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The fast Fourier transform (FFT) is a widely used algorithm used to depict the amplitude
of low-frequency fluctuation (ALFF) of resting-state functional magnetic resonance
imaging (RS-fMRI). Wavelet transform (WT) is more effective in representing the complex
waveform due to its adaptivity to non-stationary or local features of data and many
varieties of wavelet functions with different shapes being available. However, there
is a paucity of RS-fMRI studies that systematically compare between the results of
FFT versus WT. The present study employed five cohorts of datasets and compared
the sensitivity and reproducibility of FFT-ALFF with those of Wavelet-ALFF based on
five mother wavelets (namely, db2, bior4.4, morl, meyr, and sym3). In addition to the
conventional frequency band of 0.0117–0.0781 Hz, a comparison was performed
in sub-bands, namely, Slow-6 (0–0.0117 Hz), Slow-5 (0.0117–0.0273 Hz), Slow-4
(0.0273–0.0742 Hz), Slow-3 (0.0742–0.1992 Hz), and Slow-2 (0.1992–0.25 Hz). The
results indicated that the Wavelet-ALFF of all five mother wavelets was generally more
sensitive and reproducible than FFT-ALFF in all frequency bands. Specifically, in the
higher frequency band Slow-2 (0.1992–0.25 Hz), the mean sensitivity of db2-ALFF
results was 1.54 times that of FFT-ALFF, and the reproducibility of db2-ALFF results was
2.95 times that of FFT-ALFF. The findings suggest that wavelet-ALFF can replace FFT-
ALFF, especially in the higher frequency band. Future studies should test more mother
wavelets on other RS-fMRI metrics and multiple datasets.

Keywords: amplitude of low-frequency fluctuation, wavelet transform, resting-state fMRI, sensitivity,
reproducibility

INTRODUCTION

Using resting-state functional magnetic resonance imaging (RS-fMRI), Biswal et al. (1995) observed
for the first time that the low-frequency (<0.1 Hz) fluctuation (LFF) was highly correlated between
sensorimotor cortices. Subsequently, RS-fMRI has attracted significant attraction. While vast
majority of RS-fMRI studies investigated brain networks by analyzing the relationship between
different brain areas, a few studies focused on the local brain activity.
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The amplitude of LFF (ALFF) is the simplest metric to
measure the local spontaneous activity of every single time series.
While most RS-fMRI studies used a conventional frequency band
of 0.01–0.08 Hz, sub-bands were also extensively used in research
on brain disorders (Liu et al., 2014; Giménez et al., 2017; Li
et al., 2017a,b; Wang et al., 2018) following the study by Zuo
et al. (2010) in which a few sub-bands were mentioned including
Slow-5 (0.01–0.027 Hz), Slow-4 (0.027–0.073 Hz), Slow-3 (0.073–
0.198 Hz), and Slow-2 (0.198–0.25 Hz). Although the very low
frequency band < 0.01 Hz (Slow-6) was not included in most
studies, a few studies indicated that Slow-6 was meaningful
either physiologically (Lv et al., 2013; Zhang et al., 2015) or
pathophysiologically (Wang et al., 2015). Therefore, frequency-
dependent analysis should be included in studies in addition to
the conventional frequency band.

The ALFF is calculated with a fast Fourier transform (FFT)
(Zang et al., 2007), wherein the energy of a time series is
decomposed by Fourier transform (FT) into a set of sinusoidal
functions at different frequencies. However, the fMRI signals are
complex waveforms, and thus, it is difficult for a set of stationary
sinusoidal functions to detect transient phenomena, such as
spikes (Bullmore et al., 2004; Mallat, 2009). Patel et al. (2014)
mentioned “wavelet analysis offers a powerful set of tools for
analyzing the properties of complex time series (Daubechies and
Heil, 1992; Mallat, 2009).” The natural adaptivity of the wavelet
transform (WT) to local or non-stationary features of data and
many varieties of wavelet functions with different shapes being
available makes it more effective in depicting complex waveform
than the FFT (Bullmore et al., 2004; Zhang et al., 2014).

Currently, many RS-fMRI studies use WT. Most existing WT
RS-fMRI studies use WT for functional connectivity analysis
(Achard et al., 2006; Deshpande et al., 2010; Spoormaker et al.,
2010; Schröter et al., 2012; Yaesoubi et al., 2017; Váša et al.,
2018). In functional connectivity analysis domain, some studies
have analyzed the transformed wavelet coefficients (Achard et al.,
2006), whereas others have analyzed the transformed wavelet-
filtered time series (Xu et al., 2016) of certain frequency ranges.
As previously mentioned, functional connectivity describes the
relationship between different brain areas. ALFF describes the
activity of a single time series, and it is widely used for
precisely localizing abnormal brain activity. Another similar
metric is the power of the time series. It should be noted
that the power is proportional to the square of ALFF (Zang
et al., 2007). To the best of the authors’ knowledge, all ALFF
studies are based on FFT, and only two studies applied WT
to analyze the power of a single time series (Salomon et al.,
2011; Bajaj et al., 2013). Fox example, a study compared
WT-based power between two RS-fMRI conditions, i.e., acute
tryptophan depletion diet versus control diet (Salomon et al.,
2011). Although theoretically WT is more valid in depicting
complex time series than FFT, there is a paucity of studies
comparing the WT-based ALFF (Wavelet-ALFF) with the
FFT-ALFF. Moreover, there are several mother wavelet bases.
However, two existing WT-based power studies did not compare
different wavelets.

In the present study, we applied five mother wavelets, namely,
Daubechies 2 (db2) (Bullmore et al., 2004; Salomon et al., 2011;

Zhang et al., 2016), biorthogonal 4.4 (bior4.4) (Laine, 2000;
Van De Ville et al., 2003; Mutihac, 2006), Morlet (morl) (Chang
and Glover, 2010; Bajaj et al., 2013; Omidvarnia et al., 2017;
Yaesoubi et al., 2017), Meyer (meyr) (Behjat et al., 2015), and
Symlets 3 (sym3) (Khullar et al., 2011) to calculate ALFF and
compared the sensitivity and reproducibility between Wavelet-
ALFF and FFT-ALFF in multiple frequency bands and multiple
cohorts to explore whether Wavelet-ALFF is superior to FFT-
ALFF and as to which mother wavelet is more superior.

MATERIALS AND METHODS

Subjects and Data Acquisition
In this study, we used two MRI datasets, namely, EOEC
and ADHD-200. The reason for using the two datasets is
explained in Section “Discussion.” All data acquisitions were
approved by the corresponding institutional ethics committees.
All subjects provided the informed consent before data collection.
Additionally, all subjects did not have a history of neurological
disease or psychiatric disorders.

The EOEC dataset consisted of 31 right-handed healthy
subjects (21.8 ± 1.8 years old, 15 females). The subjects
experienced two 8-min RS-fMRI sessions, namely, one with eyes
open (EO) and the other with eyes closed (EC). The order of
the two sessions was counterbalanced across subjects. Specifically,
MRI data were collected by a GE MR750 3T scanner (GE
Healthcare, Milwaukee, WI, United States) with an eight-channel
head receiving coil. During data collection, foam cushions were
applied to reduce head movement, and earplugs were applied to
diminish scanner noise. The scanning parameters of RS-fMRI
data were as follows: TR/TE = 2000/30 ms, flip angle = 60◦, 43
slices, thickness/gap = 3.4/0 mm, and FOV = 220 mm× 220 mm
with an in-plane resolution of 3.44 mm × 3.44 mm. The
resting-state BOLD scan lasted for 8 min and produced 240
images. A three-dimensional (3D) T1 was obtained with a
spoiled gradient-recalled pulse sequence with the following
parameters: TR/TE = 8.1/3.1 ms, flip angle = 9◦, 176 sagittal slices,
thickness = 1 mm, FOV = 250 mm× 250 mm.

The ADHD-200 dataset was from the publicly available
dataset “The ADHD-200 Consortium”.1 The ADHD-200 dataset
contains the RS-fMRI and anatomical MRI data of children
with attention deficit hyperactivity disorder (ADHD) and
typically developing children (TDC). The ADHD-200 dataset
was provided by eight independent imaging sites and was
divided into the training and test sets by the ADHD-200
Global Competition. The current study only used the data
from four imaging sites, i.e., NYU, PKU1, PKU2, and PKU3
as described in a previous study (Wang et al., 2017). Given
that the PKU3 only has male subjects, the female subjects in
NYU, PKU1, and PKU2 were not analyzed. Additionally, the
current study also removed the data from left-handed subjects.
Finally, the data from 58 subjects in NYU, 30 subjects in PKU1,
56 subjects in PKU2, and 38 subjects in PKU3 were used

1http://fcon_1000.projects.nitrc.org/indi/adhd200/
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after age matching between children with ADHD and TDC
(Wang et al., 2017).

Data Preprocessing
All the images were preprocessed via a MATLAB toolbox,
Data Processing Assistant for RS-fMRI (DPARSF) (Yan and
Zang, 2010) which was based on Statistical Parametric Mapping
(SPM8)2 and RS-fMRI Data Processing Toolkit (REST) (Song
et al., 2011). The first 10 time points (20 s) were discarded
because the subject took time to adapt to the scanning noise
and additionally for the scanner to calibrate (Zang et al., 2004;
Wang et al., 2017; Yan et al., 2019). Given that there were only
170 time points in NYU data, we retained 170 time points for
PKU1, PKU2, and PKU3.

The preprocessing steps included slice time correction,
head motion correction, spatial normalization (resampled into
3 mm × 3 mm × 3 mm), spatial smoothing (6-mm isotropic
Gaussian kernel), and nuisance covariates regression (head
motion effect using Friston 24-parameter model, white matter,
and cerebrospinal fluid signal).

Fast Fourier Transform–Amplitude of
Low-Frequency Fluctuation Calculation
The FFT-ALFF was calculated by using the DPARSF software
(Yan and Zang, 2010). As described in a previous study, the
averaged square root of power spectrum obtained with the
FFT across the given frequency band was considered as FFT-
ALFF (Zang et al., 2007; Zuo et al., 2010). The FFT-ALFF was
standardized by dividing each voxel’s FFT-ALFF by the “global”
mean FFT-ALFF (Zang et al., 2007). It should be noted that
“global” denotes a group mask. Some small parts of the brain were
not covered during scanning for some subjects in the ADHD-
200 dataset, and thus, we created a group mask in a manner
similar to a previous study (Wang et al., 2017) in which the brain
area of more than 80% of subjects were covered. The current
study calculated FFT-ALFF in the conventional band (0.0117–
0.0781 Hz) and five sub-bands as previously defined. These are
the Slow-6 (0–0.0117 Hz), Slow-5 (0.0117– 0.0273 Hz), Slow-
4 (0.0273–0.0742 Hz), Slow-3 (0.0742–0.1992 Hz), and Slow-2
(0.1992–0.25 Hz) (Zuo et al., 2010; Wang et al., 2015, 2017;
Zhang et al., 2015).

Wavelet–Amplitude of Low-Frequency
Fluctuation Calculation
In this study, the continuous WT (CWT) was implemented via
MATLAB 2014a Wavelet Toolbox (MathWorks, Natick, MA,
United States). The CWT wavelet coefficient is defined as the
convolution of the time series x(t) with the scaled and translated
version of a mother wavelet function ψk,s (t) (Torrence and
Compo, 1998) as shown below:

CWT(k, s) =
1
√
s
·
+∞

∫
−∞

x(t) ·ψ∗
(
t − k
s

)
dt (1)

2http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

where x(t) denotes the time series, ψk,s (t) denotes the mother
wavelet function, s denotes wavelet scale (64 frequency bins in
the current study, between 0 and 0.25 Hz at an interval of
0.0039 Hz), k denotes the localized time index (k ∈ [1, 170] and
[1, 230] for EOEC dataset and ADHD-200 dataset, respectively),
and ∗ denotes the complex conjugate (Poza et al., 2014;
Morabito et al., 2017).

We used five mother wavelets which have been used in
previous fMRI literature, including db2 (Bullmore et al., 2004;
Salomon et al., 2011; Zhang et al., 2016), bior4.4 (Laine, 2000; Van
De Ville et al., 2003; Mutihac, 2006), morl (Chang and Glover,
2010; Bajaj et al., 2013; Omidvarnia et al., 2017; Yaesoubi et al.,
2017), meyr (Behjat et al., 2015), and sym3 (Khullar et al., 2011).
The traces for the five wavelets are shown in Supplementary
Figures S1–S5, respectively.

As mentioned in a previous study, “a relatively high value
of the coefficient is given in the product with the wavelet if
there exists a spectral component of the signal corresponding to
the value of s at a location k” (Morabito et al., 2017). Wavelet-
ALFF was calculated by first adding up the wavelet coefficients
at all time points for each frequency point, and the averaged
coefficient across a given frequency band was then obtained as
defined below:

Wavelet-ALFF =
1
m

n∑
i=1

∣∣CWTi,j
∣∣ , j = s1 . . . sm (2)

where
∣∣CWTi,j

∣∣ denotes the absolute value of wavelet coefficient
at time point i at a given frequency point j; n denotes the
total amount of wavelet coefficient at a given frequency point;
and m denotes the total number of frequency points across a
given frequency band. In the current study, we calculated the
Wavelet-ALFF in the conventional frequency band of 0.0117–
0.0781 Hz and five sub-bands, i.e., Slow-6 (0–0.0117 Hz), Slow-5
(0.0117–0.0273 Hz), Slow-4 (0.0273–0.0742 Hz), Slow-3 (0.0742–
0.1992 Hz), and Slow-2 (0.1992–0.25 Hz). For standardization
purpose as did for FFT-ALFF, each voxel’s Wavelet-ALFF was
divided by the “global” (i.e., a group mask as described in
Section “Fast Fourier Transform–Amplitude of Low-Frequency
Fluctuation Calculation” mean Wavelet-ALFF.

t-Tests on Amplitude of Low-Frequency
Fluctuation Maps of Each Frequency
Band
Paired t-tests between EO and EC conditions were performed
for the EOEC dataset. Two-sample t-tests between ADHD group
and TDC group were performed in each cohort for ADHD-
200 dataset. As Jia et al. (2018) have recently reported, stringent
or liberal multiple comparison correction could not control the
false discoveries across multiple studies when the effect sizes
were relatively small. The reproducibility of the results across
multiple cohorts is more important for the recovery of the
ground truth. In order to detect sensitivity, two relatively liberal
thresholds (p < 0.05, cluster size ≥ 10 voxels; p < 0.01, cluster
size ≥ 10 voxels) were used. We did not use stringent multiple
comparison correction.
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Comparison Between
Wavelet–Amplitude of Low-Frequency
Fluctuation and Fast Fourier
Transform–Amplitude of Low-Frequency
Fluctuation
Comparison of Sensitivity
To compare the sensitivity between Wavelet-ALFF and FFT-
ALFF, we first counted the total number of voxels above the
threshold (p < 0.05, cluster size≥ 10 voxels). We then calculated
a ratio in each frequency band as follows:

ratio =
numberWavelet-ALFF

numberFFT-ALFF
(3)

where numberWavelet-ALFF denotes the number of voxels detected
by Wavelet-ALFF method. Similarly, numberFFT-ALFF denotes the
number of voxels detected by FFT-ALFF method. A ratio > 1
implies higher sensitivity for Wavelet-ALFF than FFT-ALFF, and
the ratio < 1 implies the opposite.

Comparison of Reproducibility Across Cohorts in the
ADHD-200 Dataset
As indicated in Section “Subjects and Data Acquisition,” four
cohorts from the ADHD-200 open database were available for
the current study (Wang et al., 2017). The number of overlapped
voxels above the threshold (p< 0.05, cluster size≥ 10 voxels) was
applied to represent reproducibility. This implies that, although
some voxels showed a significant difference between patients and
healthy controls, it is unknown to what extent these brain areas
are reproducible in other cohorts. To compare the reproducibility
of results between Wavelet-ALFF and FFT-ALFF, we calculated a
ratio of each frequency band as follows:

ratio =
overlappednumberWavelet-ALFF

overlappednumberFFT-ALFF
(4)

where overlappednumberWavelet-ALFF denotes the number of
overlapped voxels above the threshold (p< 0.05, cluster size≥ 10
voxels) in at least three cohorts in the four ADHD cohorts
(NYU, PKU1, PKU2, and PKU3) detected by the Wavelet-
ALFF. Similarly, overlappednumberFFT-ALFF is the number of
overlapped voxels of at least three cohorts in the four ADHD
cohorts (NYU, PKU1, PKU2, and PKU3) detected by FFT-ALFF.
A ratio > 1 implies higher reproducibility for Wavelet-ALFF than
FFT-ALFF, and the ratio < 1 implies the opposite.

Similarity of Spatial Pattern of Wavelet–Amplitude of
Low-Frequency Fluctuation With Fast Fourier
Transform–Amplitude of Low-Frequency Fluctuation
We computed the Dice similarity coefficient (DSC) (Dice, 1945;
Burunat et al., 2016) to calculate the spatial overlap of Wavelet-
ALFF with FFT-ALFF results of each cohort in each frequency
band:

DSC =
2 |X ∩ Y|
|X| + |Y|

(5)

where X, Y , and X ∩ Y denote the Wavelet-ALFF-based
binarized map, corresponding FFT-ALFF-based binarized map,

and overlapped map, respectively. Additionally, |·| represents the
number of voxels in each corresponding map.

RESULTS

Comparison of Sensitivity
Table 1 (liberal threshold of p < 0.05, cluster size ≥ 10 voxels)
lists a comparison of sensitivity between Wavelet-ALFF and FFT-
ALFF. A ratio > 1 indicates higher sensitivity for Wavelet-ALFF
than FFT-ALFF. It indicated that only seven ratios were < 1
among all 150 ratios (not including mean ratio). It implies
that the Wavelet-ALFF indicated higher sensitivity in almost all
frequency bands in all cohorts than FFT-ALFF.

The sensitivity indicated a frequency-dependent difference
for Wavelet-ALFF and FFT-ALFF (Figure 1). Specifically, the
sensitivity ratio was the lowest in the conventional frequency
band (0.0117–0.0781 Hz). The Wavelet-ALFF in lower frequency
band Slow-6 (0–0.0117 Hz) and higher frequency band Slow-
2 (0.1992–0.25 Hz) exhibited higher sensitivity than in Slow-
3, Slow-4, and Slow-5. In Slow-6, db2 exhibited the highest
sensitivity among the five mother wavelets. In Slow-2, db2
and sym3 exhibited higher sensitivity than bior4.4, morl, and
meyr. The detailed number of voxels is listed in Supplementary
Table S1. The brain areas exhibiting a significant difference
between EC and EO in Slow-6, Slow-2, and conventional band are

FIGURE 1 | The mean sensitivity (ratio of Wavelet-ALFF to FFT-ALFF) across
all five cohorts (NYU, PKU1, PKU2, PKU3, and EOEC) of a given frequency
band and a given mother wavelet. All mean ratios were greater than 1, i.e.,
Wavelet-ALFF was more sensitive than FFT-ALFF. ALFF, amplitude of
low-frequency fluctuation; bior4.4, biorthogonal 4.4; db2, Daubechies 2; FFT,
fast Fourier transform; meyr, Meyer; morl, Morlet; sym3, Symlets 3.
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shown in Figures 2–4, respectively. The brain areas exhibiting a
significant difference between ADHD and TDC of NYU cohort in
Slow-6 and Slow-2 are shown in Supplementary Figures S6, S7,
respectively. It should be noted that although there were several
maps, we only indicated those of FFT-ALFF and db2-ALFF.

The aforementioned results of higher sensitivity were
consistent when a more stringent threshold (p < 0.01, cluster
size ≥ 10 voxels) was used (Supplementary Tables S2, S3). The
mean sensitivity of db2-ALFF results was 2.36 times that of
FFT-ALFF in the higher frequency band Slow-2.

Comparison of Reproducibility Across
Cohorts in the ADHD-200 Dataset
Figure 5 shows a comparison of reproducibility between
Wavelet-ALFF result and FFT-ALFF result. A ratio > 1
indicates higher reproducibility of Wavelet-ALFF than FFT-
ALFF. Wavelet-ALFF indicated more reproducible results across
cohorts in the ADHD-200 dataset than FFT-ALFF in all
frequency bands and all mother wavelets.

The reproducibility indicated a frequency-dependent
difference between Wavelet-ALFF results and FFT-ALFF
results (Figure 5). Specifically, the reproducibility ratio was
the lowest in the conventional frequency band (0.0117–
0.0781 Hz). The Wavelet-ALFF in lower frequency band
Slow-6 (0–0.0117 Hz) and higher frequency band Slow-2
(0.1992–0.25 Hz) appeared as more reproducible than in
Slow-3, Slow-4, and Slow-5. In Slow-6, db2 appeared as the
most reproducible, and in Slow-2, db2 and sym3 were more
reproducible than bior4.4, morl, and meyr. The detailed number
of overlapped voxels of at least three cohorts in the four ADHD
cohorts is listed in Supplementary Table S4. The detailed
reproducibility ratio is listed in Supplementary Table S5, and

the reproducibility brain maps of Slow-6 and Slow-2 are shown
in Supplementary Figures S8, S9.

The aforementioned results of higher reproducibility were
overall consistent when a more stringent threshold (p < 0.01,
cluster size≥ 10 voxels) was used (Supplementary Tables S6, S7).
The reproducibility of db2-ALFF results was three times that of
FFT-ALFF in the higher frequency band Slow-2.

Similarity of Spatial Pattern of
Wavelet–Amplitude of Low-Frequency
Fluctuation With Fast Fourier
Transform–Amplitude of Low-Frequency
Fluctuation
Dice similarity coefficient indicated a moderate to high similarity
(0.53–0.90) of the spatial patterns detected by FFT-ALFF with
those detected by Wavelet-ALFF (Figure 6 and Supplementary
Table S8). The overlap of Wavelet-ALFF with FFT-ALFF
indicated a frequency-dependent character. Specifically, the
overlap was less prominent in the higher frequency band Slow-
2 (0.1992–0.25 Hz) and Slow-6 (0–0.0117 Hz), while the Slow-3
and Slow-4 indicated a more prominent overlap.

The five mother wavelets were compared, and db2-ALFF and
sym3-ALFF exhibited the least prominent overlap with FFT-
ALFF in the higher frequency band Slow-2 (0.1992–0.25 Hz).

DISCUSSION

Why We Used the EOEC Dataset and the
ADHD-200 Dataset
RS-fMRI studies include within-condition, between-condition,
and between-group comparisons. Studies on a single condition

FIGURE 2 | The t map (p < 0.05, cluster size ≥ 10 voxels) of eyes closed (EC) versus eyes open (EO) in Slow-6 (0–0.0117 Hz) by FFT-ALFF (A) and db2-ALFF (B),
respectively. Warm colors indicate higher ALFF in EC conditions. ALFF, amplitude of low-frequency fluctuation; FFT, fast Fourier transform; Pcun_L, left precuneus.
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FIGURE 3 | The t map (p < 0.05, cluster size ≥ 10 voxels) of eyes closed (EC) versus eyes open (EO) in Slow-2 (0.1992–0.25 Hz) by FFT-ALFF (A) and db2-ALFF
(B), respectively. Warm colors indicate higher ALFF in EC conditions. ALFF, amplitude of low-frequency fluctuation; FFT, fast Fourier transform; SMA_R, right
supplementary motor area.

FIGURE 4 | The t map (p < 0.05, cluster size ≥ 10 voxels) of eyes closed (EC) versus eyes open (EO) in the conventional band (0.0117–0.0781 Hz) by FFT-ALFF (A)
and db2-ALFF (B), respectively. Warm colors indicate higher ALFF in EC conditions. ALFF, amplitude of low-frequency fluctuation; FFT, fast Fourier transform;
PoG_L, left postcentral gyrus.

yielded very robust results of networks. For example, the default
mode network can be determined in literally each subject.
Among the studies of between-condition comparison within a
single group of subjects, differences between EO and EC resting
conditions are significantly consistent across studies using FFT-
ALFF (Yan et al., 2009; Liu et al., 2013; Zou et al., 2015;

Zhao et al., 2018). Most clinical studies correspond to between-
group comparison. Although a gold standard does not exist in
clinical RS-fMRI studies, reproducibility across different studies
is a very important index. Unfortunately, only a very limited
number of RS-fMRI studies (e.g., Turner et al., 2013; Wang et al.,
2017) tested reproducibility across different datasets. Specifically,
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FIGURE 5 | The reproducibility ratio [see formula (4) for method] of
Wavelet-ALFF result to FFT-ALFF result. The reproducibility was defined by
overlapped voxels of at least three cohorts in the four ADHD cohorts (NYU,
PKU1, PKU2, and PKU3). All reproducibility ratios were greater than 1, i.e.,
Wavelet-ALFF result was more reproducible than FFT-ALFF result. ALFF,
amplitude of low-frequency fluctuation; bior4.4, biorthogonal 4.4; db2,
Daubechies 2; FFT, fast Fourier transform; meyr, Meyer; morl, Morlet; sym3,
Symlets 3.

ADHD-200 is an open-access dataset and is widely utilized. We
recently reported the extremely low reproducibility of RS-fMRI
results across ADHD datasets. Therefore, the aim of the current
study involved exploring whether Wavelet-ALFF can increase
the reproducibility of differences between ADHD and healthy
controls across datasets from different research centers.

Why We Used the Amplitude of
Low-Frequency Fluctuation Among the
Resting-State Functional MRI Metrics
There are several metrics for RS-fMRI. However, we only used the
simplest metric, i.e., ALFF, in the current study. Other metrics
involve significantly more options for parameters. For example,
there are countless options for seed selection in seed-based
functional connectivity analysis. Additionally, most RS-fMRI
network metrics are not suitable for coordinate- or voxel-based
meta-analysis. ALFF is a typical metric of single-voxel level or
single time series analysis. All the previous ALFF studies were
based on FFT. Only two studies mentioned WT and used the
power as a metric of local activity (Salomon et al., 2011; Bajaj
et al., 2013). It should be noted that the ALFF corresponds to
the averaged square root of power. Existing studies have not
compared the results between FFT-ALFF and Wavelet-ALFF. In
the current study, we compared the results of Wavelet-ALFF of

FIGURE 6 | The mean DSC for similarity analysis of spatial pattern calculated
from different mother wavelets and FFT-ALFF in different frequency bands.
ALFF, amplitude of low-frequency fluctuation; bior4.4, biorthogonal 4.4; db2,
Daubechies 2; DSC, Dice similarity coefficient; FFT, fast Fourier transform;
meyr, Meyer; morl, Morlet; sym3, Symlets 3.

five mother wavelets with that of FFT-ALFF on several RS-fMRI
cohorts in the conventional frequency band as well as sub-bands.
We compared their sensitivity, reproducibility, and overlap.

Sensitivity and Reproducibility
The sensitivity analysis indicated that Wavelet-ALFF was
generally more sensitive than FFT-ALFF to the between-group
differences (i.e., ADHD group versus TDC group) and between-
condition differences (i.e., EO versus EC) in all frequency bands
(Table 1 and Supplementary Table S1). Specifically, db2-ALFF
exhibited the highest sensitivity among all the mother wavelets
in the very low frequency band Slow-6 (0–0.0117 Hz) and higher
frequency band Slow-2 (0.1992–0.25 Hz).

With respect to the reproducibility, as shown in Figure 5
and Supplementary Tables S4, S5, the Wavelet-ALFF results of
every mother wavelet were more reproducible across the four
ADHD cohorts than the FFT-ALFF results in all frequency bands,
while more prominent in Slow-6 (0–0.0117 Hz) and Slow-2
(0.1992–0.25 Hz). Among the five mother wavelets, db2-ALFF
exhibited the highest reproducibility. Specifically, for the higher
frequency band (Slow-2), db2-ALFF results exhibited a better
reproducibility of 2.95 times of FFT-ALFF results (Figure 5 and
Supplementary Tables S4, S5).

When a more stringent threshold (p < 0.01, cluster
size ≥ 10 voxels) was used, the aforementioned results
of higher sensitivity and higher reproducibility of
Wavelet-ALFF than FFT-ALFF were similarly maintained
(Supplementary Tables S2, S3, S6, S7). It should be first noted
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TABLE 1 | Comparison of sensitivity between Wavelet-ALFF and FFT-ALFF [i.e.,
the ratio, see formula (3) for method] in five cohorts (NYU, PKU1, PKU2, PKU3,
and EOEC) by five mother wavelets (db2, bior4.4, morl, meyr, and sym3) in each
frequency band.

db2-ALFF bior4.4-
ALFF

morl-ALFF meyr-ALFF sym3-
ALFF

Slow-6 (0–0.0117 Hz)

NYU 1.46 1.33 1.25 1.32 1.28

PKU1 1.22 1.15 1.17 1.13 1.16

PKU2 1.37 1.28 1.29 1.36 1.24

PKU3 1.31 1.26 1.26 1.30 1.27

EOEC 1.20 1.18 1.11 1.14 1.17

Mean 1.31 1.24 1.22 1.25 1.22

Slow-5 (0.0117–0.0273 Hz)

NYU 1.12 1.10 1.02 1.07 1.09

PKU1 1.22 1.13 1.05 1.09 1.11

PKU2 1.16 1.08 0.99 1.07 1.09

PKU3 1.25 1.20 1.11 1.19 1.12

EOEC 1.15 1.10 1.01 1.03 1.09

Mean 1.18 1.12 1.04 1.09 1.10

Slow-4 (0.0273–0.0742 Hz)

NYU 1.05 1.03 0.99 1.03 1.03

PKU1 1.11 1.07 1.03 1.06 1.05

PKU2 1.06 1.07 1.05 1.06 1.08

PKU3 1.06 1.06 1.04 1.05 1.08

EOEC 1.04 1.02 0.98 0.99 1.03

Mean 1.06 1.05 1.02 1.04 1.05

Slow-3 (0.0742–0.1992 Hz)

NYU 1.12 1.11 1.07 1.06 1.15

PKU1 1.06 1.07 1.04 1.04 1.08

PKU2 1.03 1.04 1.02 0.99 1.09

PKU3 1.05 1.04 1.05 1.01 1.08

EOEC 1.05 1.06 1.04 1.01 1.09

Mean 1.06 1.06 1.05 1.02 1.10

Slow-2 (0.1992–0.25 Hz)

NYU 1.65 1.43 1.21 1.27 1.61

PKU1 1.57 1.37 1.18 1.20 1.55

PKU2 1.55 1.34 1.20 1.21 1.54

PKU3 1.47 1.34 1.14 1.19 1.49

EOEC 1.47 1.26 1.11 1.12 1.44

Mean 1.54 1.35 1.17 1.20 1.53

Conventional (0.0117–0.0781 Hz)

NYU 1.00 1.00 1.00 1.01 1.00

PKU1 1.08 1.06 1.03 1.06 1.03

PKU2 1.03 1.03 1.02 1.02 1.03

PKU3 1.03 1.03 1.04 1.03 1.02

EOEC 1.01 1.01 0.98 0.98 1.01

Mean 1.03 1.03 1.01 1.02 1.02

A ratio > 1 indicates more sensitive for Wavelet-ALFF and vice versa. The mean
sensitivity across all five cohorts of a given frequency band and a given mother
wavelet was also calculated. ALFF, amplitude of low-frequency fluctuation; bior4.4,
biorthogonal 4.4; db2, Daubechies 2; FFT, fast Fourier transform; meyr, Meyer;
morl, Morlet; sym3, Symlets 3.

that high sensitivity does not mean true positive. It merely
implies that more voxels were detected. Jia et al. (2018) found
that stringent or liberal multiple comparison correction could

not control the false discoveries across multiple studies when
the effect sizes were relatively small. The reproducibility of
the results across multiple cohorts is more important for the
recovery of the ground truth. Hence, the reproducibility of the
results across four ADHD cohorts was measured. However,
higher reproducibility does not always mean a true positive
due to the limited number of cohorts. Additional datasets of
other disorders should be used in future studies. The current
results simply imply that Wavelet-ALFF was slightly better
when compared with FFT-ALFF. As shown in the between-
condition comparison (i.e., EO versus EC), when compared with
those detected by FFT-ALFF, the significantly different voxels
detected by db2-ALFF covered more extended physiologically
relevant regions albeit similar, such as the precuneus in Slow-6
(Figure 2), supplementary motor area in Slow-2 (Figure 3), and
postcentral gyrus in the conventional band (Figure 4), which
can be related to alpha waves modulated by the closure of eyes.
In the between-group comparison (i.e., ADHD group versus
TDC group) for NYU cohort, when compared with FFT-ALFF,
db2-ALFF detected more regions that can be associated with
ADHD pathophysiology such as the middle frontal gyrus and
middle occipital gyrus in Slow-6 (Supplementary Figure S6),
superior occipital gyrus, and supplementary motor area in
Slow-2 (Supplementary Figure S7). Nevertheless, future studies
should focus on the same.

There are two reasons for the superiority of db2 compared
to the other mother wavelets. First, the support width of db2 is
less than that of the other mother wavelets, and the less support
width of db2 makes an increase in the degree of localization
of the wavelet coefficients (Zhang et al., 2016), which makes
db2 more effective in detecting local or non-stationary features
of the signal. Second, db2 appears to be quite similar to the
hemodynamic response function (HRF) among the five mother
wavelets. A CWT of HRF was implemented with a frequent
parameter of 64 (24) scale. If the summation of the absolute value
of the wavelet coefficients is larger, the similarity is higher (Rafiee
et al., 2011). It was found that the summation of db2 (229.4348)
was the largest compared to sym3 (224.7303), bior4.4 (219.8648),
meyr (201.7399), and morl (182.8433). Higher similarities may
facilitate identification of the signal feature more precisely (Singh
and Tiwari, 2006; Rafiee et al., 2011; Ngui et al., 2013).

Very Low Frequency Band Slow-6 and
Higher Frequency Band Slow-2
In RS-fMRI studies, the very low frequency band Slow-6 has
attracted less attention. Zhang et al. (2015) indicated that the
FFT-ALFF of Slow-6 (0–0.0117 Hz) in the basal ganglia was
higher during the state of real feedback finger force than during
sham feedback state. Beyond the conventional low frequency
band (<0.1 Hz), several RS-fMRI studies investigated the higher
frequency band (>0.1 Hz) signal. Yuan et al. (2014) used
fast sampling (TR = 400 ms) RS-fMRI and suggested that the
differences of fluctuation amplitude between EO and EC resting
states were in the conventional frequency band (<0.1 Hz) and
higher frequency band (up to 0.35 Hz). Two independent RS-
fMRI studies on chronic pain used conventional sampling rate
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(TR = 2 s) and consistently found increased spectral power of
patients in the higher frequency band (Malinen et al., 2010;
Otti et al., 2013). It should be noted that the amplitude is
proportional to the square root of spectral power (Zang et al.,
2007). The aforementioned studies all suggested that the very
low frequency band Slow-6 and higher frequency band Slow-2
can contain neural-related information. We recommend db2-
ALFF to substitute FFT-ALFF in future studies given its higher
performance in sensitivity and reproducibility in very low
frequency ALFF and higher frequency ALFF of db2 mother
wavelet than FFT-ALFF. However, there is no widely accepted
gold standard for RS-fMRI results of between- or within-group
comparison studies. The current better reproducibility of db2-
ALFF when compared to other mother wavelets and FFT-ALFF
was obtained in only four ADHD cohorts. Therefore, this should
be tested in more datasets in the future.

It should be noted that although db2-ALFF exhibited higher
sensitivity and higher reproducibility in the very low frequency
and higher frequency band, it does not imply that the very
low frequency band and higher frequency band are more
physiologically or pathophysiologically meaningful than the
conventional frequency band. Specifically, the conventional
frequency band detected the largest number of voxels among
sub-frequency bands (Supplementary Figure S10). The results
simply imply that the performance of db2-ALFF exceeds
that of FFT-ALFF.

Overlap of Spatial Pattern by
Wavelet–Amplitude of Low-Frequency
Fluctuation With Fast Fourier
Transform–Amplitude of Low-Frequency
Fluctuation
The vast majority of previous ALFF studies have used FFT, and
thus we calculated the overlap of spatial pattern of Wavelet-ALFF
results with FFT-ALFF results. Generally, the spatial patterns
detected by FFT-ALFF with Wavelet-ALFF were very similar
in the conventional frequency band (0.0117–0.0781 Hz), Slow-
3 (0.0742–0.1992 Hz), and Slow-4 (0.0273–0.0742 Hz) with a
DSC of approximately 0.85. The overlap was less prominent in
the higher frequency band Slow-2 (0.1992–0.25 Hz) and very
low frequency band Slow-6 (0–0.0117 Hz), wherein the db2-
ALFF and sym3-ALFF in the higher frequency band Slow-2
(0.1992–0.25 Hz) exhibited less spatial overlap with FFT-ALFF
than all other conditions (Figure 6). The lower spatial overlap of
results by db2- and sym3-ALFF with those of FFT-ALFF could be
attributed to the improved performance of both sensitivity and
reproducibility of db2- and sym3-ALFF.

Limitations
First, the study used only five mother wavelets that were used in
previous fMRI literature. Future studies should use more mother
wavelets. Second, the dynamic character is an advantage of WT.
However, there were an excessive number of time points, and thus
it is difficult to interpret the results if the t-test was performed on
every time point. A future study should propose an integrated
metric to characterize its dynamics. Third, db2-ALFF indicated

optimal sensitivity and reproducibility in higher frequency Slow-
2. However, based on the Shannon–Nyquist sampling theorem,
the lower sampling rate (TR = 2 s in the current study) resulted
in aliasing effect. This implies that the signal in Slow-2 can
be aliased from higher frequency physiological noise of heart
beating (around 1.2 Hz) and respiratory (around 0.33 Hz).
Future studies could use db2-ALFF in fast sampling rate RS-
fMRI dataset. Fourth, we used only four independent datasets of
ADHD cohorts to test the reproducibility. It should be noted that
higher reproducibility of Wavelet-ALFF in such small number
of cohorts does not imply higher specificity. The current results
should be tested in more (preferably more than 20) datasets.
Fifth, the current study compared only an RS-fMRI metric,
i.e., ALFF. Systematic investigations should be performed for
other metrics to compare wavelet- and FFT-based analyses. Sixth,
many preprocessing parameters may affect the results. Additional
datasets of other brain disorders are also important. Future
studies will focus on these aspects.

CONCLUSION

In summary, the results indicated that Wavelet-ALFF was
generally more sensitive to the between-group and between-
condition differences than FFT-ALFF in all frequency bands.
More importantly, the Wavelet-ALFF results indicated a better
reproducibility across the four ADHD cohorts than the FFT-
ALFF results in all frequency bands. Specifically, in the higher
frequency band Slow-2 (0.1992–0.25 Hz), the reproducibility
of db2-ALFF result was 2.95 times that of FFT-ALFF result.
This suggested that Wavelet-ALFF can replace FFT-ALFF as a
potentially reliable marker to determine the exact location of local
abnormal brain activity in future studies and further help precise
intervention such as deep brain stimulation and transcranial
magnetic stimulation.
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