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THE BIGGER PICTURE Viral integration into the human genome is the cause of several significant diseases
such as cancers and latent infections. Accurate detection of viral integration sites (VISs) across the entire
genome can be performed rapidly with deep learning. This study presents the first deep learning framework
for detecting human T-cell leukemia virus type 1 (HTLV-1) integration sites de novo from sequence. Further-
more, we demonstrate how deep learning can provide deeper insight into the cis-regulatory features sur-
rounding HTLV-1 VISs. DeepHTLV should be a useful tool for further experimental discovery and validation.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus, is the causative agent for adult T cell leukemia/lym-
phoma andmany other human diseases. Accurate and high throughput detection of HTLV-1 virus integration
sites (VISs) across the host genomes plays a crucial role in the prevention and treatment of HTLV-1-associ-
ated diseases. Here, we developed DeepHTLV, the first deep learning framework for VIS prediction de novo
from genome sequence, motif discovery, and cis-regulatory factor identification. We demonstrated the high
accuracy of DeepHTLVwithmore efficient and interpretive feature representations. Decoding the informative
features captured by DeepHTLV resulted in eight representative clusters with consensus motifs for potential
HTLV-1 integration. Furthermore, DeepHTLV revealed interesting cis-regulatory elements in regulation of
VISs that have significant association with the detected motifs. Literature evidence demonstrated nearly
half (34) of the predicted transcription factors enriched with VISs were involved in HTLV-1-associated
diseases. DeepHTLV is freely available at https://github.com/bsml320/DeepHTLV.
INTRODUCTION

Human T-cell leukemia virus type 1 (HTLV-1), belonging to the

genus Deltaretrovirus, was the first human retrovirus associated

with disease to be identified in the early 1980s. The virus

originates from Africa after evolving from zoonosis of simian T

lymphotrophic virus.1 Early infection of HTLV-1 is primarily by

cell-to-cell transmission through viral synapses, followed by

the virus inserting a DNA copy of its RNA genome into the host

cell DNA. Proviral integration sites of HTLV-1 in vivo leads to a

range of clinical syndromes, and their uncontrolled proliferation
This is an open access article under the CC BY-N
is essential for the development of the cancer adult T cell leuke-

mia/lymphoma (ATL), an aggressive CD4+ T cell malignancy.2 It

has been observed that the HTLV-1-encoded viral proteins, e.g.,

HTLV-1 basic leucine zipper (HBZ) and Tax, play an important

role in the development and continued growth of ATL through

regulating viral transcription, modulating multiple host transcrip-

tional factors, and perturbing cellular signaling pathways.3

Approximately 5% of infected individuals develop either ATL-

or HTLV-1-associated myelopathy/tropical spastic paraparesis

(HAM/TSP),4 a neurodegenerative disorder of the lower limbs.

Unfortunately, clinical treatment for HTLV-1 infection and its
Patterns 4, 100674, February 10, 2023 ª 2022 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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associated diseases are lacking and no vaccine currently exists.

Therefore, accurate identification of HTLV-1 virus insertion sites

(VISs) and their repeatedly inserted genes plays an essential role

in the prevention and treatment of diseases.

Until now, diverse experimental methods, e.g., fluorescent in

situ hybridization and real-time qPCR techniques, have been

developed for the detection of VISs, producing substantial useful

data for studying VISs.5,6 Although powerful, none of these

molecular biology methods are high throughput and able to

detect VISs throughout the whole host genome, whereas

HTLV-1-infected hosts can carry anywhere between 500 and

5,000 unique insertion sites with indeterminate preference

such as target genes, transcriptional start sites and CpG islands,

and transcriptionally silenced regions.7 In addition, traditional

methods are time consuming, resource intensive, and laborious.

Therefore, designing and constructing a sensitive and fast VIS

detection system is highly needed. To facilitate the rapidly

growing number of studies on disease-associated viruses, we

have recently developed several computational approaches,

e.g., VirusFinder and VERSE, that detect virus integration sites

in host genomes based on next-generation sequencing (NGS)

of genomic data.8,9 Moreover, we developed a manually curated

VIS database known as the Viral Integration Site Database

(VISDB),10 which contains a large number of virus integration

samples taken from experimental research and other re-

sources.11 Our curated virus integration data provide bench-

marks for the development of computational methods to predict

potential viral integration sites in the host (human) genome. Tang

et al. mined publicly available scientific literature to collect and

curate NGS VIS data from several types of studies including

experimental studies and other VIS databases such as the Retro-

viral Integration Database (RID).11 Specifically, HTLV-1 data from

VISDB consisted of experimental identified VISs from four

studies. Turpin et al.12 identified 5,752 VISs experimentally.

VISDB data included the VISs found by Cook et al.13 (11,278

sites), Artesi et al.14 (4,230 sites), and Furuta et al.15 (12,585 sites)

that were available on RID. We recently released the DeepVISP,

a deep learning-based tool that detects multiple oncogenic DNA

virus integration (HPV, EBV, and HBV).16 The prediction perfor-

mance of DeepVISP is robust: it has area under the curve

(AUC) values greater than 0.8 in all the models for all the three

DNA viruses. When compared with classical machine learning

methods, DeepVISP had an enhancement of 8.43%–34.33% in

AUC values. In addition, Hu et al. developed DeepHINT for

HIV-1 integration prediction and showed its capability to facili-

tate the mechanistic studies of the HIV integration process.17

They could predict HIV VISs with an AUC between 0.736 and

0.904 depending on the dataset. These computational methods

have demonstrated that deep learning can be used as an

alternative approach to possess sufficient prediction power

and provide important biological implication for viral integration

prediction.

Here, we developed an interpretable deep neural network

(DNN) framework, known as DeepHTLV (Figure 1), for RNA retro-

virus integration site prediction de novo from genome sequence,

motif discovery, and cis-regulatory factor identification. Using

our curated, largest benchmark integration dataset of 33,845

HTLV-1 VISs, we investigated the insertion tendency regarding

chromosome distribution and preferred target genes. We demon-
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strated the accuracyofDeepHTLV, and its promisingperformance

compared with conventional machine-learning methods, such as

decision tree (DT), random forest (RF), K-nearest neighbors

(KNN), and logistic regression (LR), by generating more efficient

and interpretive feature representations. To improve model

performance and avoid false positives, we also implemented a

bootstrapping training strategy with 10-fold cross-validation (CV)

to generate a multiple ensemble model. The overall performance

of the DeepHTLV resulted in AUC values of 0.75- to 10-fold CV.

To demonstrate that DeepHTLV is not only accurate but easily

interpretable, motifs were extracted from the kernels in the first

convolutional layer with the maximum activation. Through

clustering the informative motifs captured by DeepHTLV, we

discovered eight representative motif clusters with consensus

sequences for potential HTLV-1 integration in humans. Further-

more, DeepHTLV revealed interesting cis-regulatory patterns

around the VISs. Over 70 DNA transcription factor binding sites

were found that have significant association with the detected

motifs, such as Jun, Fos, and Sp1, while sequencemotifs of these

TFs were over-represented at the viral insertion sites. Literature

evidencedemonstrated that34of theseTFswere involved ineither

HTLV-1 integration/replication or with HTLV-1 associated dis-

eases, suggesting that DeepHTLV is not only accurate but can

make functionally relevantandbiologicallymeaningfulpredictions.

In summary, DeepHTLV is a novel deep learning method that can

effectively predict oncogenic retrovirus integration sites and

discover the insertion motifs as well as cis-regulatory factors,

which can be useful for further exploration and understanding of

HTLV-1 integration and disease pathogenesis. DeepHTLV is freely

available at https://github.com/bsml320/DeepHTLV.

RESULTS

Characterizing HTLV-1 viral integration throughout the
genome and training DeepHTLV
A total of 33,845 positive VISs were downloaded from our in-

house VISDB.10 We first investigated the insertion tendency

regarding chromosome distribution and preferred target genes

(Figures 2A and 2B). We found that HTLV-1 preferentially inte-

grated in the first four chromosomes, with 7.23% in chromo-

some 1, 7.36% in chromosome 2, 6.93% in chromosome 3,

and 7.19% in chromosome 4. Chromosome Y had the smallest

number of insertion sites, with 0.27% of all VISs. When normal-

ized by chromosome length, the VISs across the genome were

almost uniformly distributed except for chromosome Y. Further-

more, we counted the top 10 genes with the most VISs (Fig-

ure 2C). Among them, fragile histidine triad gene (FHIT, 23

VISs), a tumor suppressor gene, was a biomarker for early

screening of adult T cell leukemia.18 In addition, for the top 100

genes with the most VISs, we performed gene ontology (GO)

and KEGG pathway enrichment analysis by using clusterPro-

filer19 (threshold cutoff p < 0.001) (Figures 2D and 2E). The results

of GO molecular function enrichment indicated that cadherin

binding followed by beta-catenin binding (GO:0008013) was

the most enriched biological process terms. KEGG pathways

were enriched in axon guidance followed by cell adhesion mole-

cules (hsa04514).

Using this largest benchmark integration dataset of VISs, an

interpretable deep learning-based predictor, namely DeepHTLV,

https://github.com/bsml320/DeepHTLV


Figure 1. DeepHTLV overview

(A) The dataset retrieved from VISDB was processed with bedtools and CD-HIT to generate 31,878 positive virus integration sites (VISs) and 318,780 non-

integration sites for model training and testing.

(B) The whole dataset was split into training and testing datasets (9:1) for DeepHTLV construction and evaluation. DeepHTLV could be used for four different

applications: (1) integration site prediction, (2) model interpretability, (3) motif discovery, and (4) cis-regulatory element identification.

(C) DeepHTLV was implemented by convolutional neural network (CNN) with attention mechanism. The model input was a matrix consisting of the one-hot-

encoded sequence generated after converting the base pairs into binary vectors. Then, the matrix was fed into a convolutional-pooling module, which was

followed by an attention architecture. Output from the attention layer was integrated with output from the convolutional-pooling module and sent to a sigmoid

activation layer for integration site prediction.
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wasdeveloped for VISpredictiondenovo fromgenomesequence,

motif discovery, and cis-regulatory factor identification by auto-

matically learning informative features and essential genomic

positions (Figures 1B and 1C). Note that the number of non-inte-

gration sites was set to be 10 times as many as VISs to mimic

the natural imbalance of VISs versus non-integration sites. To

improve model performance, we implemented our architecture
with a bootstrapping method (Figure S1). All non-integration sites

were divided into 10 bins according to the number of VISs. Boot-

strap iterationswere executed 10 times to generate one classifier.

This procedure was repeated to generate 10 classifiers. The

average output calculated by all classifiers would be taken as

thefinalprediction. To facilitate the trainingandevaluationprocess

of our model, the whole dataset was separated into strictly
Patterns 4, 100674, February 10, 2023 3



Figure 2. Distribution and features of curated HTLV-1 virus integration sites

(A) The distribution of HTLV-1 VISs across the human chromosomes.

(B) The distribution of HTLV-1 VISs across the human chromosomes after normalization by chromosome length.

(C) Top 10 genes with the most VISs.

(D and E) Gene Ontology (GO) and KEGG pathway enrichment analysis of the top 100 genes with most VISs.
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non-overlapping training and testing sets by 10-fold CV.

DeepHTLV was implemented with four components, including

the input layer, the convolution-maxpooling module, the attention

layer, and the output layer. To determine the optimal deep learning

model structure, different architectures were evaluated, including

a single-layer convolutional neural network (CNN)with anattention

mechanism, a two-layer CNN with attention, a single CNN layer

without attention, and a three-layer DNN (Figure S2). The models

were trainedwith the samebalanced trainingwith10-foldCVboot-

strapping strategy for comparison. Performance measured by

AUC indicated that a single CNN layer with attention was the

optimal model structure with an average AUC value of 0.75, out-

performing other architectures (0.67–0.73).

DeepHTLV accuracy, robustness, and model
interpretability
To evaluate the robustness of DeepHTLV, 10-fold CVs on the

training dataset were performed and the ROC curves are shown

in Figure 3A. DeepHTLV had average AUC values of greater than

0.75, suggesting its good predictive power. Due to the nature of

the data imbalance, we evaluated the reliability of predictions

from DeepHTLV by checking for true positives. Specifically, we

measured DeepHTLV prediction robustness using the area un-

der the precision-recall (AUPR) curve (Figure 3B). DeepHTLV
4 Patterns 4, 100674, February 10, 2023
achieved AUPR values ranging from 0.71 to 0.74 during the

balanced sample with 10-fold CV training. Moreover, we tested

the adaptability of our models using the independent dataset

that was not included in training. DeepHTLV obtained an AUC

value of 0.75. These good and consistent AUC values between

10-fold CV and independent testing demonstrated the promising

accuracy and robustness of DeepHTLV models. Next, we

compared the performance of our model with traditional

machine learning algorithms. With the same training strategy,

four traditional machine learning models were implemented:

LR, RF, DT, and KNN (see details in methods; Figure S3).

DeepHTLV model performance was superior to all traditional

machine learning methods with a modest improvement of 3%–

10% (KNN did not show any classification ability) as measured

by AUC values on 10-fold CVs.

To determine whether DeepHTLV could be used to extract

important VIS features, we sought to assess model interpret-

ability (Figures 3E–3I). We visualized the VISs and non-integra-

tion sites using Uniform Manifold Approximation and Projection

(UMAP) based on the feature representation prediction as the

data went through each layer of the model. More specifically,

in the input layer, which is the feature representation of raw

data, our result showed no clear separation between the VISs

and non-integration sites. However, as it passed through the



Figure 3. Performance and evaluation for DeepHTLV

(A and B) The area values under the receiver operating characteristic (ROC) curve (AUC) and precision-recall (PR) curve for DeepHTLV were calculated by 10-fold

cross-validation (CV) using the bootstrapping strategy.

(legend continued on next page)
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CNN layer, the model began differentiating VISs from non-inte-

gration sites. The attention layer assigned higher weights to

the important genomic positions for determining VISs, and

when integrated with the output from the CNN layer the

model demonstrated clear separation between VISs and non-

integration sites. In the final activation layer, we found that

the model retained its ability to distinguish between VISs and

non-integration sites. This result indicated that DeepHTLV was

capable of learning important genomic features for deter-

mining VISs.

DeepHTLV demonstrates consensus motifs potentially
important for HTLV-1 integration
The convolutional operation in the CNN is the key operation of

the model. Several studies utilized the kernels in the first convo-

lutional layer to extract important sequence motifs.20 In

DeepHTLV, multiple kernels were adopted to determine repre-

sentative motifs within the input sequences. Each kernel was

maximally activated by different regions. By aligning these re-

gions with the input sequences, a position weight matrix

(PWM) was generated with the nucleotide count in these corre-

sponding sub-sequences. We considered only the sub-se-

quences with maximum activation score (MAS) exceeding

the threshold (the maximum of the MASs per class). All motifs

and the corresponding PWMs were graphically illustrated

(Figures S4 and S5). In total, 255 informative motifs were identi-

fied. We calculated a score for each motif to measure its impor-

tance regarding HTLV-1 integration. For example, the threemost

important motifs for HTLV-1 integration were ‘‘CCCTCTxGA’’

(Kernel 11, score = 0.12), ‘‘CAGTGGTAT’’ (Kernel 210, score =

0.12), and ‘‘AGTAxGTCA’’ (Kernel 127, score = 0.118). Strong

motifs could be detected multiple times because of their impor-

tance in HTLV-1 integration. To further explore the dominant

patterns of viral insertion, clustering analysis of the top 50 motifs

uncovered by DeepHTLV was performed. We first calculated

pairwise Spearman’s correlations between the PWM of each

motif and then applied hierarchical clustering on the correlation

matrix, which yields eight representative motif clusters that

were potential consensus integration sites (Figure 4). We found

that the PWMs in the same cluster tended to have similar core

motifs (Figure 4). For example, the core motifs with the

consensus sequences CAGTG[GT][AG]T (cluster 6) and x[AC]

CTC[CT]x[GC]A (cluster 8) were likely to be involved in the

HTLV-1 integration as the top-scoring PWMs; these two motifs

were derived from Kernel 210 and Kernel 11, respectively. We

further analyzed these two motifs. Histogram plots (Figures 4B

and 4C) displayed the maximum activation positions where the

motif was extracted, and the violin plots show the distribution

of the MASs for VISs and randomly selected non-integration

sites. We observed that both motifs had higher average activa-

tion scores and larger distributions at the site of viral insertion

in the positive samples. Taken together, DeepHTLV was able

to detect specific recognition patterns of HTLV-1 insertion sites

and revealed consensus motifs potentially important for HTLV-1

integration.
(C and D) ROC curves, PR curves, and the AUC values for DeepHTLV using the

(E–I) Visualization the VISs and non-integration sites using the Uniform Manifold

various network layers. Feature representation of different networks indicated di

6 Patterns 4, 100674, February 10, 2023
Identifying cis-regulatory factors associated with
HTLV-1 integration and associated diseases
Physical interactions between viral-encoded multiple proteins,

viral transcription factors (TFs), cofactors, host TFs, and

other regulators of gene expression are critical steps in viral inte-

gration and subsequent replication. These physical interactions

generate the necessary machinery that is essential to cause

downstream gene expression in the host, which is important to

study their roles in human disease pathogenesis. Here, we

explored the ability of DeepHTLV to discover and decode

some of these interactions by investigating preferential binding

of TFs with the motifs that DeepHTLV learned. Among the top

50 learned PWMs, we found 79 TFs whose binding site prefer-

ence were shown to be significantly associated with the

extracted motifs (Figure 5; Table S1) using TOMTOM.21,22 To

verify the accuracy and biological relevance of our predictions,

a literature search was conducted to assess the evidence sup-

porting the TF association with HTLV-1 or diseases caused by

HTLV-1 infection and integration. Remarkably, 34 TFs13,23–48

were directly involved with HTLV-1 integration and associated

diseases such as ATL and HAM/TSP (Table 1).

Three TFs stood out: Fos, Jun, and specificity protein (Sp).

HTLV-1 replication hijacks multiple pathways such as AP-1,

NF-kB, and CREB/ATF.31,49–51 The activation protein 1 (AP-1)

signaling pathway regulates several functions including inflam-

mation, cellular proliferation, and apoptosis.52,53 AP-1 is a

dimeric protein complex that involves the recruiting of TFs from

the Fos, Jun, ATF, andMaf families. Motif 9 from DeepHTLV pre-

dicted multiple TF associations involved in AP-1 signaling from

the FOS family (FOS, FOSB, FOSL1, and FOSL2), the JUN family

(JUN, JUNB, and JUND), and their respective heterodimer com-

plexes, e.g., FOSL2-JUND. Motif 10 extracted fromKernel 160 in

DeepHTLV showed significant associations with MAF, MAFK,

and MAFA. AP-1 signaling manipulation by HTLV-1 occurred

with multiple TFs. Tax and HBZ are two regulatory proteins

essential for HTLV-1 replication and disease pathogenesis.3

Tax interferes with AP-1 signaling on multiple levels. Fujii et al.

demonstrated that Tax increased AP-1 activity greater than any

combination of the proteins involved in AP-1 signaling.54 Iwaii

et al. reported similar findings: they found that Tax activated

genes downstream in the AP-1 pathway by promoting the DNA

binding ability the protein complex.32 Fujii et al. further reported

that T cells transformed byHTLV-1 had increasedmRNAexpres-

sion of the AP-1 family members c-Jun, JunB, JunD, c-Fos, and

Fra-1, which are the protein products of JUN, JUNB, JUND, FOS,

andFOSL1, respectively. In addition to thepredicted Jun andFos

family associations, DeepHTLV predicted Sp1 to have significant

associations with motif 17. Sp1 belongs to the family of Kruppel-

like/Sp TFs, and is involved in both regulation of gene expression

via its ability to bind transcription complexes and chromatin

remodeling complexes.55 Wessner et al. found that Sp1 had

binding sites within the U3 region of HTLV-1 LTR.56 Livengood

and Nyborg evaluated the importance of Sp1 HTLV-1 transcrip-

tion with or without the presence of Tax. Their results indicated

that Sp1 could directly bind the viral promoter in multiple regions
independent test dataset.

Approximation and Projection (UMAP) based on the feature representation at

scriminative through the network layer hierarchy.



Figure 4. Consensus motifs detected by DeepHTLV

(A) Hierarchical clustering of informative motifs extracted from most activated kernels in the convolutional layer showed eight consensus pattern clusters for

potential VISs in humans.

(legend continued on next page)
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and that itwasmost likely involved inTax-independent basal level

transcription.42 Sp1 in conjunction with Tax converts HTLV-1-in-

fected CD4+ Treg cells into a Th1 profile, promoting IFN-g pro-

duction and inflammation in HAM/TSP.39

DISCUSSION

In thiswork,wepresent the first deep learningmodel for rapid and

accurate HTLV-1 VIS prediction from primary sequence by auto-

matically learning more informative and interpretative features.

To improve model accuracy and robustness, we implement a

bootstrapping training strategy to enhance the model’s ability

to discriminate VISs from massive non-integration sites.

DeepHTLV outperformed other deep learning architectures and

four traditional machine learning models, reaching AUC and

AUPR values of 0.75 and 0.72, respectively. So far, some deep

learning models have been developed for the VIS prediction of

DNA or RNA viruses. For example, DeepHINT, a deep learning

method for predicting HIV-1 (another retrovirus) VISs, achieved

AUCs between 0.736 and 0.904 depending on the dataset.17 In

addition, using the dataset from the samemanually curated data-

base (VISDB), several deep learning-based methods, e.g.,

DeepVISP, DeepHBV, DeepHPV, and DeepEBV, were used for

the VIS prediction of three oncogenic DNA viruses. DeepVISP

achieved robust performance with AUC values above 0.8 for all

three viruses.16 Regarding HBV, HPV, and EBV VIS prediction,

the performance of DeepHBV, DeepHPV, and DeepEBV with

AUC and AUPR values were from 0.610 to 0.794 and 0.547 to

0.574, respectively, using sequence features independently.57–59

DeepHTLV performance, as indicated by AUPR, outperformed

other methods when detecting imbalanced VIS data.

DeepHTLV not only had good performance but also the fea-

tures it learned were easily interpreted, which was quite impor-

tant but not available in other methods. Through visualizing the

features learned for VISs and non-integration sites using UMAP

in each layer of the model, we found that feature representation

becamemore discriminative further along the network layer hier-

archy. By decoding these features, DeepHTLV identified several

consensus sequencemotifs that were important for HTLV-1 inte-

gration in humans, such as CAGTG[GT][AG]T and x[AC]CTC[CT]

x[GC]A. Furthermore, we demonstrated that DeepHTLV can be

used to elucidate the cis-regulatory features around HTLV-1

VISs. We found 79 TFs, whose binding site preferences were

shown to be significantly associated with the extracted motifs

by DeepHTLV. Remarkably, 34 TFs, such as Fos, Jun, and

Sp1, were found to have literature evidence supporting their as-

sociations with HTLV-1 integration and its associated diseases.

For the 45 remaining predicted TFs, although no literature indi-

cated any relationship with HTLV-1 or diseases caused by viral

integration, many of them belong to the same family and/or share

sequence homology with one another. For example, Kernel 250,

which identified SP1, also identified SP2 and SP4. The relation-

ship between SP1 and HTLV-1 pathogenesis has been previ-

ously explored, but the role SP2 and SP4 has not been charac-

terized. All members of the SP family have a highly conserved
(B and C) The core motifs: Kernel 210 (B) and Kernel 11 (C), with the consensus se

histograms showed the maximum activation positions where the motif was extra

randomly selected non-integration sites was shown on the violin plots.
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DNA binding region,55 and the shared features in this domain

could explain why all three were initially identified as associated

TFs. More specifically, Sp1 and Sp4 both bind GC boxes while

Sp2 only binds GT boxes.60 The tissue expression between Sp

family members differ as well. Sp1 and Sp3 are both expressed

in all tissue, while Sp4 is primarily expressed in neuronal cells.61

Deletion of Sp2 results in the number of neural progenitor

cells and neurons decreasing in the cortex, indicating the

role of Sp2 in neural development.62,63 Sp4 is required for

proper dendrite formation in the development of the cere-

bellum.64 Reduced levels of Sp4 have been observed in bipolar

patients.65 Interestingly, Sp2 was found to be required for

in vitro expression of RORgT and IL-17 expression in Th17

cells.66 RORgT is one of the products of the gene RORC, which

was predicted by DeepHTLV to be a related TF. RORC, which

encodes for RORgT, showed an age-dependent decrease in

expression compared with healthy controls, which suggested a

link between IL-17 signaling and ATL.23 HAM/TSP patients

show decreased Th17 count and IL-17 levels compared with

asymptomatic carriers and controls, indicating a shift toward a

proinflammatory state in HAM/TSP patients.67 It is possible

that Sp2 may play a role in the development of inflammation

and subsequent development of disease in HTLV-1-infected

patients. Further experimental validation would be required

to uncover any possible link. In summary, DeepHTLV was

uniquely designed as a deep learning model for retrovirus inser-

tion site prediction and cis-regulatory factors identification. We

hope this work will contribute to increasing knowledge about

viral genomics and for further experimental validation and

discovery.

Limitations of the study
Overall, we implemented the simplest possible model, which

only used the primary sequence to classify VISs and uncovered

their important sequence and motif features. While DeepHTLV

made biologically and functionally relevant predictions, there is

still room for improvement in performance. Therefore, more fea-

tures such as structure and expression should be considered to

make a more accurate model in the future. In addition, some of

the predictions in Table 1 were heterodimers consisting of two

different TFs. These heterodimers were reported if at least one

of the TFs in the complex had literature support. This assumes

that the binding capability of either TF remains unchanged after

the heterodimer complex is formed. We are aware that this

assumption does not account for conformational changes that

may change individual TF binding affinities. However, our model

does not consider spatial conformation for the proteins. Rather,

it provides a high-confidence reference for potential binding

partners of the cis-regulatory factors near HTLV-1 VISs. Finally,

experimental validation would also be helpful in validating

some of the interesting TFs that were predicted by the model

that currently lack any supporting literature evidence. How the

interplay between VISs, host TFs, and viral proteins affects

HTLV-1 disease pathogenesis remains complex and not

completely understood.
quences CAGTG[GT][AG]T (cluster 6) and x[AC]CTC[CT]x[GC]A (cluster 8). The

cted. The distribution of the maximum activation scores (MASs) for VISs and



Figure 5. Decoding cis-regulatory factors by DeepHTLV

(A) A total of 79 transcription factors (TFs) were identified to match with the top 50 informative motifs extracted from DeepHTLV with statistical significance.

p < 0.01 was used as the statistical threshold.

(B–J) Graphic sequence, position weight matrix (PWM) and maximum activation distribution for motif 2 (B–D), motif 9 (E–G), and motif 17 (H–J) extracted from

DeepHTLV, which matches DNA-binding TF of RORC, FOS-JUN, and SP1 in JASPAR2020 database, respectively. The histograms showed the maximum

activation positions where the motif was extracted. The distribution of the MASs for VISs and randomly selected non-integration sites was shown on the

violin plots.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Zhongming Zhao (zhongming.zhao@uth.

tmc.edu).

Materials availability

No new materials were generated in this study.

Data and code availability

Any requests for additional information are available upon request from

the lead contact, Dr. Zhongming Zhao (zhongming.zhao@uth.tmc.edu).

DeepHTLV is freely available at https://github.com/bsml320/DeepHTLV.

Data used for model training and testing are publicly available on VISDB

at https://bioinfo.uth.edu/VISDB/index.php/homepage and available in

Table S2.
Data processing

The training dataset of 33,845 experimental VISs was downloaded from our

curated VISDB,10 which was regarded as positive samples (Table S2). For

each VIS, we expanded its region by 500 bp upstream and downstream to

have a 1,000 bp sequence for feature analysis. Negative samples were

generated using bedtools from human genome sequence version GRCh37/

hg19, under the constraints that they did not overlap any VISs.68,69 The ratio

of positive and negative samples was set to 1:10 to mimic the natural imbal-

ance of VISs versus non-integration sites, Redundant sequences within each

dataset and between both datasets were removed using CD-HIT70,71 with

similarity threshold set to 0.9. After data processing, 31,878 positive samples

and 318,780 negative samples remained. The benchmark integration dataset

was split into a 9:1 ratio of training to testing data using a package from sci-

kit-learn. Negative samples were randomly selected without replacement at

a 1:1 ratio with the positive samples to train models by the bootstrapping

strategy. In addition, 727 human TF binding profiles with MEME format21
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Table 1. Known TFs matched with the top 50 informative motifs

learned from DeepHTLV that had literature evidence supporting

their associations with HTLV-1 integration and its associated

diseases

Transcription factor Motif/Kernel

RORC23 Motif2/Kernel 127,

Motif18/Kernel174

PPARG24 Motif2/Kernel127,

Motif9/Kernel243,

Motif18/Kernel174

FOSL225,26 Motif9/Kernel243

FOS-JUNa,27,28 Motif9/Kernel243

FOSL2-JUNDa,29 Motif9/Kernel243

FOS30,31 Motif9/Kernel243

FOSB-JUNBa,30,32 Motif9/Kernel243

FOSL2-JUNBa,21,22,26,28 Motif9/Kernel243

FOSL2-JUNa,21,22,27 Motif9/Kernel243

FOS-JUNBa,30–32 Motif9/Kernel243

JDP233 Motif9/Kernel243

BACH134 Motif9/Kernel243

FOSL1-JUNDa,25,26,30 Motif9/Kernel243

FOS-JUNDa,25,26,30,31 Motif9/Kernel243

JUN31 Motif9/Kernel243,

Motif18/Kernel174

MAF-NFE2a,35 Motif9/Kernel243

FOSL1-JUNa,30,31 Motif9/Kernel243

FOSL1-JUNBa,30,32 Motif9/Kernel243

JUN-JUNBa,27,28 Motif9/Kernel243

MAFG-NFE2L1a,35 Motif9/Kernel243

TFAP2A36 Motif10/Kernel160

MAF35 Motif10/Kernel160

MAFK37 Motif10/Kernel160

MAFA38 Motif10/Kernel160

SP139–42 Motif17/Kernel250

KLF1043 Motif17/Kernel250

KLF1244 Motif17/Kernel250

ZNF26313 Motif17/Kernel250

SPI145 Motif18/Kernel174

PPARA-RXRAa,46 Motif18/Kernel174,

Motif29/Kernel223

ELF147 Motif18/Kernel174

NR1H2-RXRAa,46 Motif29/Kernel223

PPARG-RXRAa,20,43 Motif29/Kernel223

RARA-RXRAa,48 Motif31/Kernel213
aThe motif matching at least one of the TFs in the heterodimer complex.
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were downloaded from the JASPAR CORE database (JASPAR 2022) derived

from published collections of experimentally defined TF binding sites.22

Sequence feature encoding

Sequences were one hot encoded into a binary vector for each nucleotide

(ATCG). The binary vectors were then arranged into a matrix with dimensions

43 N3 1,000, where N is the total number of input samples. A is encoded by

(1,0,0,0), C (0,1,0,0), G (0,0,1,0), and T (0,0,0,1). For each VIS, the model input

is as follows:
10 Patterns 4, 100674, February 10, 2023
BP = ðbp1;bp2;.;bpnÞ;bp˛

8>><
>>:

Að1; 0; 0; 0Þ
C ð0; 1; 0;0Þ
G ð0; 0; 1; 0Þ
Tð0; 0; 0; 1Þ

n˛ fA;C;G;Tg

DeepHTLV model construction

As shown in Figure 1C, an attention-based deep learning framework, called

DeepHTLV, was developed to predict VISs using nucleotide sequence as

input. The architecture of the model consists of eight layers: an input layer,

a convolution-pooling module (two layers), a dropout layer, the attention

layer, a second dropout layer, a dense layer, and an output layer. The model

input is a matrix consisting of the one-hot-encoded sequence data gener-

ated after converting the base pairs into binary vectors (sequence feature en-

coding section). Then, the input matrix is fed into a convolution layer to cap-

ture sequence motifs. Each kernel in the convolution operation generates its

own PWM, which extracts the important features from the input. For

example, for any given VIS region V (n1, ., n1000), the convolution layer

ConNet computes:

ConNetðVÞif =
XM� 1

m = 0

XN� 1

n = 0

Wf
mnVi +m;n

where V represents the input sequence, i and f denote the indices of output po-

sition and the kernel, respectively. Convolutional kernelWf is theM3Nweight

matrix. M and N are the window size of kernel and input dimension, respec-

tively. For example, N is 4 for the convolutional layer. The activation function

is the rectified linear unit (ReLU) being applied to the convolution results, where

positive values remain unchanged, and any negative values are set equal to 0.

ReLU is defined as:

ReLU =

�
x = x; xR 0
x = 0; x% 0

where x represents the weight sum of any given neuron. A max-pooling oper-

ator was added for dimensional reduction after the convolutional layer. To

improve the model performance, an attention layer was used after the max-

pooling layer to capture themost valuable sequencemotifs. The attention layer

takes the features of the convolution-pooling module fftgTt = 1 as input and cal-

culates output vector c, suggesting whether the neural network should assign

more weights to the positions. c is defined as below:

at =
exp ðgðftÞÞPT
i = 1 expðgðfiÞÞ

c =
XT
t = 1

atft

where g($) is a neural network with a fully connected layer that returns a scalar

importance score. Feature vectors from the convolution-pooling module were

merged with the attention scores from the attention layer and fed into the

output layer. The output layer is a fully connected dense layer with a sigmoid

activation function. The final model output is the probability of whether a given

sequence is a VIS.

P ðxÞ =
1

1+ ex

in which x denotes the input of the sigmoid node from the combination of

convolution-pooling feature vectors and attention scores.

Hyperparameter optimization was performed using Hyperband from the

keras-tuner library.72 Hyperparameter optimization with Hyperband uses a

tournament bracket-style optimization where models are trained briefly,

compared, and the more ‘‘promising’’ models are chosen to continue. The

model parameters with the best performance determined by AUC value

were chosen. In addition, multiple different models were tested, including



REAGENT or

RESOURCE SOURCE IDENTIFIER

Data

VIS data VISDB10 https://bioinfo.uth.

edu/VISDB/index.

php/homepage

Reference

Genome

UCSC

Genome

Browser69

https://hgdownload.

soe.ucsc.edu/goldenPath/

hg19/bigZips/

Transcription

factor binding

profiles

JASPAR

202222
https://jaspar.genereg.

net/download/data/

2022/CORE/JASPAR2022_

CORE_vertebrates_

non-redundant_pfms_

meme.zip

Software and algorithms

DeepHTLV This paper https://github.com/

bsml320/DeepHTLV

Anaconda v4.10.3 Anaconda https://www.

anaconda.com

Python v3.6.13 Python

Software

Foundation

https://www.

python.org

Numpy v1.19.2 Numpy https://numpy.org

Bedtools v2.30.0 Bedtools https://github.com/

arq5x/bedtools2

Matplotlib v3.3.4 Matplotlib https://matplotlib.org

Keras v2.3.1 (GPU) Keras https://keras.io/

Tensorflow-gpu

v1.15.0

Tensorflow https://www.tensorflow.org

Scikit-learn

v0.24.2

Scikit-Learn https://scikit-learn.

org/stable/

CUDA v10.0 NVIDIA https://developer.nvidia.

com/cuda-toolkit

clusterProfiler

v 4.0

clusterProfiler19 https://bioconductor.

org/packages/release/

bioc/vignettes/

clusterProfiler/inst/

doc/clusterProfiler.

html

pysster pysster75 https://github.com/

budach/pysster

CD-HIT CD-HIT70,71 https://github.com/

weizhongli/cdhit/wiki

Keras Tuner Keras-tuner72 https://github.com/

keras-team/keras-

tuner
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models with two convolutional layers plus attention, a single convolutional

layer without attention, and a general three-layer DNN. DeepHTLV was imple-

mented using Keras version 2.3.1 and tensorflow-gpu 1.15 to allow for parallel

computing in Python version 3.6. When trained on an NVIDIA RTX 3070 with 8

GB of memory, the bootstrap balanced training strategy required 5 h 22 min

(322 min) in total. Average training time with 10-fold CV for each ensemble

model was approximately 32 or 3.2 min per fold CV. Average DeepHTLV pre-

diction time was 1.3 s.

Model training

All models were trained using a bootstrapping training method (Figure S1)

where the negative data were sampled without replacement at a 1:1 ratio

with the positive data. After splitting the data into training and testing (9:1 ratio),

the negative training data were sampled without replacement with a sample

size equal to the positive data (1:1 ratio). These training data were saved as

a separate dataset. The model was then trained on the balanced sample

with 10-fold CV. In k-fold CV, the training data were separated into k = 10

equally sized partitions where k–1 partitions were used for training and 1

was used for validation. This processwas repeated 10 times so that each parti-

tion was used for validation once. This process was repeated iteratively until all

negative data had been used, resulting in an ensemble of 10 different deep

learning models. The final output was determined by taking the average result

of all models.

Motif analysis and cis-regulatory factors identification

Filters in the convolution layer used a powerful motif detector to scan input

sequences as described in DeepBind73 and Basset.74 Specifically, sequence

motifs were extracted from the convolution layer by finding the positions with

the maximum activation. Once the kernels with the maximum activation were

determined, they were mapped to the original input sequence to find a set of

sub-sequences the length of the filter (kernel size). Only those that exceeded

a given maximum activation threshold, i.e., the maximum of the MAS per

class, were considered in the subsequent analysis. All sub-sequences

were then aligned to generate a PWM to follow the MEME motif format.21

The motif score was calculated as the difference between the mean

maximum activation for positive class and negative class. This score deter-

mines how enriched a motif is for the positive class, which in turn corre-

sponds with how important the kernel is for determining whether a sequence

is VIS or not. The pysster package was used to generate sequence motif and

figures.75 To further reveal the dominant sequence patterns of viral insertion,

clustering analysis of the top 50 motifs DeepHTLV uncovered was

performed. The PWMs were grouped by hierarchical clustering based on

Spearman’s correlations between the nucleic acid composition of PWMs

obtained. In addition, after interacting with their host cells, viruses generally

dominated the expression of host RNA by virally encoded molecules, which

can be realized through physical interactions between a viral transcriptional

co-factor and a host TF affecting the downstream host gene expression.

Accordingly, we used TOMTOM21 to compare the motifs that DeepHTLV

learned for HTLV-1 integration with the known DNA motifs in JASPAR2022,

a database of TF binding profiles.22 TFs whose binding site preferences

were shown to be significantly associated with the extracted motifs were

identified. To verify the accuracy and biological relevance of TF predictions,

a literature search was performed to determine the evidence supporting the

TF association with HTLV-1 or diseases caused by HTLV-1 infection and

integration.

Traditional machine learning models

Four traditional machine learning methods were implemented in this study: DT,

RF, LR, andKNN.Eachmodelwas trainedwithone-hot-encodedmatrixas input.

Hyperparameter optimization was performed using RandomizedSearchCV from

scikit-learn to find the best classifier froma set of parameters. During hyperpara-

meter optimization, each model went through 10-fold CV. Training data were

separated into 10 equally sized partitionswhere nine parts were used for training

andone for evaluation. TheROCcurvesandPRCweredrawn for eachmodeland

AUC values were calculated after 10-fold CV to determine the performance for

each model. The model performance was calculated as the average of all 10

partitions and used to determine the best parameter set.
Key resources table
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100674.
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