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International high-risk clones of Klebsiella pneumoniae are among the most common
nosocomial pathogens. Increased diversity of plasmid-encoded antimicrobial resistance
genes facilitates spread of these clones causing significant therapeutic difficulties.
The purpose of our study was to investigate fluoroquinolone resistance in extended-
spectrum beta-lactamase (ESBL)-producing strains, including four K. pneumoniae and
a single K. oxytoca, isolated from blood cultures in Hungary. Whole-genome sequencing
and molecular typing including multilocus sequence typing (MLST) and pulsed-field
gel electrophoresis (PFGE) were performed in selected strains. Gene expression of
plasmid-mediated quinolone resistance determinants (PMQR) was investigated by
quantitative-PCR. MLST revealed that three K. pneumoniae strains belonged to ST11
and one to ST307 whereas K. oxytoca belonged to ST52. The isolates harbored
different β-lactamase genes, however, all K. pneumoniae uniformly carried blaCTX−M−15.
The K. pneumoniae isolates exhibited resistance to fluoroquinolones and carried
various PMQR genes namely, two ST11 strains harbored qnrB4, the ST307 strain
harbored qnrB1 and all K. pneumoniae harbored oqxAB efflux pump. Levofloxacin
and moxifloxacin MIC values of K. pneumoniae ST11 and ST307 clones correlated
with qnr and oqxAB expression levels. The qnrA1 carrying K. oxytoca ST52 exhibited
reduced susceptibility to fluoroquinolones. The maintained expression of qnr genes
in parallel with chromosomal mutations indicate an additional protective role of Qnr
proteins that can support dissemination of high-risk clones. During development of high-
level fluoroquinolone resistance, high-risk clones retain fitness thus, enabling them for
dissemination in hospital environment. Based on our knowledge this is the first report of
ST307 clone in Hungary, that is emerging as a potential high-risk clone worldwide. High-
level fluoroquinolone resistance in parallel with upregulated PMQR gene expression are
linked to high-risk K. pneumoniae clones.

Keywords: international clones, multi-drug resistance, whole genome sequence analysis, gene expression,
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INTRODUCTION

International high-risk clones of Klebsiella pneumoniae are
among the most common Gram- negative pathogens. In addition
to community-acquired infections, it has been known for decades
that due to their ability to spread rapidly in hospital environment,
these bacteria can cause several outbreaks. Multi-drug resistant
(MDR) K. pneumoniae emerged and dramatically increased
prevalence of nosocomial infections while K. oxytoca has been
isolated in hospital infections with less frequency (Podschun and
Ullmann, 1998; Kang et al., 2006; Zhou et al., 2016).

Multi-drug resistant K. pneumoniae acquires various
resistance mechanisms that confer antibiotic resistance
to commonly used antibiotics. Among the most frequent
resistance mechanisms are extended-spectrum β-lactamases
(ESBLs), plasmid-mediated AmpC enzyme (pAmpCs),
carbapenemases, plasmid-mediated quinolone resistance
(PMQR) genes, aminoglycoside-modifying enzymes (AMEs),
as well as exogenously acquired 16S rRNA methyltransferase
that have been detected in clinical isolates (Yan et al., 2002;
Ko et al., 2010; Cao et al., 2014; Bi et al., 2017). Presence
of PMQR genes including qnr determinants, aac(6′)-Ib-cr,
qepA and oqxAB efflux pumps confer reduced susceptibility
to fluoroquinolones and facilitate selection of fluoroquinolone
resistance in Enterobacterales (Rodríguez-Martínez et al., 2011;
Carattoli, 2013). High-risk K. pneumoniae clones have acquired
these antibiotic resistance determinants, that enabled them to
increase their pathogenicity and survival skills. These clones have
tenacity and flexibility to accumulate resistance determinants and
they have contributed to disseminate global multi-drug resistance
(Woodford et al., 2011). Consequently, increased diversity of
plasmid-encoded antimicrobial resistance genes facilitates spread
of these clones, causing significant therapeutic difficulties.

Multi-drug resistant K. pneumoniae strains mainly belong
to certain sequence types (ST) namely, ST11, ST14, ST15,
ST37, ST101, ST147, ST258, ST336, ST340, and ST874. These
represent high-risk international clones that played major role
in dissemination in hospital settings and increased frequency
in nosocomial infections (Damjanova et al., 2008; Hrabák
et al., 2009; Baquero et al., 2013; Munoz-Price et al., 2013;
Rodrigues et al., 2014; Gonçalves et al., 2017). Among these
clones ST258 has been reported as a hybrid clone that was
created by a large recombination event between ST11 and ST442
(Mathers et al., 2015).

International high-risk K. pneumoniae ST11 has been
frequently detected worldwide as a successful pathogen
being associated with important co-resistance and virulence
factors (Damjanova et al., 2008; Andrade et al., 2014).
However, in recent years, new drug-resistant lineages have
emerged internationally and among them, KPC-producing
K. pneumoniae ST307 has been recognized in the United States
which was initially associated with production of CTX-
M-15 (Castanheira et al., 2013). Later on, this clone
has been reported in several countries including Italy,
United Kingdom, Columbia, Pakistan, Morocco, Korea,
Tunisia, China, Serbia (Habeeb et al., 2013; Girlich et al.,
2014; Gona et al., 2014; Park et al., 2015; Ocampo et al.,

2016; Mansour et al., 2017; Novović, 2017; Villa et al., 2017;
Xie et al., 2017).

Recent studies related to dissemination and antibiotic
resistance of K. pneumoniae clones clearly showed that
“fitness cost advantage” associated with high-level resistance
to fluoroquinolones contributed to emergence of international
high-risk K. pneumoniae clones. In hospital settings where
fluoroquinolones are extensively used, international clones are
selected out, allowing dominance over other clones (Tóth et al.,
2014; Fuzi, 2016; Fuzi et al., 2017). This capacity will provide
these clones increased opportunities to spread as well as allow
time to acquire antimicrobial drug resistance determinants from
other bacteria (Mathers et al., 2015). Whole-genome sequence
analysis contributes to detect markers of pathogens, therefore in
our study the aim was to investigate high-level fluoroquinolone
resistance in K. pneumoniae high-risk clone ST11 and currently
emerging ST307.

MATERIALS AND METHODS

Bacterial Strains
In our preliminary examination, a total of 54 Klebsiella strains
(53 K. pneumoniae and a single K. oxytoca) isolated from
bloodstream infections of patients treated at intensive care
units of Semmelweis University between 2010 and 2014 were
collected. Species identification was done by MALDI-TOF/MS
(Bruker Daltonics, Bremen, Germany). Minimum inhibitory
concentration determination was performed by microdilution
method based on EUCAST recommendation.1 All Klebsiella
strains were resistant to third-generation cephalosporins and
showed reduced susceptibility or resistance to fluoroquinolones.
All strains were tested for presence of PMQR genes and all of
them were ESBL producers by phenotypic test. In this study,
selection of strains was done based on the following criteria:
(1) presence of qnr gene and non-wild type fluoroquinolone
MIC values: Kox37 (isolated in 2010); (2) presence of qnr gene
and high fluoroquinolone MIC values: Kpn33 (isolated in 2010),
Kpn47 (isolated in 2014), Kpn125 (isolated in 2013); (3) multiple
PMQR gene carriage together with high fluoroquinolone MIC
values: Kpn115 (isolated in 2013) (Domokos et al., 2016).

Multilocus Sequence Typing (MLST)
Genotype of each strain was determined by MLST. The sequences
of seven housekeeping genes namely, gapA, infB, mdh, pgi, phoE,
rpoB, and tonB were amplified and directly sequenced. Alleles
and sequence types were assigned by using the MLST database2

(Diancourt et al., 2005). The distance based relationship between
the strains was investigated by BacWGST (Ruan and Feng, 2016)
using both the whole-genome MLST and SNP (sequenced based)
strategies. Multiple genome analysis was carried out using all the
draft genomes of this study and the HS11286_CP003200_ST11 as
a reference genome (Figure 1).

1www.eucast.org
2http://www.pasteur.fr/mlst/Kpneumoniae.html
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FIGURE 1 | Distance based tree of K. pneumoniae ST11, ST307 and K. oxytoca ST52 after genome based single nucleotide polymorphism (SNP) analysis.
BacWGST, Multiple genome analysis http://bacdb.org/BacWGSTdb/Tools.php.

Pulsed Field Gel Electrophoresis (PFGE)
Typing
Clonal relatedness of the fourK. pneumoniae strains was analyzed
by PFGE according to CDC (2000) protocol. Prepared genomic
DNA of each strain was digested byXbaI restriction endonuclease
(Fermentas, ABI, Germany), and DNA fragments were separated
in a PFGE CHEF-DR II system (Bio-Rad Laboratories, Hercules,
CA, United States). Banding patterns were analyzed by
Fingerprinting II Informatix Software (Bio-Rad). Salmonella
enterica serotype Braenderup H9812 was used as a size
marker (Hunter et al., 2005).

Whole-Genome Sequencing (WGS)
DNA of each strain was extracted by UltraClean Microbial
DNA Isolation Kit (Qiagen GmbH, Hilden, Germany).
Libraries were prepared using SureSelect QXT Library Prep
Kit (Agilent Technologies, Santa Clara, United States).
Sequencing was performed on an Illumina MiSeq system

using the MiSeq reagent kit v2 generating 250-bp paired-
end reads. Trimmomatic (Bolger et al., 2014) was used
for preprocessing the WGS data. If the average quality
score was below 20 in a sliding window of 4 the adapter
sequences and the leading and trailing bases were removed
as well as the first 18 bases. Only the reads longer than
50 nucleotides were used for subsequent analysis. De novo
genome assembly was performed with SPAdes Genome
Assembler 3.13.0 (Bankevich et al., 2012). Each assembled
genome was accepted for further analysis if it met all of the
following quality criteria: (i) average coverage > 30 times, (ii)
N50 > 15,000 bases, (iii) maximum contig length > 50,000
bases, and (iv) assembled genome size between 5,000,000 and
6,500,000 bases. Assembled genomes were uploaded to the
online bioinformatics tools ResFinder (Zankari et al., 2012),
PlasmidFinder (Carattoli et al., 2014) (Center for Genomic
Epidemiology, Technical University of Denmark, Lyngby,
Denmark) to analyse resistome and plasmid replicon types
of the isolates.
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Quantitative PCR (qPCR)
Total RNA of tested strains was isolated by RNeasy Mini Kit
(Qiagen) according to the manufacturer’s instructions. The qPCR
was carried out in a Step One Real-Time PCR System (Applied
BioSystems, Thermo Fisher Scientific). Separate expression of
qnrA1, qnrB1 qnrB4, oqxA, and oqxB genes were investigated
whereas chromosomal rpoB was chosen as housekeeping gene.
Set of primers and 6-FAM or VIC labeled probes were designed
by Primer Express 3.0 software. All oligonucleotide primers and
probes for qPCR are listed in Table 1. Each RNA sample was
tested in triplicate. The qPCR was applied in default setting 60◦C
30 s; 50◦C 5 min; 95◦C 10 min; 40 cycles of [95◦C 15 s and
60◦C 1 min] 60◦C 30 s. The CT values of genes of interest were
normalized (1CT) to the CT values of housekeeping gene rpoB
and the relative expression of each gene of interest was calculated
as 2−1C

T = CT (geneofinterest) – CT (rpoB).

RESULTS

In our study, four K. pneumoniae and a single K. oxytoca
were investigated by MLST and PFGE. Three different STs were
identified, including ST11 (Kpn33, Kpn115, Kpn125), ST307
(Kpn47), and ST52 (Kox37).

Pulsed-field gel electrophoresis analysis detected three
pulsotypes (PT) among K. pneumoniae strains, namely, KP053,
S and KP197. Two isolates belonged to KP053 (Kpn33 and
Kpn125) and one was detected as S PT (Kpn115). These strains
belonged to the ST11 international high-risk clone. By contrast,
Kpn47 was classified as KP197 PT (Figure 2).

The initial assembled draft genome sequences were
5611026 bp (Kpn33); 6370417 bp (Kox37); 5451744 bp,
(Kpn47); 5450412 bp (Kpn115), and 5593358 bp (Kpn125).
Seventeen antibiotic resistance genes were found in two ST11

TABLE 1 | Primers used for qPCR (F, forward; R, reverse; P, probe).

Gene Primer sequence

qnrA1-F 5′-TTGAGTGACAGCCGTTTTCG-3′

qnrA1-R 5′-GCAGCTGACAGTGGCTGAAG-3′

qnrA1-P 6-FAM-CTGCCGCTTTTATC-MGB

qnrB1-F 5′-GTGCGCTGGGCATTGAA-3′

qnrB1-R 5′-CGGAAATCTGCGCCTTGT-3′

qnrB1-P 6-FAM-TTCGCCACTGCCGC-MGB

qnrB4-F 5′-TGCGCTGGGAATCGAAA-3′

qnrB4-R 5′-CGCGAAAATCTGACCCTTGT-3′

qnrB4-P 6-FAM-TCGCCACTGCCGGG-MGB

oqxA-F 5′-GTCGACGGCTTACAAAAAGTGTT-3′

oqxA-R 5′-GCAACGGTTTTGGCGTTAA-3′

oqxA-P 6-FAM-ATGCCGGGTATGCC-MGB

oqxB-F 5′-CTGGATTTTCCGTCCGTTTAAC-3′

oqxB-R 5′-TTGCCTACCAGTCCCTGATAGC-3′

oqxB-P 6-FAM-CTGCGCAGCTCGAA-MGB

rpoB-F 5′-GTCGCGGCTGAACAAGCT-3′

rpoB-R 5′-AACGGCCACTTCGTAGAAGATC-3′

rpoB-P VIC-CTACGGCAGGTAACC-MGB

K. pneumoniae strains (Kpn33 and Kpn125), twelve were in
the third ST11 strain (Kpn115), sixteen resistant genes were in
ST307 strain (Kpn47) and ten resistance genes were detected
in Kox37. Sequence analysis revealed that the isolates harbored
different β-lactamase genes, including blaDHA−1, blaOXA−1,
blaOXA−2, blaOXA−9, blaHV−11, blaHV−28, and blaTEM−1A,
blaTEM−1B, blaOXY−1−3, blaTLA−1; and all K. pneumoniae strains
carried blaCTX−M−15. Among aminoglycoside resistance genes
all isolates were positive for aac(3)-IIa. Only Kpn47 carried a
tetracycline resistance (tetA) gene. Except for Kox37, all strains
were identified positive for fosA gene nevertheless, sul1 or sul2
and trimethoprim resistance (dfrA12, dfrA14, dfrA29) genes
were detected in four strains. PMQR genes were found in
each tested strain namely, in Kpn33 qnrB4, in Kox37 qnrA1,
in Kpn47 qnrB1, in Kpn125 qnrB4. All K. pneumoniae strains
harbored oqxAB efflux pump and aac(6′)-Ib-cr, but one of
the ST11 strains (Kpn115) carried no qnr gene. Presence of
phenicol resistance gene (catA1 or catB3) was observed in all
strains. Chromosomal mutations conferring fluoroquinolone
resistance in K. pneumoniae strains were also detected, Ser83Phe
and Asp87Ala substitutions were in DNA gyrase subunit A of
Kpn115 (ST11), but all other K. pneumoniae strains had only
Ser83Ile in gyrase while on the other hand all K. pneumoniae
had a Ser80Ile substitution in DNA topoisomerase IV. Based on
the sequencing data, IncFIB, IncFII, and IncR replicons were
uniformly present in all ST11 strains. In the case of ST307 IncFIB,
IncL/M, IncHI1B were detected. The detected resistance genes
and plasmid replicons are listed in Table 2 and Figure 3.

Among qnr genes, qnrB4 of two ST11 strains (Kpn33 and
Kpn125) showed 9.74 and 3.55 fold expression, respectively.
Interestingly, Kpn33 (ST11) was characterized approximately
3-fold higher expression, compared to the genetically similar
Kpn125 (ST11). The lowest expression level (1.64) among
qnr genes was detected in K. oxytoca, that exhibited reduced
susceptibility to ciprofloxacin. In the case of qnrB1 in Kpn47
(ST307), it showed 2.39 fold expression.

Expression of oqxA ranged between 1.47 and 3.92 and
that of oqxB from 3.09 to 8.53. The highest oqxA and oqxB
expressions were observed in Kpn33 (ST11) and Kpn47 (ST307).
These were followed by Kpn125 (ST11) and Kpn115 (ST11).
Interestingly, Kpn115 a strain of ST11 high-risk clone carried
no qnr gene moreover, it showed the lowest oqxAB expression.
It is conspicuous that in every K. pneumoniae strain the oqxB is
expressed 2–3 fold higher than oqxA.

DISCUSSION

International high-risk K. pneumoniae ST11 clone has been
frequently detected worldwide as a successful pathogen being
associated with important virulence (Damjanova et al., 2008;
Andrade et al., 2014), and resistance determinants including
VIM, NDM and KPC-production (Yan et al., 2002; Kristóf
et al., 2010; Qi et al., 2011; Yu et al., 2016; Campana et al.,
2017). In our study, all strains of ST11 international high-
risk clone carried blaSCTX−M−15 ESBL that correlates well with
earlier studies as the most common global ESBLs are the
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FIGURE 2 | PFGE of K. pneumoniae ST11 and ST307.

TABLE 2 | Distribution of the different resistance genes and plasmid replicons of
tested strains.

CTX-M type beta-lactamases in Enterobacterales (Nordmann
and Poirel, 2014). Recently, in a Bulgarian study among 82
ESBL-producing K. pneumoniae and four K. oxytoca CTX-M-15
(87%) was predominant (Markovska et al., 2017). K. pneumoniae
ST11 has been already reported in Hungary, as a widely

disseminated clone in all over the country (Damjanova et al.,
2008). In Poland, an inter-regional outbreak was reported
that was dominated by NDM-1 and CTX-M-15 coproducing
K. pneumoniae ST11 clone (Baraniak et al., 2016). A high
prevalence (30.2%) of CTX-M-15-producing K. pneumoniae was
detected in raw bovine milk too. This finding highlights the
spread of CTX-M-15-producing K. pneumoniae also in the food
chain (Diab et al., 2017).

In recent years, new drug-resistant international lineages have
emerged, among them, KPC-producing K. pneumoniae ST307
has been recognized in several countries (Castanheira et al., 2013;
Villa et al., 2017). To the best of our knowledge, our study is the
first description of ST307 in Hungary that is has been reported as
a potential high-risk clone. High similarity has been found in our
ST307 isolate compared to that of detected by Villa et al. (2017).

Three pulsotypes were identified among the investigated
K. pneumoniae strains: KP053, S PT, and KP197. Two ST11
isolates belonged to KP053 (Kpn33 and Kpn125) and the third
ST11 was detected as S PT (Kpn115) that was earlier reported
in Hungary (Damjanova et al., 2008). In a Hungarian study,
PFGE typing revealed 12 pulsotypes; of these, KP053 (262/312)
and KP070 (38/312) belonged to sequence type ST11 (Kis et al.,
2016); these data also prove the spread of KP053/ST11 clone
in our country. K. pneumoniae ST307 (Kpn47) was classified as
KP197 pulsotype, however, this type was not registered until 2014
by the National Public Health Institute. Since 2015, altogether
30 strains have been identified with this pulsotype in Hungary
(unpublished data).

In this study, mutations in gyrase and topoisomerase coding
genes and various PMQRs were detected in K. pneumoniae
and K. oxytoca. Of the detected PMQRs in this study oqxAB
was present in all K. pneumoniae clinical isolates but not in
K. oxytoca. This result can be explained by the fact that the oqxAB
is a chromosomally-encoded gene in K. pneumoniae (Yuan
et al., 2012). The qnrB genes were observed in K. pneumoniae
ST11 correlating with the international data (Hidalgo et al.,
2013; Jaidane et al., 2018). However, this is the first report of
the qnr gene in K. oxytoca ST52. Regarding plasmid replicon
types, the most common replicon was IncFIB, that was present
in all ST11, ST52, and ST307, which confirms earlier studies
(Anes et al., 2017).

Acquisition of qnr determinants can have multiple advantages.
In the case of K. oxytoca, the presence and expression of
qnrA1 caused reduced susceptibility to quinolones. Levofloxacin
and moxifloxacin MIC values of K. pneumoniae ST11 and
ST307 clones correlated with qnr and oqxAB expression
levels (Figure 3).
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FIGURE 3 | Level of qnrB4 (Kpn33 and Kpn125), qnrA1 (Kox37), and qnrB1, oqxA, and oqxB relative gene expression. QRDRs: quinolone resistance determining
regions. All MIC values are in mg/L.

Frontiers in Microbiology | www.frontiersin.org 6 February 2019 | Volume 10 | Article 157

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00157 February 8, 2019 Time: 19:36 # 7

Domokos et al. Fluoroquinolone Resistance in Klebsiella pneumoniae International Clones

Further beneficial effect of Qnr proteins can be explained by
the toxin-antitoxin effect. Qnr proteins are considered antitoxins,
that protect gyrase and topoisomerase IV enzymes from naturally
occuring toxins. This theory was described by Ellington and
Woodford (2006) and it can be valid also in internationally
disseminated high-risk clones (Ellington and Woodford, 2006).
During development of fluoroquinolone resistance PMQR
determinants play a role in reduced susceptibility, and they
maintain low-level fluoroquinolone resistance (Garoff et al.,
2018). Later, by chromosomal mutations in QRDRs high-level
fluoroquinolone resistance develops, but PMQR expression is
maintained thus, indicating further role of PMQRs such as
protection of gyrase and topoisomerase IV enzymes (Tran et al.,
2005a,b; Redgrave et al., 2014).

It has been also established that the development of
fluoroquinolone resistance is diverse among different clones
and in the case of international high-risk K. pneumoniae
clones the fluoroquinolone resistant strains retain fitness that
facilitates their dissemination in hospital environment (Fuzi,
2016). Moreover, Redgrave et al. indicated that fluoroquinolone
resistance played a key role in evolutionary success of
K. pneumoniae clones (Redgrave et al., 2014).

Emergence and possible dissemination of K. pneumoniae
ST307 in hospital settings raises also public health concerns,
therefore continous monitoring of high-risk and potential high-
risk clones is necessary.
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