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Abstract: This paper presents a comprehensive kinetic study of the catalytic pyrolysis of high-density
polyethylene (HDPE) utilizing thermogravimetric analysis (TGA) data. Nine runs with different
catalyst (HZSM-5) to polymer mass ratios (0.5, 0.77, and 1.0) were performed at different heating rates
(5, 10, and 15 K/min) under nitrogen over the temperature range 303–973 K. Thermograms showed
clearly that there was only one main reaction region for the catalytic cracking of HDPE. In addition,
while thermogravimetric analysis (TGA) data were shifted towards higher temperatures as the heating
rate increased, they were shifted towards lower temperatures and polymer started to degrade at lower
temperatures when the catalyst was used. Furthermore, the activation energy of the catalytic pyrolysis
of HDPE was obtained using three isoconversional (model-free) models and two non-isoconversional
(model-fitting) models. Moreover, a set of 900 input-output experimental TGA data has been
predicted by a highly efficient developed artificial neural network (ANN) model. Results showed a
very good agreement between the ANN-predicted and experimental values (R2 > 0.999). Besides,
A highly-efficient performance of the developed model has been reported for new input data as well.

Keywords: high-density polyethylene (HDPE); catalytic pyrolysis; thermogravimetric analysis (TGA);
activation energy; artificial neural network (ANN)

1. Introduction

Plastic wastes have become an irritating worldwide issue particularly in many developed countries,
where a massive quantity is produced and disposed of. The main source of plastic wastes is municipal
solid wastes (MSW) [1]. Globally, most of the plastic wastes are either disposed of in landfills or
incinerated [2]. While landfill disposal is still considered as undesired and expensive treatment,
the waste destruction by incineration is also expensive and has problems with high emissions and thus
environmental concerns.

Combustion as a primary recycling technique is used to treat plastic wastes, but it is still restricted
by environmental legislation. However, plastic wastes reshaping, as a secondary recycling method,
is limited to only 20 wt % plastic wastes [3].

Recently, research effort is more focused on tertiary recycling, by involving some sophisticated
technology such as pyrolysis, gasification, and catalytic cracking in the recycling industries [3].
Pyrolysis has some advantages over the rest of waste disposal techniques because of its low volume
products (gases, liquids, and char) that can be used as fuel and can be added to petroleum refinery
feedstocks or act as chemical feedstocks [4,5]. However, pyrolysis needs to be achieved at high
temperature to have the desired type of oil. To overcome this challenge, catalytic cracking is used to
reduce the cracking temperature [6,7].
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Pyrolysis of high-density polyethylene (HDPE), representing about 17.8% of MSW plastic waste,
has attracted the attention of some researchers. Kinetic parameters such as activation energy was
targeted to be obtained for the design purposes of industrial processes. Conesa et al. [8] studied
the HDPE pyrolysis using isothermal and non-isothermal thermogravimetric analysis (TGA) data at
heating rates of 5, 25, 50, and 100 K/min. The reported activation energy values were ranging between
185 and 221.5 kJ/mol.

Aboulkas et al. [9] studied the thermal decomposition of HDPE by Friedman, Flynn–Wall–Qzawa
(FWO), and Kissinger–Akahira–Sunose (KAS) iso-conversional methods at 2, 10, 20, and 50 K/min.
Activation energy values within the range of 238–247 kJ/mol were reported.

Chin et al. [10] examined the pyrolysis of HDPE using TGA data at 10–50 K/min heating rates and
323–1173 K temperature range. Activation energies were found within 242.13–278.14 kJ/mol.

Diaz Silvarrey and Phan [11] developed a kinetic model for the TGA pyrolysis of HDPE.
They applied Málek, KAS, and linear model fitting to calculate the kinetic parameters. All their
experiments were performed under an N2 atmosphere at 5, 10, 20, and 40 K/min heating rates,
and temperature range of 303–973 K. They reported different values of activation energy by different
methods (202.40 ± 9.47 kJ/mol and 375.59 ± 39.69 kJ/mol by KAS and Friedman methods, respectively).

Khedri and Elyasi [12] obtained the kinetics parameters of the pyrolysis of HDPE using
non-isothermal and isothermal TGA data by model-free models at 40, 45, 50, and 55 K/min heating rates.
The calculated activation energies were reported to heavily vary with conversion and used methods.

This study aims to obtain activation energy of the catalytic pyrolysis of HDPE at different catalyst
to polymer ratios and heating rates using non-isothermal TGA data. Three isoconversional methods
and two non-isoconversional models have been used. Additionally, a highly-efficient artificial neural
network (ANN) model has been developed, for the first time, to predict the pyrolytic behavior of the
catalytic cracking of HDPE.

2. Materials and Methods

2.1. Experimental Procedure

Catalytic cracking of HDPE using the HZSM-5 catalyst has been investigated. Polymer samples
were obtained from Ipoh SY Recycle Plastic, Malaysia. The proximate and ultimate analysis of HDPE
were conducted using PerkinElmer Simultaneous Thermal Analyzer (STA) 6000, and PerkinElmer 2400
Series II CHNS Elemental Analyzer, Waltham, MA, USA, respectively. The characterization data are
presented in Table 1. HZSM-5 was obtained from zeolite (CBV3024E) in ammonia form (Alfa Aesar,
Ward Hill, MA, USA) and then converted into hydrogen form by calcination at 823 K and 2 K/min
heating rate for 2 h in a muffle furnace. The catalyst specifications and the experimental matrix details
are shown in Tables 2 and 3, respectively. The test samples have been prepared with different catalyst
to polymer mass ratios (0.5, 0.77, and 1.0). The cracking studies were performed using Mettler Toledo
TGA/SDTA851e (Polaris Parkway, Columbus, OH, USA) analyzer under 50 mL/min N2 as an inert
gas. The results were evaluated with the V7.01 STARe software package. Heating rates of 5, 10,
and 15 K/min were exerted. TGA equipment was used for the measurements in which the samples
were heated from ambient temperature to 373 K for 5 min, and then heating continued to 523 K and
was then held for 5 min. After that, heating continued to 973 K and the temperature was kept constant
for another 5 min.

Table 1. Ultimate and proximate analysis of high-density polyethylene (HDPE).

Waste Plastic
Proximate Analysis, wt % Ultimate Analysis, wt %

Moisture Volatile Ash C H N S

HDPE 4.504 94.278 1.218 78.33 20.71 0.00 0.96
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Table 2. Specifications of HZSM-5 Catalyst.

Name SiO2/Al2O3 Mole Ratio Nominal Cation Form Na2O, wt% Surface Area, m2/g

HZSM-5 (CBV3024E) 30 Hydrogen 0.05 400

Table 3. Experimental matrix.

Run No. 1 2 3 4 5 6 7 8 9

HZSM-5/HDPE (mass Ratio) 0.5 0.77 1.0 0.5 0.77 1.0 0.5 0.77 1.0
Heating Rate (K/min) 5 5 5 10 10 10 15 15 15

2.2. Kinetic Theory

For most kinetics, the rate of reaction (r) can be expressed as [13,14]:

r =
dα
dt

= A exp
(
−

E
RT

)
(1− α)n (1)

where α is conversion, t is time, A is the pre-exponential factor, E is the activation energy, R is the
universal gas constant, T is temperature, and n is the reaction order. Conversion can be calculated as
follows:

α =
wo −w
wo −w f

(2)

where:

wo: is the weight of the sample at t = 0,
w: is the weight of the sample at t = t,
wf: is the weight of the sample at the experiment end.

Kinetic triple parameters can be obtained from TGA data using some models derived
from Equation (1). The published models use either multiple TGA at different heating rates
(called isoconversional or model-free methods) or one single TGA data (called non-isoconversional
or model-fitting methods). Kinetic equations of some of the widely used isoconversional and
non-isoconversional models (for first-order reactions) are shown in Table 4.

Table 4. Equations of the selected models [14].

Model Equation

Isoconversional

Friedman ln(β dα
dT )=ln(A)+ln(1−α)− E

R
1
T

Flynn–Wall–Qzawa (FWO) ln(β)=ln(− A E
R ln(1−α) )−5.331−1.052 E

R
1
T

Kissinger–Akahira–Sunose (KAS) ln( β
T2 )=ln(− A R

E ln(1−α) )− E
R

1
T

Non-isoconversional

Arrhenius ln(
dW
dt
W )=ln(A)− E

R
1
T

Coats–Redfern ln[−ln(1−α)
T2 ]=ln[ A R

β E (1− 2RT
E )]− E

R
1
T

2.3. Artificial Neural Network (ANN) Modeling

To model an engineering process, a model must be developed based on available data, and then the
model parameters are estimated. However, this is not an easy task especially for complex systems with
non-linear relations. Alternatively, the artificial neural network (ANN) modeling can be a promising
preferred tool to be used.
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An ANN topology has three layers (input, output, and hidden layers of neurons) with different
functions. Each layer has a bias vector (weight matrix) and an output vector [15]. Process variables
must be fixed initially, and the available data must be representative and fall within the defined
variable margin.

Additionally, the ANN architecture consists of several connected layers with their transfer
functions. The best network architecture depends on the type of the represented problem. For high
performance of ANN-prediction, a genetic algorithm is applied to optimize the ANN parameters such
as the number of hidden layers, the number of neurons in each hidden layer, and the momentum and
learning rates [14,16].

Recently, some researchers have developed ANN models to predict the pyrolytic behavior of
the thermal decompositions of some materials using TGA data [14,17–22]. However, in this work,
a highly-efficient ANN model is aimed to be developed to predict, for the first time, the catalytic
pyrolysis of HDPE. The following statistical parameters are used to evaluate the performance of the
developed ANN-model [14,16,23]:

Average correlation factor
(
R2

)
= 1−

∑(
(W %)est − (W %)exp

)2

∑(
(W %)est − (W %)exp

)2 (3)

Root mean square error (RMSE) =

√
1
N

∑(
(W %)est − (W %)exp

)2
(4)

Mean absolute error (MAE) =
1
N

∑∣∣∣∣(W %)est − (W %)exp

∣∣∣∣ (5)

Mean bias error (MBE) =
1
N

∑
((W %)est −

(
W %)exp

)
(6)

where (W %)est, (W %)exp, and (W%) are the ANN model-estimated, experimental, and average values
of mass left %, respectively.

3. Results and Discussion

3.1. Kinetics Study of Catalytic Pyrolysis of HDPE

Figures 1–3 represent the thermogravimetric analysis (TGA), derivative thermogravimetric (DTG)
and conversion curves of the pyrolysis of HDPE at different heating rates and catalyst to polymer ratio,
respectively. Both DTG and conversion curves were obtained from the thermogravimetric (TG) data
and conversion was calculated using Equation (2). Generally, as the heating rate increases, both DTG
and conversion curves are shifted to the right (towards higher temperatures) which implies higher
on-set, end-set, and decomposition peak temperatures. On the other hand, both curves are shifted to
the left (towards lower temperatures) and polymer starts to degrade at lower temperatures when the
catalyst is used due to the polymer catalytic cracking process.

In addition, these figures show clearly that there was only one main reaction region for the catalytic
cracking of HDPE which is in a full agreement with the available literature [10]. However, the process
of catalytic cracking of HDPE cannot be considered as an elementary reaction, whereas the kinetic
parameters derived from TGA are obtained only for a short range of temperatures which represents
only the range where the decomposition starts passing through the temperature of the maximum
decomposition rate.

Figure 4 clearly shows the effect of the quantity of the used catalyst with respect to the tested
polymer at different heating rates (5, 10, and 15 K/min). As the catalyst to polymer ratio increased the
conversion increased (as shown in Figure 3) but a lower cracking activity (lower peak temperature)
was observed, and the effect of the catalyst mass diminished with increasing the heating rate.
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Table 5 summarizes characteristic temperatures (Tonset, T5%, Tpeak, and Tendset) along with mass
loss and residue percentages of the pyrolysis of HDPE at different catalyst to polymer ratios.
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Table 5. Thermogravimetric analysis data.

HZSM-5/HDPE
(Mass Ratio)

Heating Rate
K/min

Tonset
(K)

T5%
(K)

Tpeak
(K)

Tendset
(K)

Mass Loss
(%)

Residue
(%)

0.0
(Pure HDPE)

5 473 668 723 743 99 1
10 473 698 743 763 99 1
15 473 696 753 773 99 1

0.5
5 310 589 674 696 70 30
10 304 615 691 712 74 26
15 336 635 695 718 78 22

0.77
5 301 512 675 696 75 25
10 334 622 696 712 77 23
15 310 505 703 718 66 34

1.0
5 325 516 685 696 54 46
10 316 396 691 713 55 45
15 311 464 696 718 53 47

Table 6 presents the obtained values of activation energy (E) using three isoconversional (Friedman,
FWO, and KAS) methods. These tables represent only data for the high conversion range (0.5–0.9)
because of the low accuracy of the obtained values at low conversions [24]. In addition, Table 7
represents the activation energy data calculated by two non-isoconversional models (Arrhenius and
Coat–Redfern).

Table 6. Activation energies calculated by isoconversional models.

Conversion
HZSM-5/HDPE = 0.5 HZSM-5/HDPE = 0.77 HZSM-5/HDPE = 1.0

E (kJ/mol) R2 E (kJ/mol) R2 E (kJ/mol) R2

Friedman Model
0.5 120 0.9749 99 0.9949 263 0.9815
0.6 219 0.9811 147 0.9922 211 0.877
0.7 225 0.9977 154 0.9995 141 0.673
0.9 180 0.9552 142 0.9505 100 0.9085

Average 186 0.9772 135.5 0.9843 178.7 0.8600
FWO Model

0.5 202 0.9633 196 0.9995 332 0.9997
0.6 191 0.97 181 0.9991 183 1
0.7 198 0.9797 169 0.9997 196 0.9973
0.9 193 0.9824 166 0.9989 168 0.9136

Average 196 0.97385 178 0.9993 219.75 0.97765
KSA Model

0.5 201 0.9593 198 0.9787 170 0.9991
0.6 189 0.9665 179 0.999 182 1
0.7 196 0.9774 167 0.9997 195 0.997
0.9 192 0.9803 165 0.9931 191 0.9919

Average 194.5 0.970875 177.25 0.992625 184.5 0.997
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Table 7. Activation energies calculated by non-isoconversional models.

Run Heating Rate
(K/min)

HZSM-5/HDPE
Mass Ratio

Coats–Redfern Arrhenius

E (kJ/mol) R2 E (kJ/mol) R2

1 5 0.5 126 0.9399 125 0.9995
4 10 0.5 140 0.9631 142 0.958
7 15 0.5 168 0.9942 168 0.8222

Average 144.7 0.9657 145 0.9266
2 5 0.77 140 0.9682 157 0.9813
5 10 0.77 145 0.9723 148 0.9103
8 15 0.77 110 0.9414 112 0.9047

Average 131.7 0.9606 139 0.9321
3 5 1 140 0.9476 129 0.9799
6 10 1 132 0.9997 135 0.9575
9 15 1 123 0.8387 156 0.9423

Average 131.7 0.9287 140 0.9599

The activation energy values, calculated by Friedman, FWO, and KAS at different conversions,
shared the same trend as a function of the catalyst to polymer ratio. Additionally, it has been observed
that E values calculated by the Friedman model at different catalyst to polymer ratios were the lowest
and those obtained by FWO were the highest. However, the KAS model produced intermediate values
with the highest R2. Different ranges of activation energy values were observed, expected, and reported
(see [11,12]) and it depends on the used method. However, as expected by theory, the activation
energy of the catalytic thermal decomposition of HDPE is still lower than that of pure HDPE [25,26].
Al-Salem et al. [27] attributed the decrease in the activation energy value to the effect of acid-base of
the catalyst. The estimated apparent activation energy for catalytic and thermal cracking of HDPE
from different sources fall within the range of 206–445 kJ/mol [27].

However, the average E values obtained by two non-isoconversional models were close. In addition,
the effect of heating rate was dominating at low catalyst to polymer ratio and E values increased as
heating increased. However, at high catalyst to polymer ratio, the effect of catalyst was dominating,
and E values almost decreased as the ratio increased. Generally, E values increase as heating rate
increases [28], and using catalysts increases the reaction rate and provides an opportunity for the
reaction to occur at lower activation energy [29].

3.2. Prediction of Catalyst Pyrolysis by ANN Model

The TGA data of the catalytic pyrolysis of HDPE was targeted to be predicted by a developed
highly-efficient ANN model. In the current study, an ANN model with a feed-forward back-propagation
neural network (FFBPNN) scheme has been developed to predict the mass left % based on 900
experimental data points. While heating rate, temperature, and HZSM-5/HDPE mass ratio were the
input variables, the mass left % was the output parameter of the network. The whole datasets were
arbitrarily divided into three sets as follows: 70% (630 datasets) for training, 15% (135 datasets) for
validation, and 15% (135 datasets) for testing.

Since the number of input and output layers neurons are fixed, the number of the neurons of the
hidden layer is the controlled variable in predicting the performance and the accuracy of the ANN
model. Besides, while little number of neurons will lead to the underfitting, which may lead to increase
the training error of ANN, too many neurons may cause long time training where new datasets cannot
be predicted (overfitting) [30,31].

Table 8 shows the prediction performance of different ANN structures with different numbers
of neurons, hidden layers, and transfer functions. The most efficient network structure has been
selected based on the value of R2. Additionally, mean square error (MSE) has been included as the
second criterion.
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Table 8. Prediction performance of different artificial neural network (ANN)-architecture.

Model No. Network
Topology

1st Transfer
Function

2nd Transfer
Function R2 MSE for

Training

ANN1 NN-3-10-1 TANSIG - 0.99920 1.48
ANN2 NN-3-15-1 TANSIG - 0.99935 0.904
ANN3 NN-3-5-1 TANSIG - 0.99722 5.18
ANN4 NN-3-10-1 LOGSIG - 0.99878 2.64
ANN5 NN-3-15-1 LOGSIG - 0.99888 1.41
ANN6 NN-3-5-1 LOGSIG - 0.99824 2.46
ANN7 NN-3-15-15-1 TANSIG TANSIG 0.99981 0.0635
ANN8 NN-3-15-15-1 LOGSIG TANSIG 0.99962 0.0646
ANN9 NN-3-15-15-1 TANSIG LOGSIG 0.99972 0.0571
ANN10 NN-3-10-15-1 TANSIG LOGSIG 0.99983 0.0422
ANN11 NN-3-10-10-1 TANSIG LOGSIG 0.99985 0.0860
ANN12 NN-3-10-10-1 LOGSIG LOGSIG 0.99970 0.227
ANN13 NN-3-15-15-1 LOGSIG LOGSIG 0.99904 1.08
ANN14 NN-3-10-15-1 LOGSIG LOGSIG 0.99960 0.176
ANN15 NN-3-15-10-1 LOGSIG LOGSIG 0.99970 0.0504
ANN16 NN-3-20-20-1 LOGSIG LOGSIG 0.99974 0.0479
ANN17 NN-3-20-20-1 TANSIG LOGSIG 0.99956 0.274
ANN18 NN-3-9-9-1 TANSIG LOGSIG 0.99884 1.28
ANN19 NN-3-11-11-1 TANSIG LOGSIG 0.99968 0.276

The ANN topology of the selected model (ANN11), shown in Figure 5, has two hidden layers with
10 neurons and tansig-logsig transfer functions. Although the Levenberg–Marquardt algorithm was
used, other algorithms such as the scaled conjugate gradient and Bayesian regularization were tested
as well. As shown in Figure 6, a very good agreement between ANN-predicted and experimental
results has been observed.

Then, the performance of the selected model was evaluated by different statistical parameters
such as R2, MAE, RMSE, and MBE. Table 9 lists the values of these parameters. The high value of R2

along with very low values of MAE, RMSE, and MBE indicates a high-efficient performance of the
selected model [14].

Table 9. Statistical parameters of the ANN11 model.

Set
Statistical Parameters

R2 RMSE MAE MBE

Training 0.99995 0.30721 0.16388 0.01954
Validation 0.99996 0.27855 0.17212 −0.00186

Test 0.99932 1.19340 0.30865 −0.15220

All 0.99985 0.53975 0.18683 −0.00943

Polymers 2020, 12, x FOR PEER REVIEW 10 of 15 

 

 

Figure 5. Topology of the selected network. 

 

 
Figure 6. Regression plots of (a) training data, (b) validation data, (c) test data, and (d) complete data 
set of the selected ANN model. 

Then, the performance of the selected model was evaluated by different statistical parameters 
such as R2, MAE, RMSE, and MBE. Error! Reference source not found. lists the values of these 
parameters. The high value of R2 along with very low values of MAE, RMSE, and MBE indicates a 
high-efficient performance of the selected model [14]. 

Table 9. Statistical parameters of the ANN11 model. 

Set 
Statistical Parameters 

R2 RMSE MAE MBE 
 Training 0.99995 0.30721 0.16388 0.01954 
Validation 0.99996 0.27855 0.17212 −0.00186 

Test 0.99932 1.19340 0.30865 −0.15220 
All 0.99985 0.53975 0.18683 −0.00943 

Input 

10 

Output 
Hidden Layer 1 Output Layer Hidden Layer 2 

1 10 
1 3 

Figure 5. Topology of the selected network.



Polymers 2020, 12, 1813 10 of 14

Polymers 2020, 12, x FOR PEER REVIEW 10 of 15 

 

 

Figure 5. Topology of the selected network. 

 

 
Figure 6. Regression plots of (a) training data, (b) validation data, (c) test data, and (d) complete data 
set of the selected ANN model. 

Then, the performance of the selected model was evaluated by different statistical parameters 
such as R2, MAE, RMSE, and MBE. Error! Reference source not found. lists the values of these 
parameters. The high value of R2 along with very low values of MAE, RMSE, and MBE indicates a 
high-efficient performance of the selected model [14]. 

Table 9. Statistical parameters of the ANN11 model. 

Set 
Statistical Parameters 

R2 RMSE MAE MBE 
 Training 0.99995 0.30721 0.16388 0.01954 
Validation 0.99996 0.27855 0.17212 −0.00186 

Test 0.99932 1.19340 0.30865 −0.15220 
All 0.99985 0.53975 0.18683 −0.00943 

Input 

10 

Output 
Hidden Layer 1 Output Layer Hidden Layer 2 

1 10 
1 3 

Figure 6. Regression plots of (a) training data, (b) validation data, (c) test data, and (d) complete data
set of the selected ANN model.

After that, new 45 datasets were tested by the selected model (NN-3-10-10-1) as shown in Table 10
and Figure 7 clearly shows the high performance of the selected network (See Table 11 as well).Polymers 2020, 12, x FOR PEER REVIEW 13 of 15 
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Table 10. ANN-predicted results of the new input data.

No.
Input Data Output Data

Heating Rate (K/min) Temperature (K) HZSM-5/HDPE (Mass Ratio) Mass Left (%)

1 5 402.59 0.5 98.03
2 5 502.6 0.5 97.32
3 5 605.73 0.5 95.68
4 5 704.33 0.5 30.28
5 5 801.36 0.5 30.09
6 5 411.03 0.75 97.04
7 5 510.32 0.75 96.29
8 5 612.96 0.75 93.43
9 5 711.87 0.75 25.45
10 5 809.3 0.75 25.36
11 5 419.81 1 98.02
12 5 523.09 1 96.26
13 5 620.13 1 92.56
14 5 726.16 1 46.45
15 5 823.51 1 46.39
16 10 433.07 0.5 98.32
17 10 533.25 0.5 97.67
18 10 631.75 0.5 94.95
19 10 733 0.5 26.49
20 10 832.17 0.5 26.44
21 10 441.34 0.75 98.4
22 10 541.26 0.75 97.87
23 10 648.03 0.75 94.17
24 10 740.81 0.75 22.74
25 10 847.67 0.75 22.69
26 10 457.84 1 96.09
27 10 557.59 1 95.32
28 10 653.87 1 90.08
29 10 755.36 1 45.2
30 10 853.97 1 45.03
31 15 469.55 0.5 98.66
32 15 566.83 0.5 98.17
33 15 665.32 0.5 88.83
34 15 768.01 0.5 22.29
35 15 867.59 0.5 22.26
36 15 479.36 0.75 96.78
37 15 576.52 0.75 96.22
38 15 675.12 0.75 91.02
39 15 776.31 0.75 34.14
40 15 875.47 0.75 34.11
41 15 488.8 1 97.24
42 15 585.83 1 96.59
43 15 690.8 1 84.45
44 15 785.3 1 46.84
45 15 884.5 1 46.79

Table 11. Statistical parameters of the ANN12 model for the newly tested data.

Set
Statistical Parameters

R2 RMSE MAE MBE

New Tested Data 0.99984 0.55767 0.29725 0.08688



Polymers 2020, 12, 1813 12 of 14

4. Conclusions

Thermograms of the catalytic pyrolysis of HDPE showed the same shapes and trends at different
HZSM-5/HDPE mass ratios and heating rates. Additionally, one reaction region, which can be fitted
linearly, was observed and thermal degradation occurred at lower temperatures when the catalyst
was used.

In this study, TGA kinetics data was modeled by two methods: using five
isoconversional/non-isoconversional models, and a developed highly-efficient ANN model.

In the first method, the activation energy of the catalytic thermal decomposition of HDPE was
calculated by Friedman, FWO, KAS, Coats–Redfern, and Arrhenius models at different heating rates
and catalyst to polymer ratios.

In the second method, a highly-efficient ANN model, with two hidden layers, and Tansig-Logsig
transfer functions, has been developed. Then, new input datasets have been predicted by the
proposed ANN structure with a very high value of R2 (>0.9998) and very low RMSE, MAE, and MBE.
This indicates the capability of the developed model to efficiently predict the non-isothermal TGA data
of the catalytic thermal cracking of HDPE.
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