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Abstract: The aim of the study was to compare the accuracy of the classification pertaining to the
results of two types of soft tissue and bone reconstructions of the spinal CT in detecting the porosity
of L1 vertebral body spongy tissue. The dataset for each type of reconstruction (high-resolution bone
reconstruction and soft tissue reconstruction) included 400 sponge tissue images from 50 healthy
patients and 50 patients with osteoporosis. Texture feature descriptors were calculated based on
the statistical analysis of the grey image histogram, autoregression model, and wavelet transform.
The data dimensional reduction was applied by feature selection using nine methods representing
various approaches (filter, wrapper, and embedded methods). Eleven methods were used to build
the classifier models. In the learning process, hyperparametric optimization based on the grid search
method was applied. On this basis, the most effective model and the optimal subset of features
for each selection method used were determined. In the case of bone reconstruction images, four
models achieved a maximum accuracy of 92%, one of which had the highest sensitivity of 95%, with
a specificity of 89%. For soft tissue reconstruction images, five models achieved the highest testing
accuracy of 95%, whereas the other quality indices (TPR and TNR) were also equal to 95%. The
research showed that the images derived from soft tissue reconstruction allow for obtaining more
accurate values of texture parameters, which increases the accuracy of the classification and offers
better possibilities for diagnosing osteoporosis.

Keywords: osteoporosis; soft tissue reconstruction; bone reconstruction; texture analysis; classification

1. Introduction

A CT image is obtained through transformations and mathematical calculations per-
formed during the measurement process. They are based on an attempt to recreate the
damping of a radiation beam in an object through a series of measurements. The process of
transforming the primary data into a CT image is known as reconstruction. In order to form
a CT image, a computer system assigns a single value in Hounsfield (HU) scale to each
pixel. The obtained radiodensity values are a mean from the weakening of radiation beams
going through a given point [1–3]. Due to the diversity of the structures in the human body,
it is necessary to employ various reconstruction filters. While assessing the condition of
organs with a high contrast of internal structures, e.g., bones or lungs, the high-resolution
bone reconstruction (“hard kernel” algorithm) is carried out, which enhances the edge
quality. In the assessment of soft tissues or organs with lower contrast of internal structures,
the soft tissue reconstruction (“soft kernel” algorithm) is employed, which reduces noise
at the expense of lowering the spatial resolution. Owing to the application of various
reconstruction filters, adjustment of the image for further analyses is possible [4,5].
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One of the methods for determining the condition of the analyzed tissue is texture
analysis [6]. Although this method can be successfully used in many diagnostic processes,
new applications are still being sought, which is indicated by numerous scientific publi-
cations [7–18]. This paper presented the process for the classification of spongy matter
images in the L1 lumbar vertebra on the basis of the obtained texture properties. The
spongy matter is considered bone tissue; however, their lamellae are arranged loosely, and
their mineralization level is approximately a third of that in compact bone. Decreasing the
mineral density of the spongy matter leads to porosis, initially in the form of osteopenia
and then osteoporosis [19–21]. Dual-energy X-ray Absorptiometry (DXA), based on the
measurement of bone density, is a commonly employed method for diagnosing osteoporo-
sis. The mineral content in bones governs the number of minerals in the measurement spot,
which is divided by the surface, yielding bone mineral density (BMD). Therefore, this tech-
nique provides information on the mineral density of the entire examined region without
the precise determination of the segment with deficiencies. The index T corresponding to
the standard deviation from the reference mineral density is used to classify a patient as
healthy or ill. The T = −1 value is considered to be normal; ranges of −1 to 2.4 corresponds
to osteopenia, while −2.5 and less are recognized as osteoporosis. Reduced bone mineral
density (BMD) identified through DXA requires differential diagnosis to determine its
causes. The blood tests and urinalyses are conducted for this purpose [22–24].

The course of osteoporosis is symptomless in its early stages. It is usually diagnosed
in the advanced stage, when osteoporotic fractures may occur, even without injuries.
Therefore, preventive examinations, aiming at detecting the condition at an early stage
and mitigating its consequences, are essential [22,24]. For this reason, new diagnostic
solutions enabling the diagnosis of osteoporosis at an early stage are being sought. The
literature contains descriptions of numerous experiments connected to seeking methods for
identifying lesions in bone regions. Mustapha et al. [25,26] and Stanley et al. [27] presented
the method for identifying lesions in neck vertebrae. Mustapha et al. [25] describe a
method for AOs (classes and severity) classification of cervical radiography by designing a
fuzzy decision tree (FDT) model. The results obtained on a set of 400 cervical vertebrae
radiography images indicate the classification rate of 93.09%. Stanley et al. [27], based on
the size invariant descriptor (SID), K-means (Km), and nearest neighbor methods (NN), the
obtained classification rate reached 84.44%. In turn, Mustapha et al. in [26] the employing
region-based (RB) fracture characterization as well as five-fold cross-validation (5FCV),
and an efficiency of 87.58% was achieved. Lespessailles et al. [28] show clinical interest in
bone texture analysis with a new high-resolution X-ray device. The studies indicated that
the combination of BMD and texture parameter values provided a better assessment of
the fracture risk than that obtainable solely by BMD measurement. The texture analysis
also found an application in the diagnostic of pelvic bones, which was described in [29] by
Gaidel et al. It was demonstrated that the covariance features were the most efficient—the
diagnostic error probability of 0.2 was obtained. Similar findings were also presented
in Chappard et al. [30] and Lespessailles et al. [31]. These works also demonstrated the
relationship between BMD and texture parameters.

During the assessment of the spongy matter, both by radiologists during the standard
diagnostic assessment and in the majority of papers on this subject [32,33], the images from
bone reconstruction are used. Due to the atypical character of the spongy matter, which
was mentioned above, two types of image reconstruction were employed, i.e., soft and hard
kernel reconstruction. The main aim of the study was to verify which type or reconstructed
images enable obtaining the texture and allow for a more precise classification of the
tissue condition.

2. Materials and Methods
2.1. Material

The imaging examinations considered in the paper were carried out in a hospital
(Samodzielny Szpital Kliniczny nr 4) in Lublin. Patients were referred to the lumbosacral
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spine examination from an orthopaedic clinic and ER. The examination involved the analy-
sis of the lumbosacral spine CT of 100 patients. The control group comprised 50 individuals
without the symptoms of osteoporosis or osteopenia. The same number of patients con-
stituted the group of people with osteoporosis. The control group included 26 women
and 24 men aged 53 to 77. Each of the patients was examined by means of 32-row CT
by GE in a standard protocol for lumbosacral spine examinations. The examination was
performed in the spiral acquisition and assessed using multi-surface and three-dimensional
reconstructions. The layers of the soft kernel and hard kernel reconstructions corresponded
were 2.5 mm and 1.25 mm, respectively. The exposure parameters were adjusted in the
range from 85 mA to 700 mA (median = 181) for the intensity and two values—120 kV or
140 kV in the case of voltage.

The assignment of patients to both groups was performed on the basis of the radiology
report and the measurement of radiological densities of the spongy matter of the first
vertebra of the lumbar spine (L1). On the basis of the literature [34], the border value
of tissue density of 120 Hounsfield Units (HU) was assumed. The patients in whom the
density was greater than the limit value and the report did not indicate lesions in the
spongy matter were assigned to the control group (HEALTHY class). In turn, the patients
who did not meet the criteria were assigned to the osteoporotic group (OSTEOPOROSIS class).

2.2. Image Preprocessing

The source data saved in the DICOM standard contained RGB images in the
512 × 512 resolution. The images which show the interior of the vertebra along with the
spongy matter were selected (Figure 1).
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Figure 1. The arrangement of the axis in the center of one of the vertebrae (image in three projections).

The images on the same vertebra level were selected for soft tissue and bone recon-
struction. Since the thickness of layers for bone reconstruction was halved, every other
layer of a given vertebra cross-section was analyzed. The images selected for further studies
were saved in BMP format and converted from 24-bit RGB to 8-bit greyscale. The extraction
of the regions of interest (ROI) was performed manually (Figure 2). The size of the extracted
samples was selected to use the textured surface, potentially containing the information
in the image of the transverse vertebra section, to the maximum extent. This resulted in
samples with a size of 50 × 50 pixels (Figure 3).

During the preprocessing, the image histogram normalization process was omitted
because the available results indicate that this operation deteriorates the classification
accuracy in the range from 4% for the TPR coefficient (classification sensitivity) to 14% for
ACC (overall classification accuracy) [35].
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Figure 3. Spongy matter structure in soft-tissue (Type 1) and bone reconstruction (Type 2).

2.3. Estimation of Texture Parameters

The prepared samples were subjected to tissue image texture analysis. The image
analysis was conducted using the MaZda software (version 4.6) developed in the Institute of
Electronics of Lodz University of Technology (Lodz, Poland) [36]. This software was made
available online for free for scientific purposes. It enables the analysis of greyscale texture
images and indicates the numerical values of the image features. A detailed description
of these features can be found in [37–40], as well as in the MaZda manual. The advantage
of this software is the fact that apart from the statistical approach to the image analysis, it
also employs a mathematical model (autoregression model) and a transformation approach
(wavelet transform).

The set of features has been obtained on the basis of:

• Histogram (9 features): histogram mean, histogram variance, histogram skewness,
histogram kurtosis, percentiles 1%, 10%, 50%, 90%, and 99%;

• Gradient (5 features): absolute gradient mean, absolute gradient variance, absolute gra-
dient skewness, absolute gradient kurtosis, percentage of pixels with a nonzero gradient;

• Run length matrix (5 features × 4 various directions): run length nonuniformity, grey
level nonuniformity, long run emphasis, short run emphasis, the fraction of image
in runs;

• Co-occurrence matrix (11 features × 4 various directions × 5 between-pixels distances)
angular second moment, contrast, correlation, sum of squares, inverse difference
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moment, sum average, sum variance, sum entropy, entropy, difference variance,
difference entropy;

• Autoregressive model (5 features): parameters Θ1, Θ2, Θ3, Θ4, standard deviation.
• Haar wavelet (24 features): wavelet energy (features are computed at 6 scales within

4 frequency bands LL, LH, HL, and HH).

The available research results show that the textural features obtained with the above-
mentioned methods allowed for high classification accuracy of the ultrasound and radio-
graphic images [41,42].

2.4. Data Preprocessing

Two sets of observations were used in the studies; the first contained the images pro-
duced through bone reconstruction, while the other used those from soft-tissue reconstruc-
tion. For both types of reconstruction, a full set comprised 400 observations, 200 per class.
At the beginning of preprocessing, both sets were divided randomly into learning and
testing sets. The division was performed in such a way that 70% constituted the learn-
ing set and 30%—the test set. As a result, the learning set comprised 280 observations
(137 healthy cases and 143 osteoporosis cases), while the test set involved 120 observations
(63 healthy cases and 57 osteoporosis cases).

Due to the fact that the feature descriptors were measured at different scales (interval
scale, ratio scale), the features were scaled through standardization [43]:

zij = (xij − xj)/sj,

where xij—value of feature j for observation i; zij—standardized value for feature j for
observation i; xj—arithmetical mean for feature j; sj—standard deviation for feature
j. Following standardization, the interval measurement scale and normal distribution
N(0, 1) were used for all features. Scaling was performed once for the learning data. Then,
the test sets were transformed in a similar manner. The vectors of mean values and variance
obtained during the standardization of learning sets were used for each feature.

In the following step, the four-stage data cleansing procedure was carried out:

1. Removal of features with constant values (variance equal to 0).
2. Removal of features with nearly constant values (variance lower than 0.01).
3. Removal of duplicated features.
4. Removal of correlated features

The Pearson correlation coefficient (r), which detects linear dependencies and assumes the
normality of their distribution, was employed. The features for which |r| > 0.9—indicating
strong correlation—were removed.

As a result of data cleansing, the number of features was reduced from 290 to 32 for the
bone reconstruction and from 290 to 18 for the soft-tissue reconstruction. The data prepro-
cessing was carried out with the scikit-learn library and Python programming language,
which was also employed in the further stages of the study.

2.5. Data Reduction

The study involved the reduction of the data through feature selection. Generally,
the aim of the selection is to limit the initial (complete) set of features to a certain subset,
containing the features that are important from the point of view of the applied criterion.
In the course of the data cleansing process, the complete set of 290 features was greatly
reduced—to 32 for bone reconstruction and 18 for soft-tissue reconstruction. This mainly
had an influence on the occurrence of features with a strong correlation (|r| > 0.9). There-
fore, the additional reduction was omitted, and the creation of a ranking list by each of the
employed methods was set as a goal. The ranking list contained a set of features in the order
reflecting their significance in terms of discrimination of observations belonging to different
classes. The choice of an optimal number of features for each of the employed selection
methods was made in the following stage, which involved training the classification model.
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In order to avoid overtraining the classifiers, the selection of features was carried out only
in relation to the training sets. Then, its results were employed for the transformation of
test sets. The selection of features was performed with scikit-learn, scikit-feature, ReliefF,
MLxtend, and LightGBM libraries.

Nine methods belonging to the three following groups were used:

1. Filter methods:

• Univariate—Fisher’s method (FISHER) and variance analysis method (ANOVA);
• Multivariate—Relief method (RELIEF).

2. Wrapper methods:

• Sequential Forward Selection (SFS);
• Sequential Backward Selection (SBS);
• Recursive Feature Elimination along with LogisticRegression estimator (RFE).

3. Embedded methods:

• SelectFromModel meta-transformer and logistic regression estimator (LR);
• SelectFromModel meta-transformer and AdaBoost estimator (ADA);
• SelectFromModel meta-transformer along with LightGBM estimator (LGBM).

2.6. Training the Classification Models

The training of the classification models aimed to obtain the most efficient model as
well as an optimal subset of features for each of the employed selection methods. In the
course of this process, the number of features of the learning set changed in accordance
with the ranking list. For bone reconstruction, the number of features changed from
2 to 32, except for the methods employing the logistic regression model and AdaBoost
model, for which the number of features changed from 2 to 12. In the case of soft-tissue
reconstruction, the number of features changed from 2 to 18. The exceptions included
the methods based on the logistic regression model and AdaBoost model, for which the
number of features changed from 2 to 5 and from 2 to 9, respectively. In the training process,
optimal hyperparameter values for a given model were determined in accordance with the
grid search method. The GridSearchCV method was employed for this purpose, available
in the model_selection module of the scikit-learn library. The model assessment was carried
out on the basis of 10-fold cross-validation. Each model considered optimal for a given
number of features was saved as a file on the disc. Then, the best model, i.e., the one which
ensured the highest classification accuracy at a minimum number of features, was selected
from this set. The selection of the best model enabled the unequivocal determination of the
optimal set of features that were applied by that model. The above-mentioned procedure
was employed for all filter and wrapper methods. In the case of the embedded methods,
only the classifiers employed in the selection process were built and adjusted.

Eleven classification methods were used for the features selected by means of the filter
and wrapper methods. They were: linear and quadratic discriminant analysis (LDA, QDA),
gaussian naive Bayes (BAYES), support vector machines (SVM) that uses regularization
parameter C), support vector machines (NuSVM) that uses a parameter to control the
number of support vectors nu), K-nearest neighbors (KNN), decision tree (DT), multi-layer
perceptron (MLP) and three ensemble methods—random forest (RF), gradient boosting
(GRAD), AdaBoost (ADA). In turn, three classification methods have been used for the
features selected by means of the embedded methods: AdaBoost, logistic regression (LR),
and LightGBM (LGBM). All algorithms of the applied machine learning methods (except
LightGBM) are implemented in the scikit-learn library.

Figure 4 presents an exemplary course of model learning and validation for the set
of features obtained with the Fisher method for soft-tissue reconstruction. In turn, Table 1
shows the exemplary results of hyperparametric optimization with the grid search method
for the Fisher method and the same type of reconstruction.
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Figure 4. Exemplary process of the model learning and validation for a set of features obtained with
the Fisher method (soft-tissue reconstruction) for different classification methods. The graph shows
that—for instance—the optimal number of features for the MLP model is 7.

Table 1. Results of hyperparametric optimization with the grid search method for the set of features
obtained with the Fisher method (soft-tissue reconstruction). The criterion assumed for the selection of
an optimal model for a given classification method involved achieving maximum validation accuracy
with minimum number of training set features. The grey background was used to emphasize the
model, which proved the best among the employed classification methods for the Fisher method.
The meaning of parameters of individual classification models can be found in the scikit-learn library
documentation [44].

Classification
Method

Validation
Accuracy

Optimal Features
Number Optimal Model Parameters

LDA 0.92 12 solver = ‘svd’
QDA 0.94 12 tol = 1 × 10−5

BAYES 0.91 11 var_smoothing = 0.1
SVM 0.96 16 C = 1.0, gamma = ‘scale’, kernel = ‘rbf’

NuSVM 0.96 16 gamma = ‘scale’, kernel = ‘rbf’, nu = 0.3
KNN 0.95 14 n_neighbors = 5

DT 0.91 10 criterion = ‘gini’, max_depth = 3

MLP 0.96 7
activation = ‘relu’, alpha = 0.1,

solver = ‘lbfgs’, max_iter = 1000,
hidden_layer_sizes = (3,)

RF 0.94 14 max_depth = 5, n_estimators = 20
GRAD 0.93 16 loss = ‘deviance’, n_estimators = 50
ADA 0.95 15 n_estimators = 50

The exemplary results in Table 1 indicate that the highest validation accuracy (0.96) is
provided by the SVM, NuSVM, and MLP models. However, due to the lowest number of
the training set features (7), the MLP model was assumed as the best for the set of features
obtained with the Fisher method (grey background).

3. Results

Table 2 shows the complete results pertaining to the selection of the optimal models
for all feature selection methods and both types of reconstruction. The information in the
table contains the symbols of the employed classification method and the selection method
applied for building the feature ranking, as well as the number of features used for model
construction and its validation accuracy.
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Table 2. Basic information about optimal models for particular feature selection methods.

Model
Number

Bone Reconstruction Soft Tissue Reconstruction

Classification
Method

Feature
Selection
Method

The
Number of

Features

Validation
Accuracy

(%)

Classification
Method

Feature
Selection
Method

The
Number of

Features

Validation
Accuracy

(%)

1 NuSVM FISHER 13 94 MLP FISHER 7 96
2 RF ANOVA 26 94 NuSVM ANOVA 17 96
3 SVM RELIEF 27 94 MLP ANOVA 17 96
4 NuSVM SFS 6 94 SVM RELIEF 18 96
5 KNN SBS 9 94 NuSVM RELIEF 18 96
6 RF SBS 9 94 KNN SFS 5 96
7 MLP RFE 18 95 KNN SBS 5 96
8 ADA 9 93 SVM RFE 18 96
9 LR 10 93 NuSVM RFE 18 96
10 LGBM 3 89 ADA 8 95
11 LR 4 91
12 LGBM 2 88

The evaluation of the optimal methods was carried out through independent test sets.
As a result, the most efficient selection method, optimal feature subset indicated with this
method, and the best classifiers were obtained. The applied classification quality measures
included overall accuracy (ACC), true positive rate (TPR), and true negative rate (TNR).
For bone reconstruction (Figure 5a), the highest accuracy (ACC = 92%) was obtained by
models no. 1, 2, 3, and 5 (Table 2), at the same validation accuracy of 94%. In the case of the
soft-tissue reconstruction (Figure 5b), the highest accuracy (ACC = 95%) was obtained for
models no. 2, 4, 5, 8, and 9 (Table 2). The validation accuracy for these models amounted
to 96%.
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Figure 6 shows more information on the model evaluation results. Apart from the
total classification accuracy, it also presents the true positive rate (sensitivity) and true
negative rate (specificity). In the case of bone reconstruction, Figure 6a shows the value of
TPR and TNR for models no. 1, 2, 3, and 5, for which ACC = 92%. In turn, for the soft-tissue
reconstruction (Figure 6b), the information on TPR and TNR pertains to models no. 2, 4, 5,
8, and 9, which achieved ACC = 95%. In the case of the same ACC value, the TPR value
was assumed as the criterion for the selection of the best model due to the medical benefits
of such an approach. Therefore, model no. 5 turned out to be the most efficient in bone
reconstruction, achieving a TPR of 95%. This model was built with the K-nearest neighbors
method (for K = 1), employing nine features obtained with the SBS method. In the case
of soft-tissue reconstruction, all models (2, 4, 5, 8, and 9) were similarly effective. They
achieved the same values of TPR and TNR indices, equal to 95%. Detailed data on the
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structure of the models are presented in Table 3, whereas the confusion matrices of the
most effective models for both types of reconstruction are presented in Figure 7.
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Figure 6. The sensitivity (TPR) and specificity (TNR) of the models that have reached the highest value
of the overall classification accuracy (ACC): (a) bone reconstruction; (b) soft-tissue reconstruction.

Table 3. Information on the structure of models considered most effective for soft-tissue reconstruction.

Model Number Classification
Method

Feature Selection
Method

The Number of
Features Model Parameters

2 NuSVM ANOVA 17 gamma = ‘scale’, kernel = ‘rbf’, nu = 0.3
4 SVM RELIEF 18 C = 1.0, gamma = ‘scale’, kernel = ‘rbf’
5 NuSVM RELIEF 18 gamma = ‘scale’, kernel = ‘rbf’, nu = 0.3
8 SVM RFE 18 C = 1.0, gamma = ‘scale’, kernel = ‘rbf’
9 NuSVM RFE 18 gamma = ‘scale’, kernel = ‘rbf’, nu = 0.3

The meaning of the model parameters in Table 3: gamma—kernel coefficient; kernel—specifies the kernel type
to be used in the algorithm; nu—an upper bound on the fraction of training errors and a lower bound of the
fraction of support vectors; C—regularization parameter. The other model parameters, not listed in Table 3, take
default values.
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4. Discussion

The quality of the built models should be assessed as high. In the case of bone
reconstruction, four models (1, 2, 3, and 5) achieved the maximum accuracy for the test
set (ACC = 92%); model no. 5 was characterized by the greatest sensitivity (TPR = 95%)
at specificity TNR = 89%. In turn, for the soft-tissue reconstruction, the highest accuracy
(ACC = 95%) was obtained for five models (2, 4, 5, 8, and 9). The remaining quality indices
of these models, i.e., TPR and TNR, were equal to 95%. It should be emphasized that for
both types of reconstruction, the majority of the models are characterized by relatively
high validation accuracy. In turn, for the best models, the testing accuracy is only slightly
lower than the validation accuracy. For bone reconstruction, this difference amounts only
to 2%, and for soft-tissue reconstruction—1%. Such a situation indicates high quality, both
of the models themselves, as well as the data used in the course of their training. The
disadvantage of this method is that the extraction of the regions of interest was carried
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out manually. However, this problem requires separate investigations; therefore, it will be
the topic of further research. The obtained results were compared with the results from
the papers on a similar matter conducted by other authors (Table 4). Taking into account
the total classification accuracy (ACC), it can be seen that the obtained result is one of the
highest and is only 1.6% lower than the results achieved in [45,46], where it amounted to
96.6%. However, the majority of results presented in the table are much lower, and in the
case of Andersen et al. [47], it amounts only to 71.3%. Other parameters also approximate
the best results. While analyzing the data, it can be stated that the presented method stands
out from similar investigations and exhibits high diagnostic potential.

Table 4. Summary of results of similar bone texture analysis tests [48].

No. in
Ref. Texture Features ROI

Segmentation Dataset Classifier TPR TNR PPV NPV ACC F1-Score

Own
results

Histogram, Gradient,
Run length matrix,

Cooccurrence,
Autoregressive, Haar

wavelet

Manual 50 cases &
50 controls

SVM
NuSVM 95 95 - - 95 -

[49]

power spectral
density, triangular
prism surface area

and variation,
box counting,

Manual 11 cases &
13 controls K-NN 78 90 90 77 81 -

[50] Wavelet
Marginals-Haar

Calcaneal
(Manual)

58 cases &
58 controls SVM 62.1 65.5 64.3 63.3 63.8 63.2

[51] 1D LBP Calcaneal
(Manual)

39 cases &
41 controls KNN - 43.9 - - 71.3 77.2

[47]

Fractal dimension,
wavelet analysis,
Gabor, LBP, DFT,

DCT, Laws masks,
edge histogram and

GLCM

Calcaneal
(Manual)

58 cases &
58 controls RF 74.1 74.1 - - 74.1 -

[52]
1D projection

modeled as fractional
Brownian motion

Calcaneal
(Manual) - SVM 96.9 97.6 - - 94.5 94.3

[45]
Fractional Brownian

model and Rao
geodesic distance

Calcaneal 348 cases &
348 controls KNN 97.8 95.4 - - 96.6 96.5

[46]
Histogram and

GLCM and
PCA analysis

Calcaneal
(Manual)

87 cases &
87 controls SVM 97.7 95.4 95.5 97.7 96.6 96.6

[53]
Anisotropic discrete

dual-tree wavelet
transform

Calcaneal
(Manual)

87 cases &
87 controls SVM - 93.1 92.9 91.0 91.9 91.9

[54]

Wavelet
decomposition and
parametric circular

models

Calcaneal
(Manual)

87 cases &
87 controls SVM 100 92.5 91.9 100 95.9 95.8

[55] Oriental fractal
analysis

Calcaneal
(Manual)

87 cases &
87 controls - 72.0 71.0 72.0 71.0 71.8 72.2

[56]
BMD, fractal,

histomorphometric
and skeletal measures

Distal radius 87 cases &
87 controls SVM 79.0 66.0 - - - -

[48] Cortical, histogram,
GLCM and MGM

Distal radius
(Automated)

60 cases &
60 controls SVM 86.7 65.0 71.2 83.0 75.8 78.2
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Table 4. Cont.

No. in
Ref. Texture Features ROI

Segmentation Dataset Classifier TPR TNR PPV NPV ACC F1-Score

[48] Cortical and LLBP Distal radius
(Automated)

60 cases &
60 controls SVM 88.3 66.7 72.6 85.1 77.5 79.7

[48] Cortical and hLLBP Distal radius
(Automated)

60 cases &
60 controls LR 81.7 76.7 77.8 80.7 79.2 79.7

[48] Cortical and vLLBP Distal radius
(Automated)

60 cases &
60 controls SVM 88.3 60.0 68.8 83.7 74.2 77.4

Figure 8 shows the general scheme of a system for the prediction of new images with
the constructed models. Initially, ROI extraction is conducted, and the 24-bit RGB type is
changed to an 8-bit greyscale. The next stage is the determination of the feature descriptors,
which were significant in the training process. The K-NN classifier (K = 1), considered the
best for bone reconstruction, involves nine features that are obtained with the SBS method.
In the case of soft-tissue reconstruction, a set of 17 or 18 features has to be determined in
accordance with the applied classifier and selection method (Table 3). Then, the important
features were scaled (standardization) with vectors of mean values and variance of features
obtained during the scaling of training sets. Classification is the final step. On the basis of
the classification model and the values of feature descriptors, the class is assigned to the
analyzed image (prediction). Figure 9 shows prospective prediction results for exemplary
images obtained through soft-tissue reconstruction. The presented results were obtained
with a prototype system for diagnosing osteoporosis, which employs model no. 4 for
prediction (Table 3).
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Figure 9. Various prediction results of sample images using soft tissue reconstruction.

5. Conclusions

The results of studies indicate that in the case of texture analysis, soft-tissue recon-
struction is characterized by a higher classification accuracy (ACC = 95%) than bone recon-
struction (ACC = 92%), which is usually employed for the spongy matter examination. Due
to the atypical character of the examined tissue, exhibiting lower mineral density than in
compact bone, the image from soft-tissue reconstruction contains a more accurate range
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of values pertaining to texture features. In that case, as many as five classifiers obtained
the same maximum values of index quality (ACC = TPR = TNR = 95%). This justifies
the usefulness of the conducted studies and indicates new possibilities stemming from
an alternative approach to the analyzed tissue. The high efficiency of feature selection
using the ANOVA, RELIEF, and RFE methods was observed as well. In combination with
SVM and NuSVM classifiers, they enable achieving high classification accuracy. Studies
showed that while designing a system for the automatic identification of osteoporotic bone
fractures based on spinal CT, the application of soft-tissue reconstruction yields better
results than bone reconstruction. It achieves 3% better classification accuracy than the
traditional approach to the analysis of bone reconstruction images. Further investigations
will focus on the development of an algorithm for automatic ROI extraction and testing the
system utilizing a greater number of observations.
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