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Abstract: The Egyptian mongoose is a carnivore mammal species that in the last decades experienced
a tremendous expansion in Iberia, particularly in Portugal, mainly due to its remarkable ecological
plasticity in response to land-use changes. However, this species may have a disruptive role on native
communities in areas where it has recently arrived due to predation and the potential introduction
of novel pathogens. We report reference information on the cultivable gut microbial landscape
of widely distributed Egyptian mongoose populations (Herpestes ichneumon, n = 53) and related
antimicrobial tolerance across environmental gradients. The panel of isolated species is consistent
with the typical protein-based diet of a carnivore: Firmicutes predominate (89% of individuals), while
Clostridiales, Enterobacteriales, and Lactobacillales are the major classes. Forty-one individuals (77.4%)
harbour Clostridium spp. A spatial influence on mongooses’ microbiota is confirmed by nonmetric
multidimensional scaling analysis, with a significant contribution of municipality to their microbiota
composition. Antimicrobial susceptibility testing of mongoose commensal bacteria to 28 compounds
evidences xenobiotic tolerance of Escherichia coli (E. coli), enterococci, Salmonella Spartel and Mbandaka
serotypes and Pseudomonas bacteria, among others. The common isolation of antimicrobial tolerant
microbiota from the mongoose’s gut suggests this species is exposed to anthropogenic influence and
is affected by forestry and agricultural-related practices, reflecting its easy adaptation to ecological
gradients across agroecosystems. We thus propose regular microbial and phenotypic resistance
profiling of widely distributed mongooses as a sentinel tool for xenobiotics’ lifecycle and ecosystem
health in Portugal.

Keywords: Herpestes ichneumon; Egyptian mongoose; carnivores; gut microbiota; antimicrobial
tolerance; ecosystem health; wildlife management; human health

1. Introduction

The mammalian gut ecosystem is shaped by a complex dynamic interplay between the host’s
anatomy, physiology, ecology, and diet [1]. Furthermore, the environment and geographical location
have also been shown to deeply influence the composition and abundance of bacterial communities
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present in the gut [2]. Altogether, these variables contribute to the development of species-specific
commensal microbiomes [3].

Commensal bacteria are important in the recruitment and maintenance of energy [4] and the
reinforcement of immunity and resistance to pathogens. Conversely, the imbalance of the intestinal
microbial community or their abnormal interaction with the immune system may lead to opportunistic
infection or other diseases [5–8]. Hence, the characterization of the microbiota of each species is
an opportunity to understand its biology and ecology, and to unravel established associations with
microbes, across intraspecific individuals and across natural communities [1,8,9].

Alterations of naturally occurring commensal bacteria may have conservation implications,
especially in species already threatened by restricted population size and range. The protective nature
of commensal microbiota [10] causes a reduction in microbiome diversity, and richness may decrease
overall in immune functions, resulting in higher pathogen incidence and predisposition to illness, which
will reduce individuals’ fitness and survivorship—crucial parameters in animal species with reduced
population sizes [11]. Moreover, pathogen shifts, spill-over and the development of antimicrobial
resistance impose new survival challenges to populations already under extinction pressure, regardless
of the taxonomic group. For example, Waite and collaborators [12] detected pathogenic Pasteurellaceae
in the gut microbiome of the critically endangered kakapo parrot (Strigops habroptilus), whose presence
they considered an early warning, as Pasteurella spp. are frequently found in immunosuppressed
and sick individuals. On the other hand, the development of antibiotic resistance in wild microbiota
species (e.g., Escherichia coli in African mountain gorillas, Gorilla gorilla beringei [13]) may endanger
any reintroduction program or reduce the success probabilities of clinical treatment of reintroduced or
native individuals with illnesses.

In Iberia (Portugal and Spain), as in other regions of the world, the information on faecal microbiota
of wild, domestic or captive mammal carnivores is still scarce. The Iberian carnivore guild is varied.
It includes the Egyptian mongoose (Herpestes ichneumon Linnaeus, 1758), which had a restricted
geographic range in the mid 1980s but now is experiencing a rapid expansion, mainly due to its
remarkable adaptation to different land uses [14]. In Europe, mongooses are restricted to Iberia. Their
rapid and wide range expansion in Portugal in the last 30 years [14,15] due to dispersal capabilities,
together with the changes they may possibly induce to the communities, by preying upon vulnerable
species [16], could affect native species’ fitness or even survival. This recent expansion into new
areas contributed to the selection of this mesocarnivore as a model in this study, in detriment of other
common and native species (e.g., red fox, Vulpes vulpes), since expanding species may introduce new
microbes in formerly pristine areas [17]. Also, several aspects of the mongoose’s biology remain
ill-defined, such as population dynamics and the role of biotic (e.g., intra-and inter-specific competition)
and abiotic (e.g., climate change) factors.

The mongoose consumes mostly vertebrates, invertebrates and seeds [18,19], is a cursorial
predator [18] and, being a trophic and habitat generalist, is expected to reach higher abundances
in regions characterized by high human and cattle breeding densities, and high levels of landscape
transformation [20]. These greater contact areas and densities, together with their strictly diurnal
activity, synanthropic habits [14,21] and certain agricultural practices (e.g., extensive husbandry
systems), also facilitate microbial interactions with farm animals, other wildlife species and, ultimately,
with humans. Furthermore, the intensive use of antimicrobial agents in food animals may contribute to
the emergence and dissemination of resistant bacteria within carnivore populations that may thereafter
spill back. Thus, the possible circulation of resistant bacteria within Iberian mesocarnivore populations,
and the mongoose in particular, also raises management and conservationist concerns, because this
predator has an overlapping distribution with some of Iberia’s most endangered species, including the
Iberian lynx (Lynx pardinus), the wildcat (Felis silvestris), the European polecat (Mustela putorius) [22,23]
and leporids such as the European rabbit (Oryctolagus cuniculus) and the Iberian hare (Lepus granatensis)
that are facing severe declines due to viral epizootics. Furthermore, antimicrobial resistance emergence
in commensal microbiota of widely distributed mammals may serve as an early indicator of the
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perpetration of xenobiotics in the environment that exert cascading effects on natural communities and
thus constitute a risk for ecosystem health.

For these reasons, to improve understanding of the Egyptian mongoose bioecology and the
potential risks exerted towards threatened native communities and human health, we defined two
interrelated aims in this work. First, to characterize the cultivable commensal bacteria from a
Mediterranean population of 53 animals sampled across mainland Portugal; and second, to evaluate
mongoose exposure to anthropogenic influence by determining the tolerance of cultivated microbiota
to antimicrobials used in animal production and agricultural-related practices, namely at the livestock
interface, and to assess microbiota features as indicators of ecosystem health.

2. Materials and Methods

2.1. Study Area

Animals were sampled from 10 out of the 18 districts of mainland Portugal as shown in Figure 1,
covering a wide land surface, ranging from low-lying coasts and southern plains to mountain
ranges in the north and centre. Despite being relatively small, the Portuguese territory exhibits
two main biogeographic areas with considerable climatic contrasts, ranging from Mediterranean
summer-dry areas in the south to Atlantic hyper-humid temperate mountains in the northwest [24].
The Mediterranean area is characterized by a mean annual temperature of 18 ◦C, with mean annual
precipitation ranging 275–800 mm, whereas the annual temperature of the Atlantic area is lower than
13 ◦C and the precipitation ranges 1400–3200 mm (Instituto de Metereologia, http://www.meteo.pt).
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Figure 1. Geographical distribution and sampling range of 53 mongoose specimens. The location of
specimens is represented in the map by grey circles. Thirty-five municipalities were sampled. The
number of samples with the same GPS coordinates (latitude; longitude) is indicated according to circle
diameter, as shown in legend. Black circles represent the specimens located within 15 km of priority
intervention areas of the Iberian lynx Action Plan (dark grey areas). Figure produced with open-access
software QGIS.

2.2. Animal and Faeces Samples Collection

Fifty-three Egyptian mongoose (Herpestes ichneumon) carcasses, donated for scientific purposes
by road technicians or hunters, were collected from 35 municipalities between 2008 to 2011, from
accidental road-kills (n = 3) or legal game management actions aimed at controlling predator densities

http://www.meteo.pt


Int. J. Environ. Res. Public Health 2020, 17, 3104 4 of 17

(n = 50). Ethical approval for this study is not applicable as it did not involve the sacrifice of any
animals for the specific purposes herein described. Samples were opportunistically collected from
specimens gathered by third parties in the context of legal hunting or accidental run-over. After being
geographically located and collected on roads, or after hunting sessions, animal carcasses were frozen
at −20 ◦C until necropsy. The carcasses were thawed and necropsied, and the abdominal cavity of each
specimen was opened and the intestines isolated. Solid intestinal content was collected from the rectum
of each animal, using a sterile faeces collection tube, and immediately processed for further analysis.

All animals showing clear signs of putrefaction were excluded from this analysis. No gross
lesions in the gastrointestinal tract or signs of clinical disease were detected at necropsy, even though
histopathological examinations performed in the scope of another study evidenced partial autolysis
in a subset of road killed specimens. Faeces of all specimens were moulded, without visible signs
of diarrhoea.

2.3. Bacterial Isolation, Biochemical and Molecular Identification, Serotyping and Virulence Genes

Each faecal sample was thawed immediately before proceeding to cultivation, to preserve both
aerobic and anaerobic species and to avoid potential loss of bacterial viability and composition changes.
Bacterial cultivation and isolation were performed using standard media and enrichment techniques in
accordance to established routine procedures by the National Reference Laboratory (NRL) for animal
diseases, Portugal (INIAV I.P.). Briefly, approximately 5 g of each faecal sample was removed aseptically
from the container, suspended in sterile saline and homogenized. This suspension was inoculated
onto four different solid media with an inoculation loop. For anaerobic bacteria isolation, inoculation
was performed on Schaedler agar supplemented with 5% sheep blood (bioMérieux, Marcy-l’Étoile,
France) and incubated for 48 h under the absence of oxygen and strict anaerobiosis, using atmosphere
generation systems (Anaerogen, Thermo Fisher Scientific Oxoid Ltd., Basingstoke, UK).

The faeces suspension was also inoculated onto Trypticase Soy Agar supplemented with 5%
sheep blood (TSS) (bioMérieux, Marcy-l’Étoile, France) and onto MacConkey plates (bioMérieux,
Marcy-l’Étoile, France). All the plates were incubated at 37 ◦C, for 24 h, under the presence of oxygen.
If bacterial growth was not observed within 24 h, incubation was extended up to 72 h.

One to three colonies with distinctive morphology or size, grown from each faecal sample on
each medium, were subcultured onto fresh media and characterized using Gram stains, selective
media, biochemical tests, and identification kits. The colonies grown on TSA were subcultured into
Veal Infusion Broth (Becton Dickinson, Thermofisher, Basingstoke, UK), supplemented with glucose
and horse serum (Invitrogen), and followed by a smear and Gram stain. All the microorganisms
grown on MacConkey were subcultured into Triple Sugar Iron (TSI) and tested for oxidase screening.
Based on macro and microscopic morphology and Gram staining characteristics exhibited by the
isolates obtained on the different media, phenotypic identification proceeded through biochemical
characterization using the API® test strips (ID 32 STREP, API CORYN, API 50 CHB, ID 32E, ID 32GN,
ID 32A) (bioMérieux, Marcy-l’Étoile, France), according to established algorithms routinely used in
INIAV IP. Quality control strains were used to interpret and validate each test batch, according to
the specifications indicated by the manufacturer. Results reading and interpretation were done with
the aid of the ATB™ Expression reading system (version 2.0, bioMérieux, Marcy-l’Étoile, France).
Phenotypic identifications were accepted for precision superior to 99.5%. In some cases, additional
tailor-made biochemical tests were performed on an isolate level (oxidase, urease, catalase, indole, and
proline arylamidase, among others). If the identification by API of a subset of isolates from the same
host showing identical macro and microscopic morphology yielded the same taxon, then one random
isolate was selected among those for further testing and statistical analysis.

For Salmonella spp. detection, the standard ISO6579 (attach D) was followed. A pre-enrichment
of the faeces suspension (1 mL) was initially performed in 9 mL of buffered peptone water (Merck,
Kenilworth, NJ, USA) at 37 ◦C for 18 ± 2 h, prior to selective enrichment in Rappaport–Vassiliadis
(MSRV) medium (Merck, Darmstadt, Germany) at 41.5 ◦C for 24/48 h. Subsequently, the selective media
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XLD agar (bioMérieux, Marcy-l’Étoile, France) and chromID™ Salmonella (bioMérieux, Marcy-l’Étoile,
France) were inoculated and incubated at 37 ◦C for 24 h. The identification of characteristic colonies
was confirmed through biochemical identification using ID 32E (bioMérieux, Marcy-l’Étoile, France).
Serotyping was performed according to the Kauffmann–White scheme and Grimont and Weill
(2007) [25].

Escherichia coli isolates obtained on MacConkey plates and subcultured into TSI were identified
according to classical biochemical procedures and using ID20E commercial strips. The identity of one
isolate from each bacterial genus or species assigned by means of API galleries was also determined
at the molecular level using PCR targeting the eubacterial 16S rDNA gene, with the primers and
conditions described by Marchesi et al. (1998) [26]. Eighteen representative isolates of phenotypic
variants were selected for partial 16S rDNA sequencing. DNA extraction was performed using a
commercial system (High Pure PCR Template Preparation Kit, Roche, Basel, Switzerland) following
the manufacturer’s instructions. After amplification of the 16S rDNA region and electrophoresis on
a 1.0% agarose gel containing ethidium bromide, the PCR products were excised, purified using a
commercial kit (QIAquick gel extraction kit; Qiagen, Hilden, Germany) and commercially sequenced
(GATC Biotech, Germany). Original chromatogram files were inspected and manually reviewed.
Edited sequences were compared using BLAST software (megablast) with similar reference sequences
available in GenBank (http://www.ncbi.nlm.nih.gov). Sequences were annotated with taxonomic
information from the top three best matches displaying the same nucleotide pairwise identity. Isolates
with ≥99% identity were annotated at the species level, 97% to <99% identity were annotated at the
genus level; 95% to <97% identity were annotated at the family level; and isolates with <95% identity
were annotated at the order level. Members of the family Enterobacteriaceae with identities of 95–99%
were annotated at the family level and members of the family Pseudomonadaceae spp. with identities of
95–99% were classified at the genus level (Supplementary Material).

The detection of E. coli attaching and effacing gene (eae) and of genes encoding heat-labile enterotoxin
(Lt), heat-stable enterotoxin (Sta), verocitotoxin (Vtx1, Vxt2), and the subtypes of verocitotoxin (Vtx1a,
Vtx1c, Vtx1d, Vtx2a, Vtx2c, Vtx2d), were performed by PCR according to the methodologies described
by the EU Reference Laboratory for E. coli and based on [27–37]. The strains used as controls in the
PCR assays were E. coli ED647 (positive control for vt1, vt2, eae genes), E. coli EDL 933 (vtx1a), E. coli
DG 131/3 (vtx1c), E. coli MHI 813 (vtx1d), E. coli 94C (vtx2a), E. coli O31 (vtx2c), E. coli C 165-02 (vtx2d),
E. coli NN14 (Sta; Lt), and E. coli JM-109 (negative control).

2.4. Antimicrobial Susceptibility Testing

The antimicrobial susceptibilities of all the isolates were determined using the automated ATB™
(bioMérieux, Marcy-l’Étoile, France) susceptibility testing system. This commercial method is based on
microdilution and includes test strips adapted for bacteria of veterinary origin (ATB VET®, bioMérieux,
Marcy-l’Étoile, France), with an array of 28 antimicrobials indicated in Table 1. Growth of pre-inoculums,
inoculation and incubation on antimicrobial galleries were performed following the manufacturer’s
guidelines and under conditions similar to the agar dilution or microdilution methods. The density of
bacterial suspensions was adjusted to 0.5 McFarland, depending on the growth of bacterial species,
and incubated for 18–24 h at 37 ◦C, under aerobiosis or anaerobiosis, or in a CO2-enriched atmosphere,
according to the isolate characteristics. Gallery reading, based on the presence of bacterial growth as
indicated by turbidity, and classification of the strain as sensitive or resistant were done automatically
with the ATB™ Expression reading system (bioMérieux, Marcy-l’Étoile, France). Strains Escherichia coli
ATCC 25922, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Pseudomonas aeruginosa
ATCC 27853 and Streptococcus pneumoniae ATCC 49619 were included as quality controls.

http://www.ncbi.nlm.nih.gov
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Table 1. Mean resistance of isolates within each bacterial species to 28 antimicrobials. The number of isolates tested per species is indicated in brackets.
Amoxicillin–clavulanic acid (AMC), Amoxicillin (AMO), Apramycin (APR), Cefoperazone (CFP), Cephalothin (CFT), Colistin (COL), Chloramphenicol (CMP),
Doxycycline (DOT), Erythromycin (ERY), Enrofloxacin (ENR), Flumequin (FLU), Fusidic acid (FUC), Nitrofurantoin (FUR), Gentamicin (GEN), Kanamycin (KAN),
Lincomycin (LIN), Metronidazol (MTR), Oxacillin (OXA), Oxolinic Acid (OXO), Penicillin (PEN), Pristinamycin (PRI), Rifampicin (RFA), Spectinomycin (SPE),
Streptomycin (STR), Sulfamethizole (SUL), Tetracycline (TET), Cotrimoxazole (TSU), Tylosin (TYL).

Phylum Bacterial Phenotypic Species (no.
Isolates) PEN AMO AMC OXA CFT CFP STR SPE KAN GEN APR CMP TET DOT

Firmicutes Aerococcus viridans (n = 2) 100 100 100 100 0 0 100 0 100 0 0 0 100 0
Firmicutes Bacillus cereus (n = 2) 100 100 100 100 100 100 100 50 50 50 50 0 100 50
Firmicutes Bacillus licheniformis (n = 1) 100 100 100 100 100 100 100 100 100 100 100 0 100 100
Firmicutes Clostridium clostridioforme (n = 7) 100 0 0 0 0 0 100 0 100 100 0 0 0 0
Firmicutes Clostridium falax (n = 1) 100 0 0 0 0 0 100 100 100 100 100 100 0 0
Firmicutes Clostridium perfringens (n = 7) 43 0 0 0 29 0 100 71 100 100 100 0 29 0
Firmicutes Clostridium sordellii (n = 24) 88 0 0 75 0 0 100 96 100 100 92 75 79 0
Firmicutes Clostridium tertium (n = 1) 100 0 0 0 0 0 100 100 100 100 100 0 0 0

Actinobacteria Corynebacterium striatum (n = 1) 100 100 100 100 0 0 100 0 100 0 0 0 100 0
Firmicutes Enterococcus avium (n = 1) 100 0 0 100 100 100 100 100 100 0 0 0 0 0
Firmicutes Enterococcus casseliflavus (n = 2) 100 0 0 100 100 100 100 100 100 100 100 0 0 0
Firmicutes Enterococcus faecalis (n = 4) 100 25 25 100 75 75 100 75 100 75 75 75 25 0
Firmicutes Enterococcus faecium (n = 4) 100 0 0 100 100 100 100 100 100 100 100 0 0 0
Firmicutes Gemella haemolysans (n = 1) 0 0 0 0 0 0 0 0 0 100 0 0 100 100

Actinobacteria Microbacterium spp. (n = 1) 100 100 100 100 0 0 100 0 100 0 0 0 100 0
Actinobacteria Propionibacterium avidum (n = 2) 0 0 0 100 0 100 100 100 100 100 100 100 100 100
Proteobacteria Brevundimonas vesicularis (n = 1) 100 100 100 0 0 0 0 0 0 0 0 0 0 0
Proteobacteria Escherichia coli (n = 7) 100 43 0 100 100 0 57 0 57 57 57 57 0 0
Proteobacteria Moellerella wisconcensis (n = 1) 100 100 0 100 0 0 0 0 0 0 0 0 0 0
Proteobacteria Pseudomonas fluorescens (n = 1) 100 100 100 100 100 100 100 0 0 0 0 100 0 0
Proteobacteria Pseudomonas putida (n = 6) 100 100 100 100 100 100 0 0 0 0 0 83 0 0
Proteobacteria Salmonella spp. (n = 3) 100 100 100 100 0 0 100 0 0 0 0 0 0 0
Proteobacteria Sphingomonas paucimobilis (n = 1) 100 100 100 100 100 100 0 0 0 0 0 0 0 0
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Table 1. Cont.

Phylum Bacterial Phenotypic Species (no.
Isolates) ERY LIN PRI TYL COL TSU SUL FLU OXO ENR FUR FUC RFA MTR

Firmicutes Aerococcus viridans (n = 2) 0 100 0 0 100 0 100 100 100 100 0 0 0 100
Firmicutes Bacillus cereus (n = 2) 0 100 0 0 100 100 100 50 50 50 0 100 0 100
Firmicutes Bacillus licheniformis (n = 1) 0 100 100 100 100 0 100 100 100 100 100 100 100 100
Firmicutes Clostridium clostridioforme (n = 7) 0 100 0 0 100 100 100 100 100 100 0 0 0 0
Firmicutes Clostridium falax (n = 1) 100 100 0 100 100 100 100 100 100 100 0 0 100 100
Firmicutes Clostridium perfringens (n = 7) 57 43 0 0 100 14 14 43 43 100 0 0 0 0
Firmicutes Clostridium sordellii (n = 24) 0 96 0 0 100 83 88 100 100 100 0 75 0 79
Firmicutes Clostridium tertium (n = 1) 100 100 0 0 100 0 0 0 0 0 0 0 0 0

Actinobacteria Corynebacterium striatum (n = 1) 0 100 0 0 100 0 100 100 100 100 0 0 0 100
Firmicutes Enterococcus avium (n = 1) 0 0 0 0 100 100 100 100 100 100 0 0 0 100
Firmicutes Enterococcus casseliflavus (n = 2) 100 100 0 100 100 100 100 100 100 100 100 0 0 100
Firmicutes Enterococcus faecalis (n = 4) 75 100 75 75 100 75 100 100 100 100 75 0 50 100
Firmicutes Enterococcus faecium (n = 4) 100 100 0 100 100 100 100 100 100 100 25 0 100 100
Firmicutes Gemella haemolysans (n = 1) 0 100 0 0 100 0 100 100 100 100 0 0 0 100

Actinobacteria Microbacterium spp. (n = 1) 0 100 0 0 100 0 100 100 100 100 0 0 0 100
Actinobacteria Propionibacterium avidum (n = 2) 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Proteobacteria Brevundimonas vesicularis (n = 1) 0 0 0 0 0 0 100 100 100 0 0 0 0 100
Proteobacteria Escherichia coli (n = 7) 100 100 100 100 0 0 100 0 0 0 0 100 100 100
Proteobacteria Moellerella wisconcensis (n = 1) 100 100 100 100 100 0 100 0 0 0 100 100 0 100
Proteobacteria Pseudomonas fluorescens (n = 1) 100 100 100 100 0 0 0 100 100 100 100 100 0 100
Proteobacteria Pseudomonas putida (n = 6) 100 100 100 100 0 83 100 83 0 0 100 100 83 100
Proteobacteria Salmonella spp. (n = 3) 100 100 100 100 0 0 100 0 0 0 0 100 100 100
Proteobacteria Sphingomonas paucimobilis (n = 1) 100 100 100 100 0 0 100 0 0 0 100 100 0 100
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2.5. Statistical Analysis of Data

We determined bacterial flora diversity index (α) as an indication of genera abundance, which was
calculated as α = [(S − 1) × 0.4343]/log N], wherein S is the total number of genera and N is the total
number of bacterial isolates [38]. We also tested microbiota richness spatial autocorrelation to assess
possible data spatial clustering, using Moran’s I index [39]. We then used nonmetric multidimensional
scaling (NMS) analysis to perform an ordination of the microbiota community present in sampled
mesocarnivores, using Bray–Curtis dissimilarity measures. NMS is an ordination technique with few
assumptions regarding data characteristics (e.g., no assumption of data linearity, no restriction on data
distance measures) and therefore is adequate for a wide type of data [40]. We used it to assess which
factors might contribute the most to the similarities between an individual’s microbiota communities.
We tested the influence of sample location (municipality) and individual sex and age on individual
microbiota community composition. For all statistical analysis, we used R software [41], together with
its packages “Vegan” [42] and “ape” [43].

We tested the differences in antimicrobial tolerance by comparing the overall and between
bacterial species mean resistance of isolates, using Kruskal–Wallis (K) and Mann–Whitney (U) tests,
after Lilliefors (Kolmogorov-Smirnov) normality tests confirmed data skewness [44].

3. Results

3.1. Dominant Cultivable Microbiota

Eighty-two phenotypically different bacterial isolates were recovered from the faeces of surveyed
specimens in selective media, which contained a relatively homogeneous microbiota dominated
by Gram-positive bacteria (64%). Based on biochemical identification, we identified twenty-three
bacterial species belonging to fourteen genera, classified into three phyla: Firmicutes (57% of bacterial
species), Proteobacteria (30%) and Actinobacteria (13%). One to four bacterial species were isolated from
each animal specimen. Eighty-nine percent of mongoose samples contained at least one Firmicutes
bacterial species. At the individual level, bacteria affiliated within the order Clostridiales predominated
(n = 41, 77.4%), followed by Lactobacillales (24.5%), Enterobacteriales (20.8%) and Pseudomonadales
(13.2%). Actinomycetales and anaerobic Bacillales were only sporadically isolated (7.6%, each), while
Caulobacterales and Sphingomonodales were rare (1.9%, each). Alpha-proteobacteria were a minor
constituent of the microbial community (Table 1). Enterococcus was the second most represented genus
(four different species), after Clostridium (five species), as shown in Table 1. Clostridium sordellii was
the most frequently isolated microorganism (n = 24 animals; 45.3%), followed by C. clostridioforme,
C. perfringens, E. coli and Pseudomonas putida that were each present in the faeces of more than 10%
of surveyed mongooses, as displayed in Table 1. Three Salmonella strains were isolated from three
mongoose specimens, exhibiting serotypes Spartel and Mbandaka and serotype [II 1, 4, [5], 12,
[27]:b:[e,n,x] (1)]. Among E. coli isolates, PCR analyses revealed that none of the strains carried the eae
gene or any of the genes coding for heat-labile enterotoxin, heat-stable enterotoxin, verocitotoxin and
verocitotoxin subtypes.

Ten of the 53 mongooses were collected next (within 15 km) to priority intervention areas of the
Iberian lynx Action Plan, as shown in Figure 1. These specimens harboured Clostridium spp. [(100%,
including C. sordellii (80%)], Enterococcus spp. (three specimens), Salmonella spp. (two specimens) and
E. coli.

No age or sex effects on the cultivable microbiota from different mongoose specimens were
apparent. We did not detect a significant spatial autocorrelation in phenetic microbiota diversity
(Moran’s I = 0.03, p = 0.490). However, NMS results show a significant contribution of municipality
where the samples were collected to the similarity between individual microbiota communities
(Supplementary Tables S1 and S2 and Supplementary Figure S1). The NMS model’s stress value
indicates a good two-dimensional configuration of the data (Stress = 0.099) [40].
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Sequencing of 16S rDNA amplicon from 18 representative bacterial phenetic species, according to
biochemical and API tests, generated partial sequences of various lengths located in the initial 500-bp of
the gene comprising the V3-V4 variable region, a polymorphic moiety that usually provides adequate
differentiation for identification of most genera. Alignment of annotated with similar publicly available
reference sequences generated pairwise nucleotide identities ranging from 89% to 99%, as shown in
Supplementary Table S3. To compare agreement between phenotypic and 16S rDNA classification, we
based phylotype assignment on information from the top three best matches using the criteria specified
in the methods section. Pairwise nucleotide identity analyses delivered results at the order and family
levels consistent with traditional phenotypic classification for all but three isolates (agreement of 83%),
as shown in Supplementary Table S3. In most cases, the layer of taxonomic classification could be
established at genus level.

3.2. Antimicrobial Resistance Phenotypes

The susceptibilities of the bacterial species cultivated from mongooses presented a remarkable
variation to the 28 antimicrobial agents tested (K = 73.458, df = 22, p < 0.001; Table 1, Figure 2). A
snapshot summary of the antibiotic compounds to which each binomial “phenetic/phylogenetic”
bacterium was resistant or susceptible is also provided in supplementary material (Supplementary
Table S4).

Int. J. Environ. Res. Public Health 2020, 17, x  11 of 18 

 

 
Figure 2. Resistance of bacterial isolates to 28 antimicrobials. The bars represent the number of Gram-
negative (in grey) and Gram-positive (in white) isolates exhibiting resistance to each antimicrobial, 
while the line represents the percentage of all resistant isolates. Legend: Amoxicillin–clavulanic acid 
(AMC), Amoxicillin (AMO), Apramycin (APR), Cefoperazone (CFP), Cephalothin (CFT), Colistin 
(COL), Chloramphenicol (CMP), Doxycycline (DOT), Erythromycin (ERY), Enrofloxacin (ENR), 
Flumequin (FLU), Fusidic acid (FUC), Nitrofurantoin (FUR), Gentamicin (GEN), Kanamycin (KAN), 
Lincomycin (LIN), Metronidazol (MTR), Oxacillin (OXA), Oxolinic Acid (OXO), Penicillin (PEN), 
Pristinamycin (PRI), Rifampicin (RFA), Spectinomycin (SPE), Streptomycin (STR), Sulfamethizole 
(SUL), Tetracycline (TET), Cotrimoxazole (TSU), Tylosin (TYL). 

 
Figure 3. Mean percentage of antimicrobial agents to which the isolates within each bacterial species 
are resistant. The white bars represent Gram-positive species while Gram-negative are presented in 
grey. 

0

10

20

30

40

50

60

70

80

90

100

N
o.

 o
f r

es
is

ta
nt

 is
ol

at
es

 (%
)

Figure 2. Resistance of bacterial isolates to 28 antimicrobials. The bars represent the number of
Gram-negative (in grey) and Gram-positive (in white) isolates exhibiting resistance to each antimicrobial,
while the line represents the percentage of all resistant isolates. Legend: Amoxicillin–clavulanic acid
(AMC), Amoxicillin (AMO), Apramycin (APR), Cefoperazone (CFP), Cephalothin (CFT), Colistin (COL),
Chloramphenicol (CMP), Doxycycline (DOT), Erythromycin (ERY), Enrofloxacin (ENR), Flumequin
(FLU), Fusidic acid (FUC), Nitrofurantoin (FUR), Gentamicin (GEN), Kanamycin (KAN), Lincomycin
(LIN), Metronidazol (MTR), Oxacillin (OXA), Oxolinic Acid (OXO), Penicillin (PEN), Pristinamycin
(PRI), Rifampicin (RFA), Spectinomycin (SPE), Streptomycin (STR), Sulfamethizole (SUL), Tetracycline
(TET), Cotrimoxazole (TSU), Tylosin (TYL).

Considering phenetic classifications, Bacillus licheniformis and Propionibacterium avidum isolates
were among the most widely resistant (over 85% of the antimicrobials tested), followed by enterococci,
which were able to grow in the presence of compounds from at least five antimicrobial classes, as shown
in Table 1, Figures 2 and 3 and Supplementary Table S4). Among the Gram-negative, Pseudomonas
isolates apparently were the least susceptible, with no significant differences in antimicrobial tolerance
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between species (U = 457, p = 0.529). At the tested concentrations, more than 57% of the antimicrobials
were unable to inhibit the growth of more than 50% of the isolates, as shown in Figure 2.
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Figure 3. Mean percentage of antimicrobial agents to which the isolates within each bacterial species are
resistant. The white bars represent Gram-positive species while Gram-negative are presented in grey.

In addition, more than 84% of the isolates were resistant to lincomycin, penicillin, streptomycin
or sulfamethizole. In contrast, less than 7% of the isolates grew in the presence of doxycycline, as
shown in Figure 1. Colistin was ineffective towards all Gram-positive bacteria, to which they are
naturally resistant [45], and with the exception of Moellerella wisconcensis, all Gram-negative isolates
were susceptible. Likewise, spectinomycin, tetracycline, and doxycycline, inhibited the growth of
all Gram-negative bacteria, as practically did enrofloxacin and oxolinic acid; only the P. fluorescens
strain was resistant to quinolones and fluroquinolones. At the tested concentration, enrofloxacin did
not impair the growth of the majority of Gram-positive bacteria; four C. perfringens and one B. cereus
isolates did not grow in the presence of flumequin or oxolinic acid, as shown in Table 1 and Figure 2.

All isolates affiliated within Bacillus, Pseudomonas and Sphingomonas genera were resistant to the
six β-lactams tested. With the exception of cephalotin and cephoperazone cephalosporines, the other
beta-lactams were unable to inhibit the growth of Salmonella, A. viridans, C. striatum, and Microbacterium
spp. isolates, as well as one Enterococcus faecalis isolate. Penicillin, to which Enterobacteriaceae are
inherently resistant [45], was the least effective β-lactam, with only 12.2% of the isolates (mostly
Clostridium perfringens and Propionibacterium avidum) being inhibited, as shown in Table 1 and Figure 2.

In contrast to Gram-negative and enterococcal isolates, Gram-positive bacilli were generally
susceptible to macrolide drugs and pristinamycin. Apart from the natural resistance of enterococci [45]
and a few other Gram-positive species, Gram-negative isolates were, in general, susceptible to the
aminoglycosides tested; the exceptions were four E. coli and Salmonella isolates that grew in the presence
of streptomycin, as displayed in Table 1.

Strikingly, metronidazole-and fusidic acid-resistant Clostridium sordelli isolates were highly
prevalent (79.2% and 75%, respectively); C. falax also being resistant, while all C. perfringens isolates
were susceptible, as shown in Table 1. No significant difference in the mean resistance of Clostridium
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(K = 8.579, df = 4, p = 0.073) and Enterococcus isolates (K = 4.606, df = 3, p = 0.203) to the 28 tested
antimicrobials were detected.

4. Discussion

In this study, the panel of cultivable commensal bacteria of a large population of the Egyptian
mongoose was assessed, providing reference data for a widespread species whose biology remains to
be uncovered in many aspects. Moreover, the panel of characterized mongoose samples originated
from several areas in mainland Portugal, representing a variety of ecological gradients with different
primary productivity indices and, thus, contrasting availability and diversity of food items which could
influence microbiota composition, as well as different patterns of human pressure. Our aim to generate
baseline data for mongoose microbiota on a population level in detriment of highlighting individual
microbiota led us to mainly follow a nonselective bacterial isolation approach that was appropriate for
the cultivation of nonfastidious and fastidious aerobes and anaerobes. For that purpose, Schaedler
agar supplemented with sheep blood was especially useful for the recovery of anaerobic bacteria, as
was TSA blood agar that is a general purpose medium for nonfastidious bacteria, also enabling growth
of more demanding and fastidious groups; in addition, seeding on MacConkey enabled cultivation
and differentiation of lactose fermenting from nonfermenting Gram-negative. Our study revealed low
phylum-level diversity consisting almost exclusively of Firmicutes and Proteobacteria. We also did not
find as much bacterial diversity as theoretically would be expected for an opportunistic carnivore.
At the genus level, bacterial α diversity index was 2.95. In other carnivores from other regions of
the world, for instance grizzly and black bears that have omnivorous diets, α diversity indices from
rectal swabs ranged from 2.69 to 4.10 [46]. Culture-dependent methods could limit the detection of
some uncultivable or stressed bacterial groups, underestimating bacterial diversity [47]. In addition,
taking into consideration the opportunistic origin of our samples, the period ranging from death to
faecal sample collection might have reduced the abundance and diversity of cultivable microbiota
at the individual sample level. Culture-based surveys are available for sympatric carnivore species
from different biotopes, for instance the otter (Lutra lutra), in which an α diversity index of 6.55 can be
extrapolated from reported data [48]. However, we cannot infer how the bacterial diversity within
mongooses compares to sympatric carnivores with similar lifestyle, as no culture-based studies have
been reported for other species. Nevertheless, by picking phenotypically different colonies in both
selective and unselective media, a representative collection of bacteria was achieved, and the main
bacterial phyla recovered from the mongooses were relatively concordant among individuals. We thus
speculate that the panel of isolated bacteria most probably represents the cultivable core microbial
community of the intestines of mongooses.

The microbiota from the specimens surveyed was dominated by Gram-positive bacteria, mainly
of the phylum Firmicutes (detected in 89% individuals), with Clostridium species, particularly C. sordelli,
being the most common microorganism among mongoose specimens (77% and 45%, respectively).
High-protein contents have been reported to select for proteolytic bacteria and, particularly, for
Clostridium populations [49,50], which is corroborated by the carnivorous diet of mongooses [16,18,19].
Enterococci and Escherichia coli, which are common inhabitants of the intestinal tract of mammals,
were also isolated. E. faecium and E. faecalis were the most prevalent enterococcal species (73%) among
enterococci-positive faecal samples (21%), which is in agreement with other wildlife studies focused
on the otter, badger or fox [51–53]. Millán and coworkers (2009) [54], working in a Spanish area where
Iberian lynxes occur (Doñana), detected active infections with Salmonella enterica in 12% of mongooses.
To confirm if Salmonella could also be present in mongooses sampled from Portugal, in addition to
our main nonselective cultivation strategy, we used a protocol with selective media that is specific
for Salmonella isolation. Although we isolated several Salmonella serotypes, evidences of generalized
clinical disease or enteric infection were not found, leading us to hypothesize that mongooses may be
asymptomatic carriers of Salmonella spp. and that their presence might possibly be related with the
diet of mongooses. Mbandaka serotype is often isolated from broilers and feedstock in Portugal. The
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serotype II 1, 4, [5], 12, [27]:b:[e,n,x] has been isolated from pork meat delicatessen, the environment,
and cold blooded animals (unpublished data). It is thus natural to speculate that the isolation of these
Salmonella strains probably reflects the diet of mongooses and their opportunistic nature. Our results
show that microbiota richness (i.e., number of phenotypic species detected in each sample) is not
affected by samples’ geographical location. However, NMS results indicated that microbiota similarity
between individual mesocarnivores was significantly affected by the municipality where the samples
were collected. This pattern indicates that animals living in closer proximity to each other have similar
microbiota communities, but not in term of species richness, as shown by the absence of significant
spatial autocorrelation. So, our findings rather support a spatial influence on microbiota communities’
composition, leading us to hypothesize that Mediterranean habitat characteristics, primary productivity,
and thus available food resources in a given location, may influence an individual’s microbiota. In
agreement with these findings, a study by Chen and collaborators (2020) [55] evidenced that the feeding
environment had important effects on the faecal microbiota of spotted hyenas (Crocuta Crocuta). The
role of anthropogenic influence on agroecosystems with an indirect impact on mongoose microbiota is
also likely, making microbiota assessment an informative tool to evaluate an ecosystems’ health.

We identified several bacterial groups that may be zoonotic or have a pathogenic role for other
animals, such as those immunocompromised by coinfections [56]. In addition, several bacterial groups
are known to survive for long periods in the environment, favouring transmission by the faecal–oral
route or via contaminated water, food or the environment. For instance, the presence and potential
excretion of Clostridium pathogenic strains, whose virulence is attributed to numerous exotoxins, may
carry the risk for lethal enteritis and enterotoxaemia infections in cattle and sheep. In other carnivores,
Clostridium sordellii has been responsible for the sudden death of captive lions (Panthera leo) [56],
while Clostridium perfringens has been associated to perforating enterocolitis in captive cheetahs
(Acinonyx jubatus) [57]. The presence of E. coli in American river otters (Lutra canadensis) has been related
with genitourinary infections [58] and there are records of salmonellosis in Eurasian badgers (Meles meles)
from England [59]. It is also well established that despite being commensals, both enterococci and E. coli
may potentially carry transferable resistance genes and virulence determinants [60]. Nevertheless,
among the E. coli strains isolated in this study, toxin-encoding genes and the eae gene were not detected.

The tolerance to antimicrobials of different classes detected among the commensal bacteria isolated
from mongooses is remarkable: the isolates from seventeen (74%) of overall cultivable bacterial species
were, on average, tolerant to the majority of antimicrobials. Among enterococci, extensive antimicrobial
tolerance was also evident, but no significant differences were observed among the four species isolated.
In Portugal, the detection of antimicrobial resistant isolates has been documented for several wild
carnivores, such as the threatened Iberian wolf (Canis lupus) [61,62] and the otter [48]. Until now,
there is no clear indication on how these carnivores have acquired such resistant strains, with some
authors considering that the general pattern would be for wildlife to harbour naturally low resistant
bacteria [51,63]. Other authors argue that there is cumulating evidence for some relevant resistance
genes to have been originated in environmental microbes [64]. Thaller and collaborators [65] support
the view that acquired antibiotic resistance is more highly associated with anthropic pressure and,
consequently, exposure to antibiotics, rather than with ecological and landscape conditions. Thus,
although mongooses may contribute to the dispersal of such resistant strains, especially because
they are considered to be expanding their range [14], we hypothesize that they may also be affected
by agricultural-related practices and be a powerful indicator of ecosystem health. In areas were
agriculture and cattle production are the main activities, as those of rural Iberia, antimicrobials are
extensively used to optimize animal health and production. As mongooses are also scavengers [16],
and their distribution overlaps livestock farms, by consuming domestic animals or small mammals
or by sharing food and water placed in devices aimed at feeding domestic or game species (such as
wild rabbit or red-legged partridge)—a common practice in Iberia, they become exposed to livestock
production antimicrobials, or anthelminthic, leading to the emergence of resistant strains. Furthermore,
mongooses may also intersect ponds and small reservoirs used by cattle to feed and drink, especially
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in the dry Mediterranean climate areas where water shortage is acute in summer. Cattle often defecate
and urinate in these places, which may be a source for exposure to antimicrobial compounds and for
nonwild type bacterial strains [66]. In agreement with these assumptions, we isolated multiresistant
Gram-negative P. putida and Salmonella spp., both recognized as opportunist pathogens of humans and
animals, from mongoose specimens sampled in 2010 in Beja and Évora regions. We hypothesize that
the resistance traits of the microbiota isolated from mongooses may, at least in part, reflect selection
under pressure of coexistence with antimicrobials related to agriculture practices.

The circulation and spread of resistant bacteria throughout the ecosystem may represent a health
problem for sympatric endangered species and spill-back to livestock and humans. Egyptian mongooses
have bioecological characteristics that may facilitate intra-and inter-specific pathogen transmission,
such as defecation in latrines, some of them communal and used as scent marking stations by different
individuals [67]. Moreover, this predator is known by its cursorial habits, patrolling territories that
might reach 3.10 km2 [68]. This ranging behaviour, together with its abundance (1.2 individuals/km2 in
Spain; [69]), may facilitate intra-and inter-specific pathogen spread and horizontal transfer of resistance
and virulence determinants. The synergic effect of both of these factors may have an impact on areas
of direct and indirect interactions with humans and also on areas of sympatry with threatened species.

The detection of antimicrobial resistant strains in the vicinity of habitat areas of endangered species,
together with recently published data indicating the extensive circulation of feline panleukopenia virus
and Mycobacterium avium subsp. paratuberculosis within mongoose populations [70,71], support the
recommendation to continue to evaluate the sanitary condition of wildlife in areas where Iberian lynx
and other protected species have been individually released. Moreover, pathogen exposure effects
might be exacerbated when acting synergistically with other factors, such as malnutrition, stress, or
inbreeding [32]. The combined effect of pathogen shifts and antimicrobial resistance occurrence on
species already compromised by reduced population sizes, small genetic diversity pools and reduced
overall immunity and fitness, make them highly susceptible to stochastic events such as epidemic
outbreaks [11,17].

5. Conclusions

The presence of inherently resistant bacteria or with acquired resistance mechanisms in the
intestinal tract of expanding mongoose populations is relevant in mammalian ecology, wildlife
management and conservation, and human health. Overall, although mongooses may contribute to
the dispersal of resistant strains, especially because they are considered to be expanding their range at
the livestock–wildlife interface, we hypothesize that they may also be affected by agricultural-related
practices that impact animals’ health and welfare, regardless of the mammal species. Hence, mongoose
microbiota might be a powerful indicator for ecosystem health in the Iberia area, particularly in
Portugal where this study was developed, and an early warning indicator for agents circulating at the
human–livestock–wildlife interface.
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sequences of a selected group of isolates. Table S4: Antimicrobial phenotypes of the selected isolates whose 16S
rDNA was partially sequenced. Figure S1: Spatial representation of the location of sampled animals (open circles)
and microbiota bacterial species using the two dimensions of the Nonmetric Multidimensional Scaling model
(NMDS1 and NMDS2).
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