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Summary 
Lentivectors (LVs) induce sustained transgene expression and are attractive vaccine platforms for complex immune scenarios like cancer and 
persistent infections. This review summarises the literature on lentivectors with potential uses for in vivo immunotherapy, focussing on those 
targeting the most potent antigen-presenting cells: dendritic cells (DCs). There is a growing interest in myeloid-targeting therapies as, by 
influencing an early stage in the immune hierarchy, they can orchestrate a more diverse and complex targeted immune response. We dissect 
the nature of DC-targeting LVs and their induced immune responses to understand the state of the art, identify the knowledge gaps and guide 
efforts to maximise the generation of potent and effective immune responses. Lentivector-based vaccines provide several advantages over other 
vaccine platforms, such as directed tropism and limited vector immunogenicity, and have been shown to generate effective and sustained im-
mune responses. Overall, DC-targeting lentivectors stand out as promising tools to be exploited in cancer immunotherapy, and new-generation 
LVs can further exploit the gained knowledge in the study of naturally occurring lentiviruses for a more directed and adjuvanted response.
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Introduction
Immunotherapy aims to tune the immune system to better 
face insults or fix inadequate immune responses. Vaccines are 
a key target tool in the development of immunotherapy and 
different vaccine vehicles have been optimised over the last 30 
years. Recently, the development of mRNA vaccines against 
SARS-CoV-2 brought a new promising scenario, but vaccine 
vehicles that allow a sustained transgene expression and do 
not interfere with normal cell function may provide a solid 
alternative for more immunologically complex scenarios like 
cancer or persistent infections.

Among the different vaccine vehicles available, virus-based 
delivery methods have proven to be highly effective for the 
development of a specific immune response. Compared to 
other methods, virus-based platforms take advantage of 
mechanisms evolved by viruses themselves for targeting and 
delivering their cargo. In particular, lentiviral-based vaccines 
have been shown to induce potent and durable specific im-
mune responses by providing sustained antigen expression 
with little vector immunogenicity.

Lentivector vaccine vehicles provide clear advantages over 
other delivery methods. Other promising platforms such as 
adenovirus-based vaccines offer some of these advantages, 
but lower cell target efficiency and pre-existing immune 
responses to their core proteins (e.g. capsid) [1] challenge 
their efficiency and safety. Overall, lentivectors (LVs) are not 

only proven to elicit potent adaptive immune responses but 
also (i) have high plasticity in terms of cargo and tropism, (ii) 
are highly efficient at transgene delivery and (iii) have a supe-
rior safety profile.

The first (i) advantage of LVs is that tropism, packaging 
and cargo can be easily manipulated for optimisation. Their 
composition can be finely tuned to achieve cell specificity, 
making LVs the most effective vehicle for specific delivery to 
the myeloid compartment without affecting their function [2]. 
In addition, LVs have a large cargo capacity and can encode 
sizeable transgenes, up to 8kb [3]. Second (ii), the transgene 
delivery is stable, efficient and sustained—whether it is inte-
grative or not—providing constitutive expression of the gene 
of interest. Third (iii), LVs are safe and have little vector im-
munogenicity, providing strong potential for clinical feasibil-
ity. Nonetheless, the full picture of how LVs interact with the 
immune system, their adjuvant properties or the routes they 
use for antigen delivery is still under-characterised, leaving 
room for further improvement. This understanding may not 
only help to optimise the development of new-generation LVs 
but could potentially improve other vaccine vehicles.

The first gene delivery vehicles started to develop in the mid-
1980s as a tool for gene transfer based on retroviral backbones. 
Retroviruses contain RNA as their genetic material, which is 
retrotranscribed into dsDNA and integrated into the genome of 
the infected cell. Highly oncogenic retroviruses were the first of 
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this kind to be used in the development of vaccine vectors. These 
first retroviral vector systems derived from C-type retroviruses 
[4, 5], which are particularly efficient at integrating into the 
host cell without causing major pathogenicity. These gene de-
livery vehicles provided sustained expression by integrating the 
transgene into the genome, but only in actively dividing cells. 
In the early 1990s the field made a substantial advance with 
modified lentiviruses, based on human immunodeficiency virus 
type 1 (HIV-1) and simian immunodeficiency virus (SIV), which 
allowed the transduction of non-dividing cells.

Today, LVs have evolved to exhibit superior biosafety by 
limiting vector immunogenicity in what are called ‘third-
generation lentivectors’. Compared to first and second-gen-
eration LVs, third-generation mainly encode the regulatory 
elements required for efficient gene delivery, but most coding 
viral regions have been deleted [6]. Today’s LVs contain gag 
to provide a structural protein, pol encoding the retroviral 
enzymes (integrase, polymerase and reverse transcriptase) 
together with a heterologous viral envelope glycoprotein. 
Third-generation LVs substantially increased the feasibility for 
clinical translation, as the structure minimises biological or 
pathological risks and limits immune responses to the vector. 
The structure and sequence of currently used LVs, especially in 
gene therapy, have been recently reviewed by Johnson et al [6].

Here, we approach the use of lentivectors targeting the DC 
compartment in vivo from the immunological perspective. 
Within the complexity of the immune system, targeting the 
myeloid compartment has indeed expanded the potential of 
immunotherapies and broadened the extent to which we can 
tune the immune response. By exploiting the master regula-
tor of the immune response, the impact on the response is 
amplified, with the induction of a broad range of adaptive 
immune cell subsets. In the next sections, we review LV de-
sign, their immune interactions and the immune response that 
can be elicited when targeting professional antigen presenting 
cells (APCs), to understand LV impact and identify the knowl-
edge gaps that need to be addressed for the generation of a 
long-lasting effective adaptive immune response.

Lentiviral structure, optimisation, and 
production
The development of HIV-based LVs substantially improved 
viral-based platforms for therapeutic potential by allowing 

the transduction of non-dividing cells. To reduce biosafety 
concerns, first-generation LVs were designed to be replicative 
deficient [6] by depleting cis-regulatory elements, truncating 
specific genes and using separate complementary plasmids 
acting in trans for safe particle assembly. For further im-
provement, second-generation LVs were deployed from vi-
ral proteins considered non-essential (Env, Vif, Vpr, Vpu, 
and Nef), and which had no impact on gene delivery, but 
maintained all the regulatory elements for sustained transgene 
expression [7].

Today’s third-generation LVs have further altered the ex-
pression of the regulatory elements Tat and Rev for increased 
biosafety (Fig. 1), mainly maintaining gag-pol from the origi-
nal backbone. In contrast, the introduction of a heterologous 
envelope glycoprotein, which can be from a wide range of 
viruses, directs the LV particle tropism through the mechan-
ism of pseudotyping (discussed in the myeloid cell targeting 
section).

Tat and Rev are two virus-encoded proteins required for vi-
ral replication that act as trans-acting regulatory elements. Tat 
binds to the trans-activation responsive region (TAR) in the 
long terminal repeat (LTR) to initiate proviral transcription 
[8]. Rev is required for the transport of spliced and unspliced 
viral RNAs from the nucleus to the cytoplasm, facilitating the 
production of viral proteins [9]. In third-generation LVs, Tat 
in the 5ʹLTR has been substituted with a constitutively active 
heterologous promoter upstream of the gene of interest and 
Rev is delivered in trans, as a separate plasmid, to minimise 
the potential for replication-competent viruses [10] (Fig. 1). 
A fourth-generation LV that replaces the Rev responsive ele-
ment (RRE) with heterologous viral sequences has also been 
developed, but to date, these have not succeeded, probably 
due to low viral titrs [11].

The lack of other viral-encoded proteins and the decoupling 
of the regulatory elements Tat and Rev provide LVs with the 
qualities of safe efficient gene delivery and long-term expres-
sion. These LVs are able to generate a potent immune response 
while reducing any possible anti-vector immunity that could 
divert that response, as well as minimising future reactions 
against these vaccine vehicles.

One potential concern is that of uncontrolled transgene 
 integration into the host genome, which could cause a pertur-
bation of host gene expression known as genotoxicity. A sub-
group of lentiviral vectors called non-integrating LV (NILV) 

Figure 1. Schematic representation of a third-generation packaging and transgene encoding plasmids needed for lentiviral production. Some of the 
characteristics of each plasmid are shown. CMVp: cytomegalovirus promoter, LTR: long-terminal repeat, RRE: rev responsive element, Psi: packaging 
signal.
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are constructed with the depletion of the LV integrase enzyme 
to overcome this issue. NILVs avoid the integration of the vi-
ral DNA into the host genome [12, 13], and instead, the viral 
DNA exists in an episomal form, which also ensures sustained 
transgene expression [12]. NILVs have been shown to stim-
ulate adaptive immune responses effective against tumours 
[14]. However, how these two different designs, integrative vs. 
non-integrative, may lead to differences in antigen expression 
and subsequent immunogenicity has not been investigated.

A relatively neglected field is the study of the molecular 
composition of the LV particle, which is usually acquired 
from the producer cell. Newly produced LV particles bud 
from the producer cell membrane, which dictates LV en-
velope composition by incorporating host molecules in it. 
Proteins, lipids and sugars associated with the membrane en-
velope of LVs, or even packaged within the LV particle, can 
play an important role in directing, adjuvanting or depleting 
the immune response through virus-host interactions. In 
this regard, Tremain et al. have recently reported the influ-
ence of glycosylation in inducing antigen-specific tolerance 
using an antigen conjugated to a synthetic glycosylated poly-
mer [15]. Active recruitment of certain host molecules to the 
LV budding sites has been described for HIV fully encoding 
lentiviruses that bud from a particular area of the plasma 
membrane with a specific composition rich in lipid content 
[16]. Now that the field of lipidomics is developing, it will 
be of interest to understand the variety of lipid compositions 
in different viral vehicles, their effect on target cells and their 
influence on antigen delivery.

A few studies have characterised LVs composition and the 
stoichiometry of associated cellular proteins incorporated 
into or co-purified with the LV particles [17–19], but no 
comparison has been made of the impact of using different 
producer cell types. Moloney murine leukaemia retrovirus 
(MMLV)-derived LV particles produced in HEK293 cells 
were found to contain the tetraspanins CD81 and CD9—
also present in HIV budding sites [20]—in addition to cell 
adhesion molecules and some late endosomal markers like 
CD63 and Lamp-2 [19]. In HIV-derived LVs, Wheeler et 
al. identified the presence of nuclear proteins, elongation 
factors as well as chaperone and heat shock proteins (like 
HSP70 and Histone 2A) [17]. Denard et al. found cellular 
proteins incorporated into or co-precipitated with virions. 
These included ALIX (an endosomal sorting cargo pro-
tein known to interact with p6 in HIV [21]), Cyclophilin 
A (found to interact with HIV capsid, increasing viral 
infectivity [22, 23]) and L-lactate dehydrogenase B chain 
(LBDH, catalyses pyruvate to lactate) [18].

There are limited data on how the presence and stoichi-
ometry of these cell-associated molecules packaged into 
LV particles may impact the fate of the cargo and the effi-
ciency of the induced immune response. One of the few 
known examples is cGAMP, which is packaged in HIV vi-
ral particles and extracellular vesicles during viral produc-
tion [24], activating the cGAS-STING pathway in target or 
neighbouring cells and thereby increasing CD4+ and CD8+ 
T-cell responses [25]. Recently, HIV-1 capsid maturation has 
been discovered to require the packaging of the cellular me-
tabolite inositol hexakisphosphate (IP6). With insufficient 
levels of IP6, the virus is no longer infectious due to capsid 
instability [26], with obvious implications for the field of LV 
production.

Thus, modulating the LV content and stoichiometry 
of cGAMP, other messengers, PAMPs, cytokines or other 
packaged host molecules could have an impact on the LV 
production and subsequent immune response. It would be of 
interest to have a complete picture of how different vaccine 
vehicles or producer cells promote packaging differences and 
translate into specific scenarios in immunotherapy.

In this regard, the structure of third-generation LVs has 
been manipulated, with the removal of several viral proteins, 
aiming for a high biosafety profile. One cannot dismiss the 
possibility that these deletions may also have an effect on  
the recruitment or packaging of specific host molecules to 
the plasma membrane or the particle itself, affecting LV com-
position and potentially their subsequent efficiency and per-
formance in triggering a specific immune response. The loss 
of some proteins that are able to counteract host restriction 
factors may, at the same time, limit recognition by innate im-
mune sensors, thereby affecting a wide range of processes like 
antigen processing and presentation.

LVs are usually produced in HEK293 or derivatives, like 
HEK293T—expressing SV40 T (simian vacuolating virus 
40 large T antigen) [27], the fast-growing HEK293FT, or 
the recently described SJ293TS [28] that allow serum-free 
transductions; all of these render highly efficient LV produc-
tion. HEK293 are human embryonic kidney cell lines that 
originated from healthy female foetus cells transformed with 
adenovirus 5 (Ad5), which allows for high levels of protein 
production under the CMV promoter [29]. Other cell lines 
used to produce LVs have human or monkey origin like COS-
1, COS-7, HT1080, TE671, CV-1 and CHO [30]. However, 
other than the African green monkey kidney epithelial cell line 
COS-1, which is widely used for LV screens [31], the other 
cell lines seem to be less efficient at LV production [32]. How 
LVs vary in their specific composition based on the nature of 
the producer cells and whether this can dictate the quality of 
the generated response is underexplored. It would be of in-
terest to compare and understand these differences and their 
implications for the immune response, especially with the mo-
nopoly provided by kidney-origin HEK293-derived cell lines 
for LV production.

To maximise the uses for LVs in immunotherapy, it will be 
important to generate a deep understanding of the cell biol-
ogy in lentiviral assembly and production. Further studies are 
needed to evaluate the influence of different host co-factors 
packaged in the LV particles to tailor their production to spe-
cific immunotherapy requirements.

The importance of targeting the myeloid 
compartment in the context of cancer 
immunotherapies
Myeloid-targeting immunotherapies are an attractive way to 
manipulate the immune response from an early stage, giving 
it the power to influence the downstream response. DCs can 
govern the nature of the adaptive response, not only by their 
capacity to present antigens and delineate antigen specificity 
but also by their ability to shape it with other co-stimulatory 
signals. DCs have also the unique capacity to cross-present 
antigens to CD8+ T cells, which is intimately correlated with 
the generation of robust CTL responses [33, 34] and tissue-
resident memory CD8+ T cells [35, 36], making them a desir-
able target against cancer.
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DC-based immunotherapies have, in addition, the poten-
tial to reduce immunotherapy off-target effects and can be 
combined with other cancer treatments such as checkpoint 
inhibitors or adoptive T-cell therapy. Importantly, DC-based 
immunotherapies could provide long-lasting immune mem-
ory by priming memory T cells.

DCs are a heterogeneous population comprising circu-
lating conventional DCs (cDCs) and plasmacytoid DCs 
(pDCs), as well as tissue-specific DCs such as Langerhans 
cells, monocyte-derived DCs (mo-DCs) and inflammatory 
DCs (iDCs). Each subset displays different intrinsic charac-
teristics influencing their capacities to elicit and promote a-
daptive immune responses. The different DC subsets vary in 
their properties for migration, antigen presentation, activa-
tion cytokine production, and recruitment of other immune 
cell subsets.

In humans, immunotherapies have focused on the subsets 
that excel at antigen-presenting such cDCs. Circulating cDCs 
mainly subdivide into cDCs1 (CD141+), with a higher abil-
ity to cross-present antigens, and cDCs2 (CD1c+), mainly 
known for priming CD4+ T cells and coordinating cytotoxic 
and antibody-producing B cells. In a very thorough review 
on DCs, Cabeza-Cabrerizo et al. warn about sticking to 
the dogma and attributing these functions solely to specific 
subsets, as some conclusions may be based on the system 
compensating functions when one of the subsets is missing 
[37]. Other interesting DC subsets to be specifically targeted 
in immunotherapy are tumour-infiltrating DCs (TIDCs) and 
DC subsets associated with tumour stroma and tertiary lym-
phoid structures (TLS).

In cancer, cDCs are key in T-cell priming, both at the 
draining LNs and, together with mo-DCs, within the 
tumour microenvironment (TME) to promote antitumour 
responses. DCs can not only promote CD4+ and CD8+ 
responses to neoantigens but they can also break the toler-
ance against tumour antigens [38]. A very detailed review 
on the role of DCs in cancer by Pittet et al has recently been 
published [39].

Directly targeting cDC subsets can refine specific immune 
responses. To our knowledge, no virus-based vaccine has spe-
cifically targeted a single DC subset. In this review we have 
analysed those studies that have, so far, broadly targeted the 
DC compartment. This encourages future studies to aim for 
the specifically targeting of particular cDC subsets and to e-
valuate the power and influence they might have in sculpting 
a specific response.

Although the importance of targeting the DC compartment 
is obvious, there are still many concepts of the basic princi-
ples of cDC biology that are yet to be defined. It is essential 
to invest in understanding fundamental cDC processes related 
to subset activation, localisation and antigen presentation to 
help fine-tune successful immunotherapies.

Myeloid cell targeting
LV particles are usually complemented by pseudotyping with 
a heterologous viral envelope glycoprotein that is incorpo-
rated into the LV membrane and facilitates cellular entry. 
Vesicular stomatitis virus glycoprotein (VSVG) is the most 
commonly used glycoprotein to pseudotype LV particles, as 
it allows non-specific fusion into many cell types through an 
endocytosis mechanism. Other strategies for specific targeting 

also incorporate specific ligands or antibodies against surface 
molecules at the target cell.

The use of VSVG has considerably broadened the tropism 
from classical LVs that were limited to CD4-bearing cells by 
the requirements of the HIV envelope glycoprotein. VSVG 
binds to the low-density lipoprotein receptor (LDLR) present 
in most cells, which takes the LV into the endosomal path-
way that will fuse with the cell membrane following acidifica-
tion [40]. This universal mechanism for VSVG cell entry has 
allowed difficult stem cell or neuron transductions [41, 42], 
but its uses in vivo are limited, as VSVG-LVs appear to be par-
tially inactivated by serum [43, 44]. Alternatives like cells that 
allow for serum-free LV production or the development of 
serum-resistant VSVG have been proposed to overcome this 
issue [45, 46].

VSVG-LVs broad tropism enhances transduction of diffi-
cult cell types, but its use can also be detrimental: indiscrimi-
nate transduction can cause an off-target effect and decrease 
its efficacy. In immunotherapy, the approach has been to 
perform ex vivo transduction to avoid this off-target effect 
but direct in vivo delivery of transgenes and antigens by LVs 
vaccination would make immunotherapy interventions more 
powerful and cost-effective [47].

Targeting LVs to a specific immune cell in vivo can directly 
reach antigen presenting pathways or genetically modify a-
daptive immune cells for a more potent and targeted immune 
response, increasing the efficiency and impact of immuno-
therapy. To achieve that, LVs are usually pseudotyped with a 
heterologous fusion/viral envelope protein that directs their 
tropism and increases transduction specificity to the desired 
target cells.

Different retroviral envelopes have narrowed and optimised 
LV tropism and have been used extensively [43]. Retroviral 
glycoproteins have proven efficient in transducing human 
CD34+ haematopoietic stem/progenitor cells, especially LVs 
with gibbon-ape leukaemia virus (GALV) or feline leukaemia 
virus (RD114) envelopes [48, 49]. Baboon endogenous 
retroviral envelope (BaEV) has allowed for transduction of 
human haematopoietic stem cells (HSCs) while maintaining 
their stem-ness [50] and some Rhabdoviruses can specifically 
target neural cells [51, 52]. For the purpose of this review, 
we focus on LVs directly targeting the DC compartment. 
Pseudotyping of LVs targeting different cell types has been 
extensively reviewed by Joglekar and Sandoval [43].

Ku et al. used a relatively unexplored DC-targeting sys-
tem, consisting of coupling the LV platform with a β2-
microglobulin promoter instead of the most commonly used 
CMV promoter. The use of a β2-microglobulin promoter does 
not avoid the off-target effect but utilises the fact that this 
promoter is highly active in immune cells, especially in DCs, 
to direct the expression of the gene of interest. Although the 
authors only tested the effect of their β2-microglobulin-based 
lentivector ex vivo, they highlighted its safety as compared to 
the CMV promoter, which contains enhancer elements prone 
to insertional mutagenesis [53].

Myeloid immunotherapies are and have been performed 
successfully ex vivo, re-injected after LV transduction [54], but 
specific in vivo targeting in humans is still under early devel-
opment. In vivo APC-restricted LVs have been achieved using 
the dectin-2 gene promoter, which directed the LV expression 
to splenic and CD11c+ DCs in the draining LNs in mice [55]. 
Measles virus (MV) glycoprotein has been  extensively used to 
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target lymphocytes and DCs through the SLAM and CD46 
receptors [56–59], but the Sindbis virus envelope has proved 
highly specific for DC-specific LV delivery by targeting DC-
SIGN (CD209) [60–63].

Sindbis glycoprotein binds to DC-SIGN, a C-type lectin 
expressed in DCs, which allows internalisation of the LV 
into clathrin-dependent coated pits [64, 65], with subsequent 
endo-lysosomal trafficking [66]. Yang et al. were among the 
first to use Sindbis pseudotyping for in vivo DC-targeting 
[62]. In direct comparison with VSVG-pseudotyped LVs, 
Sindbis pseudotyping showed higher infection of DCs and 
fewer off-target transductions [63]. Ma et al. increased the ef-
fect of DC transduction efficiency by incorporating LIGHT, a 
type II transmembrane protein, in their Sindbis-pseudotyped 
LVs. When expressed in DCs, LIGHT protein acts as a co-
stimulatory molecule for T cells, boosting the effect of the 
transduction into a more potent immune response. This 
method enhanced the T-cell response and led to a rapid en-
largement of the draining lymph nodes in mice, suggesting 
enhanced trafficking of DCs and increased T-cell proliferation 
[67].

Although Sindbis pseudotyping targets DCs specifically, it 
is not clear what DC subsets it targets more efficiently. The 
expression of DC-SIGN is not uniform across all DC subsets 
and it is not a characteristic marker of either cDC1 or cDC2, 
but can be upregulated during infection or inflammation [68]. 
DC-SIGN is mostly constitutively expressed in tissue-specific 
DCs like mucosal DCs [68]. The use of specific promoters like 
CD11c could be used to target cDCs [69], but this would be 
post-entry and may not represent the most efficient targeting 
for circulating cDCs. The ability to target specific DC subsets 
could represent a big step forward in the field.

Another important point to consider when assessing these 
murine in vivo studies is that the Sindbis glycoprotein might 
target DCs differently in mice from humans. Sindbis virus 
is an arbovirus primarily transmitted to vertebrate hosts, 
known to bind to DC-SIGN-Related Receptors (SIGN-Rs) 
and heparan sulphate proteoglycans (HSPGs) [70]. There 
are some differences between human DC-SIGN and the most 
similar mouse orthologue SIGNR5/CD209a regarding its ex-
pression [71] and their ligand binding preference [72]. While 
hDC-SIGN binds to mannose and fucose-terminated glycans 
similarly to mouse SIGNR3, SIGNR5 does not seem to bind 
mammalian glycans with high affinity [72]. There is no com-
parative study addressing how differently the mouse and 
human DC-SIGN bind to Sindbis glycoprotein. It would be  
interesting to explore how these different affinities translate 
to the targeting efficiency of different DC populations, as well 
as how the glycan composition in LVs can bias this effect. 
That said, Schetters et al. evaluated the expression and func-
tionality of mDC-SIGN, finding it comparable to hDC-SIGN 
in its ability to endocytose antigen and induce CD4+ and 
CD8+ T-cell responses [71], but whether these are compara-
ble at a systemic level is not known.

So far, myeloid targeting has proven quite efficient in in 
vivo models, especially using the Sindbis envelope glyco-
protein. However, given the current knowledge gaps, there 
is a need for a deeper understanding of the Sindbis glyco-
protein specificity in targeting human DCs, and to find other 
molecules that can efficiently target human DCs in vivo. The 
Sindbis envelope is an exogenous protein that has the po-
tential to cause vector immunogenicity if used in repeated 

immunisations. Thus, a strategy using endogenous molecules 
to target LVs to DCs would be more beneficial. Moreover, the 
internalisation receptor deployed by the DCs could play an 
important role, as it might direct cargo antigens to a specific 
antigen processing route, thereby exerting a major influence 
on the subsequent immune response.

LV interactions with the innate immune 
system: sensing and adjuvanticity
Despite the fact that LVs are depleted of most viral proteins, 
they do lead to infection of the target cell and enter into the 
early viral life cycle (Fig. 2). Thus, LV infection can trigger 
similar innate defence mechanisms to those induced by a vi-
ral infection (Fig. 3). The effects of a LV particle in contact 
with, fusing with or entering the cell can induce recognition 
by pattern recognition receptors (PRRs) and initiate an im-
mune response. These could either be detrimental or serve as 
an adjuvant for the LV as a vaccine vehicle.

As previously discussed, the origin and composition of 
the LV can dictate PRR recognition. In fact, LV transduction 
has been described as a trigger for DC maturation in vitro 
[73], and has proved to induce DC activation in vivo [74]. 
DC maturation initiates their migration to the draining LNs, 
enhancing and adjuvanting the immune response. But what 
are the mechanisms of DC activation upon the entry of the 
viral particle?

The fusion of the LV to the cell can itself disrupt mem-
brane homeostasis and lead to sensing. In human primary 
macrophages, HIV fusion induces a TBK1-dependent inter-
feron response independently of the containing envelope or 
the producer cell [75]. With a VSVG-pseudotyped LVs, fusion 
has been shown to induce PI3K-dependent immune stimula-
tion in mouse bone marrow DCs (BMDCs) [76].

LV components, including different forms of nucleic acids, 
easily activate DCs (Fig. 3). Different TLRs can be triggered 
by LV transduction. For example, TLR3 has been shown to 
directly recognise LVs in vivo [77], through double-stranded 
RNA (dsRNA) recognition [78], resulting in interferon (IFN) 
production [73]. pDCs sense single-stranded RNA (ss-RNA) 
derived from HIV via TLR7 in vitro, which has also been 
proposed as a mechanism of LV recognition in vivo [77]. 
These TLR activations might not only influence DC matu-
ration but also determine subsequent antigen processing and 
presentation [79].

On the other hand, Kim et al. found that the delivery of the 
LV viral genome activated DCs in a TLR-independent fashion 
through the cGAS-STING pathway [76]. The cGAS-STING 
pathway senses dsDNA in the cell cytosol and activates a 
type I IFN response, production of interferon-stimulated 
genes (ISGs) and can also activate NF-kB signalling [80, 81]. 
STING activation has been described to be important for 
cross-presentation, CD8+ T-cell priming, enhancing T-cell in-
filtration and promoting antitumour immunity [82].

The secondary messenger involved in the cGAS-STING 
pathway, Cyclic GMP-AMP (cGAMP), has been shown to be 
packaged in viral particles [24, 83] and to act as a powerful 
adjuvant [25, 84] with strong potential in the field of immu-
notherapy. The increased immunogenicity for vaccine vehicles 
co-packaging cGAMP appears to be more relevant in vivo 
than suggested by preliminary data in vitro. Kim et al. re-
cently reported that while in vitro delivery of LV encoding 
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Figure 2. DC-targeting lentiviral life cycle in a dendritic cell. After attachment to the specific receptor (in this scheme Sindbis virus glycoprotein that 
would bind to DC-SIGN), the LV particle will fuse into early endosomes. From there, the LV packaged proteins or molecules will be degraded and 
processed for antigen presentation possibly to MHC-II. The capsid might be released to the cytoplasm and the RNA will retrotranscribe to DNA, which 
is then imported to the nucleus for integration. From there, the proteins encoded in the transgene can be synthesised and processed for antigen 
presentation, probably via MHC-I.

Figure 3. Proposed sensing mechanisms of a DC-targeting lentivirus in a Dendritic cell, with potential for an adjuvanting activity.
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antigen triggered a trivial immune response, the magnitude 
was substantial in vivo [76]. cGAMP packaged into VLPs 
enhances CD4+ and CD8+ T-cell responses and increases an-
tibody titres and T follicular helper cell responses in mice [25]. 
However, LV appear to induce the cGAMP-STING pathway 
without the need for packaging of cGAMP, due to cellular 
DNA packaged into the LV [25], demonstrating a redundant 
mechanism for cGAS-STING activation.

Other than the intrinsic lentiviral adjuvants and ligands 
for sensors, exogenous adjuvants can be delivered simulta-
neously or integrated into the lentiviral particle to enhance 
immunogenicity. A TLR3 agonist used as an adjuvant to-
gether with virus-like particles (VLPs) triggered humoral 
responses against HIV [85] and a TLR9 ligand augmented 
cellular responses in an SIV DNA-based vaccine [86]. In fact, 
a selective combination of TLR ligands used as adjuvants was 
shown to enhance protection in different vaccine strategies 
in mice [87]. TLR3/9 agonists delivered together with LV 
immunisation improved antitumor immunity by rescuing 
and enhancing the effector function of LV-transduced CD8+ 
tumour-infiltrating lymphocytes (TILs) [88, 89]. However, in 
an adenovirus-based vaccine in mice, TLR3 stimulation was 
found to be detrimental to a CD8+ T-cell-specific response, 
whereas TLR4 ligands increased it [90]. It might be, then, that 
different TLR agonists need to be evaluated as adjuvants for 
each specific vehicle and scenario to determine the power of 
their interactions and their potential to enhance a specific re-
sponse.

Full genome lentiviruses can subvert immune recognition 
by expressing viral proteins able to evade this recognition or 
by depleting restriction factors [91]. Restriction factors are 
host proteins that inhibit different steps of the viral cycle. 
Through the co-evolution of viruses and the immune system, 
viruses have evolved to overcome these restriction factors 
through the expression of some viral proteins. It is therefore 
possible that LVs deployed from these SIV/HIV main or ac-
cessory proteins that participate in immune evasion are more 
susceptible to PRR detection and lead to a greater DC acti-
vation and maturation. More data comparing the outcomes 
with different adjuvanting molecules-LV combinations is 
needed to understand whether after the deletion of certain 
LV proteins this increased detection can serve as an adjuvant 
or if it would be detrimental to the generation of long-term 
immune responses.

Antigen expression, processing, and 
presentation after LV transduction
LV can create prolonged immunisation by providing sus-
tained antigen expression and presentation. The fate of the 
LV components, once it has fused to the cell, may vary based 
on the endocytosis receptor used. Normally, the LV cargo 
will be delivered into early endosomes and the encapsidated 
transgene will travel to the nucleus while retrotranscribing to 
DNA (Fig. 2). This DNA will either integrate into the host ge-
nome or, if non-integrative, remain episomal. In the transgene, 
the presence of an internal ribosome entry site (IRES) after 
the gene promoter appears to correlate with increased im-
munogenicity [91]. There is also the possibility that any of 
the nucleotide forms of the transgene could leak into the cy-
toplasm, which would explain some of the observed sensing 
mechanisms.

While the LV-encoded transgene would be retrotranscribed 
to dsDNA, translated, expressed and later processed as an 
intracellular antigen, being presented via major histocompati-
bility complex class I (MHC-I), any antigen carried within the 
LV will be accessed exogenously. Although the external acqui-
sition of antigens is biased to the MHC-II pathway of antigen 
presentation, some endocytosis receptors or co-stimulation by 
PRRs can divert the presentation through MHC-I (Fig. 2). For 
example, endocytosis of soluble antigens through the mannose 
receptor directs them to early endosomal compartments to be 
presented exclusively via MHC-I [92]. In DC-SIGN-mediated 
endocytosis, TLR4 stimulation has been shown to translo-
cate antigens from early endosomal compartments in DCs 
to the cytosol, diverting from MHC-II presentation towards 
cross-presentation of external antigens by MHC-I [93]. Thus, 
protein subunit antigens carried by a LV can be prompted 
to follow the classic MHC-II presentation for extracellular 
antigens or be cross-presented through MHC-I, important for 
inducing effective anti-tumour immunity by priming CD8+ T 
cells [94]. It is also important to consider that the directed LV 
entry mechanism and the chosen receptor potentially have an 
influence on LV cargo antigenic presentation and subsequent 
T-cell activation.

It is expected that CD8+ T cells will be induced better via 
MHC-I by the LV system when the transgene is expressed in 
the cell. However, some LVs have been engineered to target 
the intracellular expression of their transgene to the MHC-II 
pathway to potentiate CD4+ T-cell and humoral responses. 
Rowe et al. fused either transferrin receptor (TfR) or invari-
ant chain (Ii) to an OVA antigen so it could be targeted to the 
MHC-II pathway, which led to a superior immune response, 
with more CD4+ T-cell help and a more powerful humoral 
and CD8+ T-cell response than elicited simply by intracellu-
lar OVA expression in mice [74]. This Ii-LV stimulated the 
most cytokine secretion by CD4+ T helper cells and potently 
induced IFNγ secretion from CD4+ and CD8+ T-cells, suffi-
cient to protect mice from a challenge with OVA-expressing 
tumour cells [74]. In other preclinical studies, antigens have 
been fused to the invariant chain to trigger a CD4+ T helper 
response. The first human trial of a strategy to direct antigens 
to MHC-II was recently reported, in a prime-boost regime 
using MVA and Adenovirus 3, that contained an Ii-fused an-
tigen for hepatitis C virus (HCV). The MHC-II-targeted vac-
cine enhanced the magnitude and breadth of HCV-specific 
memory CTL responses [95].

Both LV targeting MHC-I and MHC-II have shown po-
tent effects in vivo in inducing immune responses in animal 
models. It would be interesting to undertake a direct com-
parison between these two types of LV, to understand the 
differences regarding the long-term immune response, and 
memory and breadth of their immunogenicity.

LV-induced adaptive immune responses to 
tumour antigens
Cancer vaccines for immunotherapy direct efforts to en-
hance anti-tumour immune responses either by (1) delivering 
antigen to antigen-presenting cells to boost tumour-specific 
responses or (2) genetically manipulating cells from the im-
mune system to induce or increase anti-tumour immunity.

LVs provide a platform that can direct the expression of the 
gene of interest into antigen-presenting cells, to further boost 
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and tailor the immune response against the antigen. But what 
do we know about the characteristics of this LV-elicited im-
mune response? An ideal vaccination vehicle would not only 
elicit a potent and effective adaptive response but would also 
trigger the formation of the memory compartment to effi-
ciently face rechallenges.

Prolonged and sustained antigen presentation will deter-
mine the potency and induce the persistence of the elicited 
immunity, as well as the breath and duration of strong T-cell 
memory. Sustained antigen presentation has been shown 
to stimulate T-cell memory and promote long-lived mem-
ory CD8+ and CD4+ T-cell responses [96–98]. After LV 
immunisation, the magnitude of antigen presentation is 
attained more than 3 weeks after immunisation as opposed 
to peaking at 5 days in other systems [78]. However, despite 
low anti-vector immunity, some have pointed out that subse-
quent immunisation with heterologous LV vaccines leads to 
a diminished secondary T-cell response. This was ascribed to 
LV cells being rapidly cleared by an effective CTL response, 
restricting the durability of antigen presentation after a LV 
boost with diminished T-cell memory formation [99].

In an in vivo mouse model for melanoma, immunisation 
with a non-targeted LV encoding a melanoma-associated an-
tigen efficiently triggered a tumour-specific T-cell response 
stronger than a peptide vaccine carrying the same antigen 
and a TLR9 agonist. Importantly, these cells expressed the 
memory markers CD127 and CD62L and were still detecta-
ble 3 months after immunisation [100]. However, the tumour-
rejection capacity of these cells was not assessed.

The induction of the immune response by targeting the 
DC compartment in vivo does direct anti-tumour immunity 
more efficiently. Ex vivo DC-targeting LV vaccination elicits 
greater CTL responses than ex vivo modified DCs with other 
antigen systems [78]. Induced T-cell responses after ex vivo 
lentiviral DC transduction have prevented the development 
of tumours in mice more successfully than other methods like 
peptide-pulsed DCs [78]. Ex vivo transduced DCs that were 
subsequently injected induced a long-lasting CD8+ T-cell re-
sponse with greater killing potential and secreted higher levels 
of IFNγ than simply protein- or peptide-pulsed DCs [101]. 
However, these previous experiments ex vivo had shown no 
difference between regular LV and DC-targeted LV in raising a 
T-cell response, probably because ex vivo transduction intrin-
sically removes the off-target effect and so does not reveal any 
advantage for directed cell targeting. Ex vivo experiments do 
not perfectly simulate physiological conditions, such as cell-
to-cell interactions and adjuvanting properties through innate 
immune activation in response to LV vaccination, so the im-
mune response may appear less powerful. This might also be 
because fewer injected DCs migrate to draining lymph nodes 
when transduced ex vivo [102]. Indeed, in vivo experiments 
in mice have shown more robust CD4+ and CD8+ T-cell 
responses and decreased waning of the activation of antigen-
specific CD8+ T cells when compared to other methods of 
vaccination including ex vivo DC transduction [67, 91]. The 
first in vivo DC-targeted LV, which used the Sindbis glyco-
protein to target DC-SIGN, induced antigen-specific CD8+ T 
cells and a significant antibody response while inducing re-
gression of established tumours in a mouse model [62].

A single immunisation with a modified Sindbis-based DC-
targeted LV vaccine delivering breast cancer antigens (Lalba 
and ERBB2) inhibited tumour growth and amplified to 6-fold 

antigen-specific CD8+ T cells compared with naïve mice. This 
immunisation proved to be prophylactic but also therapeu-
tic, by reducing tumour growth in mice with an established 
tumour. These results were performed in mice expressing a 
human breast cancer antigen, but when using transgenic mice 
expressing the same antigen as “self” the vaccine was able 
to delay tumour growth [103], meaning that even in a self-
antigenic environment DC-targeted LV vaccines are effective. 
Importantly, immunisation with DC-targeted LV expressing 
breast cancer self-antigens prevented the development of 
tumours (from 75% to 29%) in a spontaneous tumour mouse 
model using the same transgenic mice [103].

The innate LV activation of DCs is thought to boost CD8+ 
T-cell responses, providing external signals that would 
favour the development of a powerful immune response 
[91]. After an ex vivo DC-targeted LV that used the β2-
microglobulin promoter in mice, to enhance the transgene 
expression in immune cells, Ku et al. describe higher IL-2 
production and a polyfunctional CD8+ T-cell response, 
paired with the development of higher-quality central mem-
ory T cells despite a comparable CD8+ T-cell response when 
using Ad5 [53]. Ma et al. found that using the previously 
mentioned type II transmembrane protein LIGHT in their 
Sindbis-pseudotyped DC-targeted LVs, those LV particles 
induced autophagy, which is essential for effector and 
memory CD8+ T-cell formation [104], and suggested that 
autophagy could control T-cell activation and proliferation 
through CDKN1B [67].

Regarding the kinetics of the T-cell response elicited by 
DCs-transduced by LVs, Esslinger et al. found that the T-cell 
response peaked at day 9 and 10-40% of the CD8+ cells were 
antigen-specific after ex vivo LV DC transduction [91]. T-cell 
responses were still greater 2 weeks after immunisation [67], 
and detectable after 3 months [100].

Targeted DC-LVs have been shown to produce a very pow-
erful CD4+ and CD8+ T-cell response, able to provide protec-
tion and prophylaxis against tumour development in different 
studies in mice. Although the data point to superior mem-
ory development by LV when compared to other platforms, 
the full potential for DC-targeting LV to generate a memory 
compartment is still not fully characterised. More work is 
needed to quantify the efficiency of DC-targeting LV to gener-
ate central memory T cells and to understand the long-lasting 
effects needed for protection. Importantly, there is a need to 
understand the translatability of these results to humans and 
whether they will generate long-lasting memory responses in 
people.

Advantages and disadvantages of other 
vaccine vehicles
Vaccine platforms deliver antigens by providing peptides 
or encoding genetic material. Among the different options, 
LV offer a superior biosafety profile, an effective transduc-
tion rate, strong specificity and sustained antigen expression. 
Consequently, LV can elicit a coordinated, well-established, 
long-term memory immune response. To date, while other 
vaccine platforms may also induce strong immune responses, 
their memory potential appears to be more limited [105–
107].

LVs are attractive vaccine candidates because they can de-
liver antigens to APCs in situ with high specificity, potentially 
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controlling antigen presentation for the life of the transduced 
cell. Moreover, the amount of antigen needed to generate an 
immune response is much less than free or untargeted antigen. 
The resulting immune response is focused and directed to the 
encoded antigen since LVs encode only the minimum of viral 
proteins. In this aspect, LVs are more similar to DNA or RNA 
vaccines, although they confer the advantage of more efficient 
antigen delivery that can be specifically targeted to DCs with 
sustained expression that can potentially lead to long-term 
memory responses.

Vaccine platforms targeting the myeloid compartment can 
better coordinate the development of an effective and dura-
ble adaptive immune response. LVs appear to be 2–10 times 
more effective at transduction than adenovirus immunisation 
[108], with greater specificity for both mature and imma-
ture DCs [109]. Previously discussed, enhanced anti-tumour 
protection was shown when using a LV with the human β2-
microglobulin promoter to transduce DCs, which favoured a 
CD8+ T-cell central memory phenotype as compared to Ad5 
that showed more of an effector phenotype [53]. Importantly, 
when targeting the myeloid compartment, other vaccine 
platforms have been shown to interfere with DC functions 
like the inflammatory responses or stimulation of T-cell im-
munity, while LVs do not [2, 101, 109].

DC-targeted LV vaccines have also shown that one 
immunisation might be sufficient to slow or prevent tumour 
growth, while DNA vaccines need multiple immunisations 
[103]. Although multiple immunisations can increase the level 
of immune response in all vaccine regimes, LVs generate lim-
ited vector immunity. This is particularly important in cancer 
immunotherapy, as a very powerful and directed response is 
needed to have an effect in an immunosuppressive tumour 
microenvironment [110].

In terms of biosafety, the use of LVs has shown potent im-
mune responses without observing serious adverse events. 
Concerns such as the production of infectious lentiparticles 
or an oncogenic potential have not been observed [111, 
112]. The first-in-class DC-targeting LV human clinical trials, 
using third-generation, nonreplicating, integration-deficient 
lentivirus-based vector expressing New York Esophageal 
Squamous Cell Carcinoma-1 (NY-ESO-1) cancer testis an-
tigen in DCs, induced strong T-cell responses with no seri-
ous adverse events [111]. Importantly, this treatment has 
been recently evaluated in a prime-boost regime in patients 
with advanced cancer and showed a safe delivery [113]. We 
have depicted the advantages of the use of LVs for DC-based 
immunotherapies as compared to the most common used 
virus-based vaccine platforms in Table 1.

Table 1. Main characteristics, advantages and disadvantages of the use of LVs for DC-based immunotherapies compared to the most common used 
virus-based vaccine platforms

Lentiviruses Adenoviruses Retroviruses* Vaccinia Virus

Long-term gene expression High
(Both for Integrative and 

non-integrative)

High
(Both for replicative defi-

cient and competent)

High Short-lived compared to 
other systems

Needs a strong promoter 
[114]

Packaging capacity (sizeable 
gene)

Up to 8Kb [3] Up to 2Kb.
5–6Kb in ∆E1A viruses.
+2Kb if ∆E3 gene [115].

Up to 8Kb [116] 25–30Kb [117]

Safety LVs are encoded in differ-
ent plasmids to avoid 
a replicative competent 
form

Most viral proteins have 
been deleted

Existence of pre-existing 
immunity

Risk of reversion to patho-
genic form

Generation of replication-
competent form

Modified Vaccinia Ankara 
(MVA) is used as an at-
tenuated vector

Major disadvantages Complex manufacturing Pre-existing immunity
Can affect the normal DC 

functions [2, 101, 109]

Target only actively divid-
ing cells

Potential of tumourigenesis 
[118]

Risk of reversion to 
replication-competent 
virus

Pre-existing immunity
Not suited for immunocom-

promised settings [117]
Need of repeated 

vaccinations [114]

Major advantages Easy manipulation and 
targeting of non-dividing 
cells

Safety
Strong and sustained im-

mune responses
High quality CD8+ T-cell 

responses [53]
Do not interfere with DC 

functions [2, 101, 109]

High titers [116]
Strong and sustained im-

mune responses

Strong immune response Easy manipulation
Large gene inserts

*Retroviruses here exclude lentiviruses.
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Prospective and future directions for lentiviral 
use in cancer immunotherapy
It is clear that DC-targeted LVs have great potential to become 
central tools for cancer immunotherapy. Non-replicating LVs 
can provide sustained antigenic expression that can enhance the 
durability of the response and break tolerogenesis. Importantly, 
the contents of the LV particle can trigger innate immune 
pathways, most likely adjuvanting and reinforcing the mounted 
response. This is important, as these adjuvanting properties 
could overcome the mechanisms of immunosuppression within 
the tumour microenvironment by providing strong activating 
signals to DCs. This immune reinforcement at the DC level 
could broadly improve T-cell functions within the immuno-
suppressive microenvironment. Moreover, the LV cargo and its  
endocytosis route can play an important role in the antigen pres-
entation pathways and promote the development of a strong, 
polyfunctional and long-lasting immune response.

The route of vaccine administration adds another layer of 
complexity to the intricate mechanisms required to gener-
ate a good response, although this might be independent of 
the vaccine system used. Vaccination routes do affect clinical 
outcomes and this can be influenced by the presence of spe-
cific DC subsets or tissue-DCs at the site of injection that can 
lead to a more efficient uptake of the antigen. It would be in-
teresting to see whether this effect is stronger when targeting 
DCs with a LV-based vaccine, how the site of injection can 
bias the subset DC activation and the type of immune re-
sponse that develops.

Fundamental questions like the cell biology of the lentiviral 
assembly are important to tailor the immunogenicity of these 
particles. LV can also be used in combination with existing 
therapies. The use of DC-targeted LV together with immune 
checkpoint inhibitors, a pivotal treatment for cancer, has been 
recently associated with greater anti-tumour efficacy of anti-
PD-1 in mice, but not with anti-PDL1 or anti-CTLA4 [119]. 
Thus, the potential of LVs to determine the fate of tumour 
responses is not only limited to their effects but can also in-
fluence other cancer immunotherapies. Overall, LVs are a  
powerful tool that can elicit a powerful immune response and 
provide the solid generation of the memory compartment.
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