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Abstract: As a pleiotropic cytokine, interleukin-6 (IL-6) not only regulates the cellular 
immune response, but it also promotes tumor development by activating multiple carci-
nogenic pathways. IL-6 expression is significantly elevated in colorectal cancer (CRC) 
and is closely related to CRC development and patient prognosis. In CRC, IL-6 activates 
signal transducers and activators of transduction-3 (STAT3) to promote tumor initiation 
and tumor growth. IL-6/STAT3 signalling has a profound effect on tumor-infiltrating 
immune cells in the tumor immune microenvironment in CRC. Additionally, IL-6/STAT3 
pathway activates downstream target genes to protect tumor cells from apoptosis; drive 
tumor cell proliferation, cell cycle progression, invasion and metastasis; promote tumor 
angiogenesis; and stimulate drug resistance. Therefore, a thorough understanding of the 
many effects of the IL-6/STAT3 pathway in CRC is needed, which the present review 
examines. 
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Introduction
Colorectal cancer (CRC) is one of the 10 most frequent malignancies in the world. 
In 2018, there were more than 1.8 million new colorectal cancers worldwide, 
accounting for about 10% of all cancer cases, and the number of related deaths 
was 881,000, making it the second-deadliest cancer in the world.1 Incidence of 
CRC in China has been increasing due to changes in lifestyle and diet, with more 
than 521,000 new cases in 2018, when it was the second most common malignancy 
in the country.2 The increasing burden of CRC and related mortality highlight the 
need for early detection and prevention.3

Many factors are involved in the pathogenesis of CRC, including intestinal flora 
disorder, abnormal immune response, as well as genetic, environmental and life-
style risk factors such as obesity, alcohol consumption, smoking, poor diet, and lack 
of exercise. Intestinal inflammation is one of the most important factors leading to 
CRC and is associated with dysregulation of numerous signaling pathways.4,5 

Among them is the IL-6/STAT3 pathway, which promotes CRC cell proliferation 
and survival.6,7 CRC patients show significantly higher IL-6 levels than healthy 
individuals, and those levels correlate with tumor size, stage, metastasis, and 
survival rate.8–11 IL-6 appears to help drive CRC by activating the downstream 
signaling factor STAT3.12

The present review examines recent progress in understanding the many 
mechanisms through which the IL-6/STAT3 pathway contributes to CRC.
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The IL-6/STAT3 Pathway
First cloned in 1986, IL-6 was found to be a pleiotropic 
cytokine playing roles in immune regulation, hematopoiesis, 
inflammation and tumorigenesis.13 IL-6 activates down-
stream signal pathways by forming complexes with its recep-
tor, which consists of two subunits: a ligand-binding protein 
IL-6R (also called IL-6Ra or CD126), with a molecular 
weight of 80 kDa; and a signal-transducing glycoprotein- 
130 (gp130, IL-6Rb, CD130), with a molecular weight of 
130 kDa.14

In the classical IL-6 signaling pathway, extracellular 
IL-6 and membrane-bound IL-6R (mIL-6R) combine to 
form a complex to which gp130 binds, yielding an iso- 
hexameric complex consisting of two IL-6, two IL-6R and 
two gp130 molecules. This complex activates the Janus 
kinase (JAK), which in turn causes STAT3 to dimerize and 
translocate to the nucleus to alter the expression of target 
genes.15 The main function of the classical pathway is to 

induce anti-inflammatory effects during the acute-phase 
response.16

Alternatively, trans IL-6 signaling can occur, which is the 
same as the classical pathway except that IL-6 binds to 
soluble IL-6R (sIL-6R) rather than mIL-6R.17 The soluble 
receptor sIL-6R is produced by limited proteolysis of mIL- 
6R or alternative splicing of the IL-6R mRNA.18,19 The main 
function of trans signaling is to promote an inflammatory 
response,16 so this pathway appears to contribute to cancers 
such as CRC (Figure 1).20,21

One or the other pathway may predominate in different 
cellular contexts. For example, mIL-6R is expressed 
mainly on neutrophils, monocytes, activated B cells, CD4 
+ cells, and hepatocytes, so these cell types participate 
primarily in the classical pathway.22 At the same time, 
the IL-6/sIL-6R complex in serum can potentially affect 
a broad range of cell types because gp130 is ubiquitously 
expressed in all cells.23,24

Figure 1 The IL-6/STAT3 signaling pathway. (A) In the classical IL-6 signaling pathway, IL-6 binds to mIL-6 on the cell membrane to form a complex, which induces gp130 to 
form a heterohexamer, which then initiates the JAK/STAT3 pathway. (B) In the trans IL-6 signaling pathway, IL-6 complexes with sIL-6R, previously generated by variable 
splicing of the IL-6 mRNA or as a result of IL-6R cleavage by metalloproteinase (ADAM) 10/17 or meprin metalloproteinase α/β.18,19,25 The IL-6/sIL-6R complex then 
complexes with gp130 via intermolecular disulfide bonds26. The Box-1 and −2 domains in the cytoplasmic domain of gp130 bind and activate JAK,15 which phosphorylates 
tyrosine residues in the cytoplasmic region of gp130. The phosphorylated pTyr-X-X-Gln motif on gp130 (X = any amino acid) recruits the Src homology 2 (SH2) domain in 
STAT3.27,28 An adjacent JAK phosphorylates the conserved Tyr705 in STAT3, which then homodimerizes with another STAT3 via the SH2 domain. This dimer translocates to 
the nucleus, where it regulates expression of target genes.29
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The Role of IL-6/STAT3 Signaling in 
the Immune Microenvironment of 
CRC
CRC formation is influenced by the intricate interactions 
between cancerous cells and the tumor microenvironment 
(TME). The immune components in the TME are called 
the tumor immune microenvironment (TIME), which can 
modulate tumour occurrence and development. The TIME 
is composed of various infiltrating immune cells [e.g. 
tumor-associated macrophages, T helper type 17 (Th17) 
cells, cancer-associated fibroblasts], tumor-associated 
endothelial cells as well as the extracellular matrix and 
complicated vasculature.30 Various signaling pathways, 
such as IL-6/STAT3 pathways, are activated in the TIME 
and influences the growth and progression of CRC.

During CRC progression from occurrence to develop-
ment, IL-6 expression is significantly elevated and is 
involved in multiple processes of tumor development.8,9 

Various cells have been identified as sources of IL-6 in the 
TIME. For instance, expression of IL-6 has been linked to 
macrophages, fibroblasts, dendritic cells, lymphocytes and 
CRC cells.31,32

Tumor-associated macrophages (TAMs) are major 
components of the TIME that are frequently associated 
with tumor metastasis in CRC. Studies have shown that 
TAMs promote migration and invasion by CRC cells.33 

Emerging studies have suggested that tumor-derived IL-6 
can enhance the phagocytic capacity and migration of 
macrophages in the TIME via STAT3 phosphorylation, 
but the exact mechanism requires further study.32 One 
study showed that TAM-derived IL-6 activates the JAK2/ 
STAT3/miR-506-3p/FoxQ1 axis to modulate CRC cell 
migration and invasion.34 The available evidence suggests 
that IL-6/STAT3 signaling promotes interaction between 
macrophages and factors secreted by CRC cells into the 
TIME.

As a specialized subset of CD4+ cells, Th17 cells and 
their cytokines are involved in regulation of the immune 
system and cancer development.35 In the joint presence of 
IL-6 and TGF-β, Th17 cells differentiate from naive 
T cells are involved in intestinal inflammation.36 Those 
two and related cytokines also regulate the expansion of 
Th17 cells in CRC37. Down-regulation of IL-6 can reverse 
the Th17-driven carcinogenic process in murine colon 
cancer.38 IL-6 signaling drives Th17 cell differentiation 
in colitis-associated CRC by phosphorylating and activat-
ing STAT3, and Th17 cytokines overexpressed in CRC 

patients (IL-17A, IL-17F, IL-21, IL-22) can promote 
tumor angiogenesis and oncogenesis.30,39

Cancer-associated fibroblasts (CAFs) secrete factors 
that influence the TIME and CRC growth.40 Recently, 
CAFs have been demonstrated to be an important source 
of IL-6.31 IL-6-mediated STAT3 activation in CRC-CAFs 
promotes colorectal tumor development. STAT3-induced 
activation of vascular endothelial growth factor (VEGF) 
and proliferation-associated genes contribute to CRC 
initiation and growth.41 CRC cells further augment IL-6 
secretion from CAFs, but specific mechanisms still need to 
be revealed.42 These studies indicate that CAFs produce 
abundant amounts of IL-6, and that CRC cells facilitate the 
process. IL-6/STAT3 signaling drives CAF activation in 
CRC, enhancing tumor progression.

So far, potential correlations between IL-6/STAT3 sig-
naling and other immune cells in CRC, such as Treg cells, 
myeloid-derived stromal cells, and B lymphocytes, have 
not been reported. These are an important topic for future 
research.

The IL-6/STAT3 Signaling Pathway 
Promotes CRC Development
In CRC, the continuous activation of STAT3 by IL-6 
signaling drives many malignant pathways in tumor cells, 
including cell cycle progression, proliferation, antiapopto-
sis, invasion and metastasis, the epithelial-mesenchymal 
transition (EMT), angiogenesis and drug resistance 
(Table 1).

Cell Cycle Progression
The IL-6/STAT3 signaling pathway can drive progression 
through the cell cycle and thereby promote proliferation of 
CRC cells. Most CRC patients overexpress c-Myc, which 
up-regulates oncogenic proteins and non-coding RNAs that 
drive the cell cycle, differentiation, growth and 
metabolism,43,44 and higher c-Myc levels correlate with 
more severe disease and worse prognosis.45,46 Continuous 
STAT3 activation by the IL-6/IL-6R complex in CRC acti-
vates c-Myc and triggers metabolic disorder and tumor 
progression.47 STAT3 appears to up-regulate c-Myc by bind-
ing to the E2F site (98TTGGCGGGAAA106) in the c-Myc P2 
promoter.48

The IL-6/STAT3 signaling pathway up-regulates cell 
cycle protein D1 (cyclinD1) in CRC. STAT3 binds to the 
so-called GAS site in the cyclinD1 promoter.49 CyclinD1 
drives progression from G1 to S phase of the cell cycle, 
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leading to cell proliferation.50,51 Cyclin D1 expression 
negatively correlates with overall and disease-free 
survival.52 A tea polysaccharide that inhibits IL-6/STAT3 
signaling in CT26 mouse colon cancer cells concomitantly 
down-regulates cyclinD1.53

The IL-6/STAT3 signaling pathway promotes CRC cell 
growth also by up-regulating mitochondrial single-stranded 
DNA-binding protein (mtSBB). IL-6/STAT3 signaling 
induces the transcription factor FOXP1 to bind to the region 
between nt −800 and −700 in the mtSSB gene promoter, 
turning on the gene. The expressed mtSSB activates the 
ROS/Akt/mTOR pathway, which up-regulates telomerase 
reverse transcriptase (TERT), which stabilizes telomeres 
and thereby helps immortalize CRC cells.54

Inhibition of Apoptosis
STAT3 induces the expression of anti-apoptotic genes, which 
was demonstrated in studies of a mouse model of CRC 
treated with aspirin. The drug inhibited IL-6 as well as 
STAT3 phosphorylation, reversing STAT3-induced expres-
sion of the anti-apoptosis proteins Bcl-2 and Bcl-xl.55

The IL-6/STAT3 signaling pathway also up-regulates 
the anti-apoptotic protein Mcl-1, which protects CRC cells 
from apoptosis induced by tumor necrosis factor- 
associated apoptotic ligand (TRAIL).56 STAT3 binds to 
the so-called SIE element in the Mcl-1 gene promoter.57

Table 1 Mechanisms Through Which the IL-6/STAT3 Signaling 
Pathway Promotes CRC Malignancy

Feature Target 
Gene

Mechanism Refs

Cell cycle c-Myc STAT3 binds to the E2F site 

in the c-Myc P2 promoter 
to induce c-Myc 

transcription

[48]

cyclinD1 STAT3 binds to the GAS 

site in the cyclinD1 

promoter to induce its 
transcription

[49]

mtSSB The IL-6/STAT3 pathway 

induces mtSSB expression, 

stimulates telomerase and 
promotes proliferation

[54]

Anti- 
apoptosis

Bcl-2, Bcl-xl The IL-6/STAT3 pathway 
induces expression of Bcl-2 

and Bcl-xl

[55]

Mcl-1 STAT3 binds to the SIE 

element in the Mcl-1 gene 

to induce its expression

[57]

Survivin STAT3 binds to the survivin 

promoter to induce its 
transcription

[60,61]

Invasion 
metastasis 

and EMT

Fra-1 After K685 acetylation and 
Y705 phosphorylation, 

STAT3 binds to the Fra-1 

promoter and up-regulates 
its expression

[63]

miR-34a The IL-6/STAT3/miR-34a 
feedback loop promotes 

EMT-mediated invasion and 

metastasis

[64,65]

E-cadherin, 

vimentin

The IL-6/STAT3 pathway 

down-regulates E-cadherin 
and up-regulates vimentin

[66]

FoxQ1 STAT3 indirectly up- 
regulates FoxQ1 by 

suppressing miR-506-3p

[34]

Integrin β6 The IL-6/STAT3 pathway 

induces integrin β6 

transcription

[42]

CEA STAT3 up-regulates HIF-1α, 

and HIF-1α binds to motif 
EP-1 of CEA promoter to 

promote its expression

[69]

(Continued)

Table 1 (Continued). 

Feature Target 
Gene

Mechanism Refs

Angiogenesis VEGF STAT3 binds the VEGF 

promoter to induce its 
transcription

[72,73]

Resistance HIF-1α Activation of HIF-1α under 
hypoxia relieves the 

inhibition of IL-6 by miR- 

338-5P, while the IL-6/ 
STAT3 pathway maintains 

the continuous activation of 

HIF-1α

[78]

p-STAT3 IL-6 activates p-STAT3, and 

p-STAT3-containing 
exosomes mediate 

5-fluorouracil resistance 

through the caspase 
pathway

[79]
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IL-6/STAT3 signaling up-regulates the anti-apoptotic 
protein survivin,53 which inhibits apoptosis and promotes 
proliferation and angiogenesis. Survivin is up-regulated in 
various tumors,58 and its expression in CRC correlates 
positively with vascular infiltration and lymph node metas-
tasis, and negatively with overall survival.59 STAT3 has 
been shown to bind the survivin promoter.60,61

Invasion, Metastasis and EMT
The IL-6/STAT3 signaling pathway can enhance invasiveness 
and metastasis in CRC by inducing the expression of related 
oncogenes such as the gene encoding Fos-related antigen-1 
(Fra-1).62 After STAT3 is activated through acetylation of 
Lys685 and phosphorylation of Tyr705, it binds to the promo-
ter of the Fra-1 gene approximately 600 bases upstream of the 
transcription initiation site and up-regulates its expression. The 
expressed Fra-1, in turn, up-regulates EMT-inducing transcrip-
tion factors and matrix metalloproteinases (MMPs)-2 
and −9.63

STAT3 in CRC down-regulates the microRNA-34a 
(miR-34a) by binding to its first intron. This miRNA nor-
mally inhibits the EMT and cancer development by down- 
regulating Snail 1. Thus, STAT3-mediated down-regulation 
of miR-34a up-regulates Snail 1. At the same time, it up- 
regulates IL-6R, because this mRNA is normally inhibited 
by miR-34a. The resulting up-regulation of IL-6R further 
enhances IL-6/STAT3 signaling.64,65 Third, the IL-6/STAT3 
signaling pathway down-regulates E-cadherin and up- 
regulates vimentin and the transcription factor Twist.66 The 
net result of all these processes is promotion of the EMT and 
of CRC invasiveness and metastasis.

STAT3 can regulate FoxQ1 through miR-506-3p. As 
a transcription factor regulating the EMT, FoxQ1 promotes 
the EMT of CRC cells by inducing mesenchymal gene 
expression. Studies have shown that FoxQ1 is a direct target 
of miR-506-3p, and the latter can down-regulate FoxQ1 by 
directly binding its 3′UTR. STAT3, in contrast, inhibits miR- 
506-3p through its STAT3 binding site. In this way, IL-6 
regulates the STAT3/miR-506-3p/FoxQ1 axis to induce the 
EMT and enhance CRC migration and invasion.34

Integrin β6 participates in IL-6-induced EMT and 
tumor cell invasion in CRC. IL-6-mediated activation of 
STAT3 can rapidly induce integrin β6 transcription, and 
the up-regulated integrin β6 inhibits E-cadherin and 
enhances vimentin expression to advance the EMT.42 

Further investigations are needed to uncover how STAT3 
induces integrin β6 expression.

STAT3 can up-regulate hypoxia-inducing factor-1α 
(HIF-1α),67,68 which binds to the positive regulatory ele-
ment EP-1 (−153 to −148 bp) in the gene encoding carci-
noembryonic antigen (CEA), inducing its expression.69 

CEA helps drive migration, invasion and metastasis of 
CRC cells and is an independent prognostic factor.70,71

Tumor Angiogenesis
STAT3 binds to the promoter of the gene encoding vascu-
lar endothelial growth factor (VEGF), inducing its 
expression.72,73 VEGF stimulates the formation of tumor 
blood vessels, which provide nutrition and oxygen to 
sustain tumor growth and allow metastasis. Like levels of 
IL-6, levels of VEGF are elevated in CRC and correlate 
with disease progression.74,75

VEGF can bind to several receptors (VEGFRs), whose 
expression varies across tissue types. Which VEGFRs 
mediate the angiogenic effects of IL-6/STAT3 signaling 
in CRC remains to be established. A likely candidate is 
VEGFR2, which is up-regulated in intestinal epithelial 
cells by IL-6 and which mediates the angiogenic effects 
of VEGF in colitis-associated cancer.76

Tumor Resistance to Chemotherapy
Levels of STAT3 phosphorylated on Tyr705 positively cor-
relate with resistance of CRC cells to chemoradiotherapy 
involving 5-fluorouracil, and inhibiting STAT3 renders 
CRC cells more sensitive to chemoradiotherapy.77 By up- 
regulating HIF-1α (see section 2.3), STAT3 down-regulates 
the downstream HIF-1α target miR-338-5P. This miRNA 
normally down-regulates IL-6, so the activation of STAT3 
up-regulates IL-6, leading to a positive feedback loop that 
confers resistance to the drugs oxaliplatin and 5-fluoroura-
cil, but details of the drug resistance mechanism are 
unclear.78 The caspase pathway may mediate the ability of 
exosomes to transfer STAT3 phosphorylated on Tyr705 and 
thereby promote resistance to 5-fluorouracil.79

High serum levels of IL-6 may reduce the therapeutic 
efficacy of the anti-VEGF antibody bevacizumab in meta-
static CRC,80 and whether and how this involves STAT3 
activity remains to be elucidated.

Clinical Investigations of the IL-6/ 
STAT3 Signaling Pathway in CRC 
Therapy
Relevant literature has established that downstream target 
genes mediated by aberrant activation of the IL-6/STAT3 
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pathway are involved in the development and progression 
of CRC, and thus targeting the IL-6/STAT3 pathway is 
highly likely to be a viable and effective approach for the 
treatment of CRC. Currently, clinical trials are underway for 
a number of drugs targeting the CRC IL-6/STAT3 pathway, 
such as IL-6 inhibitors (siltuximab), JAK inhibitors (itaci-
tinib), and STAT3 inhibitors (OPB-31,121, AZD9150, and 
TTI-101) (Table 2).

Siltuximab, a monoclonal antibody against IL-6, is 
currently the only drug approved by the US Food and 
Drug Administration for multicentric Castleman disease 
(MCD).81 Siltuximab monotherapy, however, does not 
show efficacy against advanced solid tumors, including 
CRC. In that CRC trial, the Phase II primary efficacy 
endpoint was complete response, partial response, or 
stable disease > 6 weeks, and only 5 of the 84 patients 
achieved stable disease > 6 weeks. Although adverse 
events occurred in 98% of treated patients, they were 
driven primarily by underlying metastatic disease. The 
majority of drug-related adverse events were low-grade: 
29 patients (35%) had grade 1–2 adverse events (fatigue, 
nausea, constipation, etc.), and 10% (8) had grade > 3 
adverse events (neutropenia, leukopenia, lymphocytope-
nia). These results suggest that IL-6 inhibition alone offers 
limited clinical benefit to advanced CRC patients. Other 
parallel pathways, including the IL-6/STAT3 pathway, 
may similarly regulate the development of CRC, and 

therefore the development of combination therapies may 
provide more benefit for advanced CRC.82

Regorafenib is a multi-targeted kinase inhibitor that 
improves OS in patients with metastatic CRC and has 
been approved for the treatment of metastatic CRC 
(mCRC).83 Incyte Corporation performed a clinical trial to 
test the combination of ruxolitinib, a selective inhibitor of 
JAK1/JAK2, with regorafenib for the treatment of refrac-
tory mCRC.84 Although the combination did not lead to 
more adverse effects, it did not improve efficacy over 
regorafenib alone. The 396 patients included in the trial 
were randomized into two subgroups. In subgroup 1, the 
ruxolitinib group (n=87) showed median overall survival of 
4.6 (95% CI, 3.5–5.4) months and median progression-free 
survival of 2.2 (95% CI, 1.9–3.0) months, while the corre-
sponding survival times in the placebo group (n=88) were 
5.3 (95% CI, 4.3–6.0) and 2.1 (95% CI, 1.8–2.7) months. In 
subgroup 2, the ruxolitinib group (n=110) showed corre-
sponding survival times of 11.4 (95% CI, 9.0–13.2) and 3.5 
(95% CI, 3.0–3.8) months, while the placebo group (n=111) 
showed times of 10.9 (95% CI, 7.2- not estimated) and 2.0 
(95% CI, 1.9–3.1) months. The differences between overall 
and progression-free survival were not significant in either 
subgroup. A clinical trial of ruxolitinib in combination with 
trametinib for RAS-mutant CRC is currently underway 
(NCT04303403) and was expected to conclude in 
June 2020, with no results yet published.

Table 2 Clinical Trials Targeting the CRC IL-6/STAT3 Pathway

Type Inhibitor Combined 
Drugs

Time Study 
Phase

NCT 
Identifier

Trial Results Refs

IL-6 

inhibitors

Siltuximab – 3/2009-4/ 

2011

I/II NCT00841191 No clinical activity observed but well tolerated as 

monotherapy

[82]

JAK 

inhibitors

Ruxolitinib Regorafenib 3/2014- 

12/2016

II NCT02119676 Trial discontinued, combination with regorafenib 

did not improve OS/PFS

[84]

Ruxolitinib Trametinib 7/2018-6/ 

2020

I NCT04303403 Ongoing –

Itacitinib Pembrolizumab 1/2016-9/ 

2020

I NCT02646748 Ongoing –

STAT3 

inhibitors

OPB- 

31,121

– 4/2008-6/ 

2009

I NCT00657176 Safe and well tolerated; maximum tolerable 

amount: 800 mg/d

[87]

AZD9150 Durvalumab 3/2017-3/ 

2021

II NCT02983578 Ongoing –

TTI-101 – 11/2017- 

7/2020

I NCT03195699 Ongoing –
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Itacitinib, a novel oral JAK1 selective inhibitor, exerts 
anti-inflammatory effects by inhibiting IL-6-driven phos-
phorylation STAT3.85 A Phase I clinical trial of itacitinib 
in combination with pembrolizumab in patients with CRC 
has been conducted (NCT02646748) and was expected to 
end on September 31, 2020, but no results have been 
released yet.

The development of STAT3 inhibitors has been one of 
the main focuses of medical researchers. OPB-31,121 is 
a novel STAT3 inhibitor with high affinity for the SH2 
domain of STAT3, and it has demonstrated significant 
anticancer activity in preclinical studies.86 The Otsuka 
Pharmaceutical-led Phase I study showed that OPB- 
31,121 is safe and well tolerated, with good antitumor 
activity in patients with advanced CRC. Most drug- 
related adverse events are grade 1–2 and a maximum 
tolerated dose of 800 mg/day has been established.87

AZD9150, a STAT3 antisense oligonucleotide, directly 
inhibits STAT3 by promoting the destruction of STAT3 
mRNA or inhibiting its translation, and it is the only 
STAT3 antisense molecule to have entered clinical trials.88 

The MD Anderson Cancer Center launched a Phase II clin-
ical trial of AZD9150 in combination with durvalumab, an 
anti-PDL-1 antibody, in patients with CRC (NCT02983578), 
and the trial is expected to end in March 2021. TTI-101, an 
oral inhibitor of STAT3 developed by Tvardi Therapeutics, 
has been shown in preclinical studies to inhibit the growth of 
a variety of solid tumors in mice, including liver, breast, lung, 
and head and neck cancers. A Phase I trial of TTI-101 for the 
treatment of advanced solid tumors, including CRC, has been 
carried out (NCT03195699). The novel STAT3 inhibitor, 
Bruceantinol (BOL), strongly inhibits STAT3 DNA-binding 
ability and thus blocks IL-6-induced STAT3 activation in 
CRC. BOL showed potent anticancer activity in human 
CRC models in vivo and in vitro, but it has yet to be tested 
in clinical trials.89 To date, no inhibitors targeting the IL-6/ 
STAT3 pathway have been approved for CRC treatment, and 
therefore drugs targeting the CRC IL-6/STAT3 pathway need 
to be further developed.

Conclusion
In recent years, the high incidence and mortality rates of 
CRC have led to an increasing tumor burden. Investigating 
the mechanisms and treatments of CRC has become a major 
concern for researchers. As one of the key pathways in the 
development of CRC, the IL-6/SAT3 pathway not only 
directly regulates tumor immune cells and thus suppresses 
tumor immunity, but it also up-regulates the expression of 

numerous oncogenic proteins to help drive CRC. Thus, 
targeting components of the IL-6/STAT3 pathway can inhi-
bit tumor cell progression and relieve immunosuppression 
in the TIME. Novel inhibitors of the IL-6/STAT3 pathway 
are being developed, and early phase clinical trials are also 
ongoing. However, many of the complex processes affected 
by IL-6/STAT3 signaling remain to be clarified, and such 
research may reveal new insights into CRC and how to 
combat it.
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