
http://www.ncbi.nlm.nih.gov/pubmed/11607165
http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://dx.doi.org/10.1016/0375-9601(88)90193-4
http://dx.doi.org/10.1038/20924
http://dx.doi.org/10.1103/PhysRevLett.89.068102
http://dx.doi.org/10.3389/fbioe.2014.00034
http://www.ncbi.nlm.nih.gov/pubmed/25250311
http://dx.doi.org/10.1016/j.physa.2011.05.015
http://www.ncbi.nlm.nih.gov/pubmed/25392599
http://dx.doi.org/10.1071/PY06003
http://dx.doi.org/10.1016/j.numecd.2010.07.005
http://www.ncbi.nlm.nih.gov/pubmed/21247746
http://dx.doi.org/10.2337/dc10-0125
http://dx.doi.org/10.1111/j.1440-1854.2005.00658.x
http://dx.doi.org/10.1109/10.979357
http://dx.doi.org/10.1016/j.jelectrocard.2003.09.011


Entropy 2019, 21, 727 14 of 14

58. Gao, J.; Gurbaxani, B.M.; Hu, J.; Heilman, K.J.; Emauele, V.A.; Lewis, G.F.; Davila, M.; Unger, E.R.; Lin, J.M.S.
Multiscale analysis of heart rate variability in nonstationary environments. Front. Physiol. 2013, 4, 119.
[CrossRef]

59. Saul, J.P.; Albrecht, P.; Berger, R.D.; Cohen, R.J. Analysis of long term heart rate variability: Methods, 1/f
scaling and implications. Pharmacology 1988, 14, 419–422.

60. Kobayashi, M.; Musha, T. 1/f fluctuation of heart beat period. IEEE Trans. Biomed. Eng. 1982, 29, 456–457.
[CrossRef] [PubMed]

61. Struzik, Z.R.; Hayano, J.; Sakata, S.; Kwak, S.; Yamamoto, Y. 1/f Scaling in heartrate requires antagonistic
autonomic control. Phys. Rev. E 2004, 70, 050901. [CrossRef] [PubMed]

62. Hu, J.; Gao, J.; Tung, W.-W.; Cao, Y. Multiscale analysis of heart rate variability: A comparison of different
complexity measures. Ann. Biomed. Eng. 2010, 38, 854–864. [CrossRef] [PubMed]

63. Kiyono, A.; Struzik, Z.R.; Aoyagi, N.; Yamamoto, Y. Multiscale probability density function analysis: Non-Gaussian
and scale-invariant fluctuations of healthy human HRV. IEEE Trans. Biomed. Eng. 2006, 53, 95–102. [CrossRef]
[PubMed]

64. Thurner, S.; Feurstein, M.C.; Teich, M.C. Multiresolution wavelet analysis of heartbeat intervals discriminates
healthy patients from those with cardiac pathology. Phys. Rev. Lett. 1998, 80, 1544–1547. [CrossRef]

65. Krstacic, G.; Krstacic, A.; Smalcelj, A.; Milicic, D.; Jembrek-Gostovic, M. The “Chaos Theory” and nonlinear
dynamics in heart rate variability analysis: Does it work in short-time series in patients with coronary heart
disease? Ann. Noninvasive Electrocardiol. 2007, 12, 130–136. [CrossRef]

66. Ho, K.K.; Moody, G.B.; Peng, C.K.; Mietus, J.E.; Larson, M.G.; Levy, D.; Goldberger, A.L. Predicting survival
in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and
conventional indices of heart rate dynamics. Circulation 1997, 96, 842–848. [CrossRef]

67. Laitio, T.; Jalonen, J.; Kuusela, T.; Scheinin, H. The role of heart rate variability in risk stratification for adverse
postoperative cardiac events. Anesth. Analg. 2007, 105, 1548–1560. [CrossRef]

68. Goldberger, A.L. Non-linear dynamics for clinicians: Chaos theory, fractals, and complexity at the bedside.
Lancet 1996, 347, 1312–1314. [CrossRef]

69. Bellavere, F.; Bosello, G.; Fedele, D.; Cardone, C.; Ferri, M. Diagnosis and management of diabetic autonomic
neuropathy. BMJ 1983, 287, 61. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3389/fphys.2013.00119
http://dx.doi.org/10.1109/TBME.1982.324972
http://www.ncbi.nlm.nih.gov/pubmed/7106796
http://dx.doi.org/10.1103/PhysRevE.70.050901
http://www.ncbi.nlm.nih.gov/pubmed/15600582
http://dx.doi.org/10.1007/s10439-009-9863-2
http://www.ncbi.nlm.nih.gov/pubmed/20012693
http://dx.doi.org/10.1109/TBME.2005.859804
http://www.ncbi.nlm.nih.gov/pubmed/16402608
http://dx.doi.org/10.1103/PhysRevLett.80.1544
http://dx.doi.org/10.1111/j.1542-474X.2007.00151.x
http://dx.doi.org/10.1161/01.CIR.96.3.842
http://dx.doi.org/10.1213/01.ane.0000287654.49358.3a
http://dx.doi.org/10.1016/S0140-6736(96)90948-4
http://dx.doi.org/10.1136/bmj.287.6384.61-a
http://www.ncbi.nlm.nih.gov/pubmed/6407693
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Heartbeat Interval Time Series 
	Decomposition of the RR Interval Time Series 
	The Rényi Entropy 

	Methods 
	Patient Selection 
	ECG Recording and Obtaining the RR Intervals 
	Decomposition 
	Calculating the Multiscale Rényi (MSRen) Entropy 

	Results 
	Discussion and Conclusions 
	References

