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Machine learning in predicting
cardiac surgery-associated
acute kidney injury: A systemic
review and meta-analysis
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1Qinghai University Medical School, Xining, China, 2Qinghai University A�liated Hospital Intensive

Care Unit, Xining, China

Background: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a

common complication following cardiac surgery. Early prediction of CSA-AKI

is of great significance for improving patients’ prognoses. The aim of this study

is to systematically evaluate the predictive performance of machine learning

models for CSA-AKI.

Methods: Cochrane Library, PubMed, EMBASE, and Web of Science were

searched from inception to 18 March 2022. Risk of bias assessment was

performed using PROBAST. Rsoftware (version 4.1.1) was used to calculate

the accuracy and C-index of CSA-AKI prediction. The importance of CSA-

AKI prediction was defined according to the frequency of related factors in

the models.

Results: There were 38 eligible studies included, with a total of 255,943

patients and 60machine learningmodels. Themodels mainly included Logistic

Regression (n = 34), Neural Net (n = 6), Support Vector Machine (n = 4),

Random Forest (n = 6), Extreme Gradient Boosting (n = 3), Decision Tree (n

= 3), Gradient Boosted Machine (n= 1), COX regression (n= 1), κNeural Net (n

= 1), and Naïve Bayes (n = 1), of which 51 models with intact recording in the

training set and 17 in the validating set. Variables with the highest predicting

frequency included Logistic Regression, Neural Net, Support Vector Machine,

and Random Forest. The C-index and accuracywer 0.76 (0.740, 0.780) and 0.72

(0.70, 0.73), respectively, in the training set, and 0.79 (0.75, 0.83) and 0.73 (0.71,

0.74), respectively, in the test set.

Conclusion: The machine learning-based model is e�ective for the early

prediction of CSA-AKI. More machine learning methods based on noninvasive

orminimally invasive predictive indicators are needed to improve the predictive

performance and make accurate predictions of CSA-AKI. Logistic regression

remains currently the most commonly applied model in CSA-AKI prediction,

although it is not the one with the best performance. There are other models

that would be more e�ective, such as NNET and XGBoost.

Systematic review registration: https://www.crd.york.ac.uk/; review

registration ID: CRD42022345259.
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Introduction

Cardiac surgery-associated acute kidney injury (CSA-AKI)

is a common complication following cardiac surgery, with its

morbidity rising due to the increasing demand of cardiac surgery

worldwide. The prevalence of cardiac surgery ranges from 0.5 to

500 per million in developing countries. Cardiac and vascular

procedures are common risk factors in CSA-AKI, with 3% of the

patients requiring renal replacement therapy. According to the

Kidney Disease Improving Global Outcomes (KDIGO) criteria

(1), AKI is defined as a sudden deterioration of renal function

within a period of hours to days, and is characterized by the

decrease of serum creatinine (SCr) levels, estimated glomerular

filtration rate (eGFR), blood urea nitrogen (BUN), and urine

output, with high morbidity and mortality. It can be divided

into three stages based on either a decrease of urine output

or an increase of SCr (2). AKI often requires high treatment

costs, and inappropriate management for it can lead to chronic

kidney disease (CKD) or end-stage renal disease (ESRD) (3).

AKI induces not only short-term adverse events but long-term

poor outcomes such as fluid and electrolyte disturbance. Even

mild AKI is associated with poor patient survival according to

the KDIGO (1) analysis. An analysis of recovery patterns after

AKI shows that 41.2% of the patients could not have their renal

function recovered before hospital discharge.

Cardiac and vascular surgery is one of the common risk

factors for AKI. The incidence of CSA-AKI reaches up to 40%

(4). Blood dynamics alteration following cardiac surgery causes

a decrease in renal blood perfusion, and subsequently reduces

eGFR, leading to necrosis of glomerular epithelial cells, which

underlies the pathogenesis of CSA-AKI (5, 6).

Machine learning refers to computer simulation or

implementation of human behavior to endow the computer

with the ability of self-improvement so as to be capable of

complex multitasking. It covers multiple disciplines such as

mathematics, statistics, and computer science, and has been

widely used in scientific research and industry. In recent years,

machine learning has also been widely applied in disease

prediction, and multiple studies on the use of machine learning

in CSA-AKI prediction have been reported. However, its

predictive value lacks evidence-based support. Therefore, we

conducted this systematic review and meta-analysis to evaluate

the predictive value of machine learning for CSA-AKI so as to

provide evidence-based support for its clinical application (7).

Methods

This meta-analysis is carried out in strict accordance

with The Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) 2020 statement,

which has been preregistered on PROSPERO (Registration

No. CRD420222345259).

Literature search

Cochrane Library, PubMed, EMBASE, and Web of

Science were searched from inception to 18 March 2022.

Search items were designed based on the combination

of medical subject headings and free words, without

language and region restriction. A literature search was

conducted by Zhe Song (detailed search strategy is shown in

Supplementary File 2).

Inclusion and exclusion criteria

Studies meeting the following criteria were included:

(1) Randomized controlled trial (RCT), prospective cohort

study, nested case-control study, case-control study, and

registration data on patients with cardiovascular diseases

who had undergone heart surgery such as heart valve

replacement and cardiac contrast.

(2) A complete predictive model was established;

(3) Published in English.

Exclusion criteria were:

(1) Study unrelated to CSA-AKI or only reported risk factors;

(2) Containing no outcome measures related to the

effectiveness of a predictive model (e.g., RFC, sensitivity,

specificity, accuracy, confusion matrix, etc.);

(3) Other study design: case reports, letters, conference

summaries, reviews, etc.;

(4) Incomplete data or data unavailable.

(5) AKI staged using KDIGO (1) serum creatinine

criteria; cardiac function graded via the American

Heart Association guideline and ESC 2021 guideline

(8, 9).

Literature search

All articles identified were imported into EndNote

X9. Titles and abstracts of the articles were browsed

following duplicate removal, and the full-texts of the

remaining articles were retrieved and read to identify

eligible studies. Literature search and screening were

processed by two reviewers (SZ and YZY) independently,

any disagreements were settled by a third reviewer (HM).

The articles searching a flow chart are presented in

Supplementary materials. Pieces of literature, which contain

unclear information or missing critical data, were excluded

from our study.
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FIGURE 1

Quality assessment of included studies.

Data extraction

The data extraction form was designed according to the

Modified CHARMS checklist (10), whichmainly included: name

of the first author, publication date, nation, duration of data

hiring, study design (prospective and retrospective), types of

validation (external, internal, random split, and time split), and

sample size (total number, developments, and testing cluster).

The development set was defined as all data sets other than the

test set in this study due to the unclear description in each study.

Risk of bias assessment

We used the prediction model risk of bias assessment tool

(PROBAST) (11) and the external prognostic validity model

to assess the risk of bias in the included studies. PROBAST

is a risk of the bias assessment tool designed for systematic

reviews of diagnostic or prognostic prediction models. It

contains four domains: participants, predictors, outcome, and

statistical analysis. Items under each domain can be filled as

“yes,” “probably yes,” “probably no,” “no,” and “no information,”

depending on the characteristics of the study. If a domain

contains at least one item filled as “no” or “probably no,” it would

be graded as high risk. A domain with all the items filled as “yes”

or “probably yes” would be graded as low risk. The overall risk

of bias would be graded as low risk when all the domains are

graded as low risk. The risk of bias assessment was performed by

two reviewers independently.

Statistical analysis

We calculated and reported descriptive statistics to

summarize the characteristics of the models. For prediction

models that were examined in more than two independent

datasets (excluding the model development dataset), a random-

effect meta-analysis was performed to estimate the performance

and accuracy. Prediction models, which were internally

validated through bootstrapping or cross-validation and were

externally validated in only two independent datasets, were also

considered. We followed a recently published framework of

meta-analysis for prediction models. If a measure of uncertainty

(standard error or 95% confidence interval) was not available

for the mean C-index, a formula was used to approximate

the standard error of the mean C-index based on the number

of events and number of participants. All data analyses were

performed using the R software (Version 4.1.1).

Results

Study selection

There were 1,909 articles identified [Cochrane (n = 133),

PubMed (n = 33), Embase (n = 231), Web of Science (n =

1,512)]. After removing 220 duplicates, titles and abstracts of

the remaining 1,689 articles were browsed, and 38 studies (12–

49) were finally included. A PRISMA flow diagram of the study

selection process is shown in Supplementary File 4.
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FIGURE 2

A frequency bar chart of predictors.

Characteristics of included studies

A total of 139,444 participants were involved, with 116,499

in the validation set. Data were collected from 12 countries.

Among the included studies, 25 (about 66%) have been

published in recent 5 years (2017–2022), indicating that research

in the field of the machine learning-based prediction model

has been a hotspot in recent years, and is of great value

and significance.

These were 60 prognostic models for CSA-AKI included, 12

external validation models, and 7 random sampling validation

models. The types of these 60 prognostic models include:

Logistic Regression (12–16, 19–22, 24–35, 37–49) (n = 34),

Neural Net (15, 17–19) (n= 6), Support VectorMachine (15, 16)

(n = 4), Random Forest (15, 16, 30, 40) (n = 6), Extreme

Gradient Boosting (15, 16, 49) (n= 3), Decision Tree (15, 16) (n

= 3), Gradient Boosted Machine (19) (n = 1), COX regression

(19) (n = 1), κ Neural Net (19) (n = 1), and Naïve Bayes

(19) (n = 1). Characteristics of included studies are shown in

Supplementary File 1.

Quality assessment

The quality assessment showed that 92.11% of included

studies were graded as high risk in the domain of analysis,

36.84% were graded as high risk in the domain of outcomes, and

26.32% in that of participants (Figure 1).

Predictors

The most commonly used predictors were Age (n = 25,

41.67%), Types of surgery (n = 23, 38.33%), CBP time (n = 19,
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FIGURE 3

Accuracy of the machine learning-based model in the training set: logistic regression.

31.67%), Blood pressure (n= 17, 28.33%), SCr (n= 16, 26.67%),

heart rate (n = 14, 23.33%), Transfusion (n = 14, 23.33%), BMI

(n = 13, 21.67%), Hemofiltration (n = 13, 21.67%), gender (n

= 12, 20.00%), diabetes (n = 10, 16.67%), Hemoglobin (n = 10,

16.67%), pNGAL (n= 9, 15.00%) (Figure 2).

Training set and test set accuracy

In the training set, the logistic regression model was the

most commonly applied [n = 27, accuracy = 0.705 (0.703,

0.708)]. XGBoost showed to be of the best performance [n =

3, accuracy = 0.732 (0.715, 0.748)], with large modeling sample

size (Figures 3, 4).

In the test set, logistic regression was also the most

commonly applied model [n = 10, accuracy = 0.708 (0.705,

0.71)]. NNET was of the best effect [n = 3, accuracy = 0.711

(0.708, 0.713)], with large modeling sample size, so we think

NNET has the best effect. XGBoost also showed an excellent

effect in all models [accuracy = 0.755 (0.705, 0.802)], while its

modeling sample size was limited (Figures 5, 6).

Training set and test set c-index

In the training set, logistic regression was the most

commonly applied model [n = 26, c-index = 0.76 (0.75, 0.76)].

XGBoost showed to be of the best performance [n = 3, c-

index =0.8 (0.78, 0.82)], with large modeling sample size.

COX also showed a remarkable effect in all models [c-index

= 0.9 (0.81, 1)], while its modeling sample size was limited

(Figures 7, 8).
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FIGURE 4

Accuracy of the machine learning-based model in the training set: other models.

FIGURE 5

Accuracy of the machine learning-based model in the test set: logistic regression.

In the test set, logistic regression was also the most

commonly applied model [n = 8, c-index = 0.75 (0.74, 0.76)].

NNET and XGBoost presented excellent performance, with the

c-index of 0.89 (0.86, 0.92) and 0.81 (0.75, 0.88), respectively,

while the modeling sample size of these two models was limited

(Figures 9, 10).

Detailed results of data analyses are shown in

Supplementary File 3.

Discussion

There were 38 studies, with 60 CSA-AKI models, 12 external

validity models, and 7 random sampling models. Most of them

were logistic regression models. Risk of bias assessment showed

that there was a high risk of bias in the analyses of included

studies, which might be related to the incomplete variables and

limited sample size involved in the model, improper processing

of missing data, internal verification of models, interpretation

of complex data, and correlation between some predictors

and CSA-AKI definition. Therefore, follow-up studies should

take into account the selection and verification of models,

expansion of samples, and application of multivariate analysis.

Data screening should also be more scientific to obtain more

clinically valuable results.

Cardiac surgery altered the hemodynamics leading to

hypoperfusion in the kidneys. Cardiac Angio Pulmonary Bypass
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FIGURE 6

Accuracy of the machine learning-based model in the test set: other models.

can also induce hemodynamic disturbance directly and lead to

acute kidney injury. Cardiac surgery-associated acute kidney

injury (CSA-AKI) is a common and serious complication

of cardiac surgery. There were more than 2 million people

receiving cardiac surgery every year, and the incidence of CSA-

AKI fluctuated between 5 and 42%. The occurrence of CSA-

AKI is associated with high perioperative mortality, prolonged

hospital stay, and heavy treatment costs. Pathogenesis of CSA-

AKI should be further explored to elucidate the relationship

between cardiac surgery undergoing and AKI occurring (2, 18).

Detailed mechanisms of CSA-AKI have not been fully

elucidated. Ischemic reperfusion injury, activation of

inflammatory cytokines cascades, oxidative stress, and

nephrotoxic reaction might be involved in the pathogenesis

of CSA-AKI (16, 19, 50). Hypotension may play a critical role

in renal dysfunction, while the optimal mean arterial pressure

(MAP) helpful to prevent CSA-AKI during CPB remains

unknown. Almost all studies that assessed MAP during CPB

were observational designs and were conducted to evaluate

the correlation between hypotension and adverse neurologic

outcomes. Griffin et al. (5) conducted a single-center RCT that

included 300 patients who had known risk factors in AKI, and

underwent elective cardiac surgery with normothermic CBP.

They found that MAP during CPB was targeted to 50–60 mmHg

in the control group, whereas that in the intervention group

was targeted to 75–85 mmHg, and the overall mean MAP in

the two groups was 60 ± 6 and 79 ± 6 mmHg, respectively.

There was no intergroup difference in CSA-AKI, hospital LOS,

and mortality.

AKI is a serious complication that can directly induce

renal failure. The initiated injury process leads to irreversible

renal function impairment that would continually deteriorate.

Machine learning is capable of identifying the pathological

factors of AKI so as to facilitate early intervention. Dong et al.

(51) recruited 16,863 pediatric critical care patients aged from

1 month to 21 years, and used machine learning to predict

pediatric AKI. Their findings were promising. Machine learning

is a state-of-the-art approach to risk stratification. Interpretive

modeling can use complex decision boundaries to help clinicians

understand the risks specific to individual patients.
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FIGURE 7

C-index in the training set: logistic regression.

The application of machine learning is driven by the

development of big data analysis and the need for evidence-

based care. The practicality of the combination of artificial

intelligence and machine learning has aroused widespread

interest in medical research. Machine learning has its own

advantages in performance and scalability, and machine

learning-based modeling from mass data presents to be helpful

to the implementation of dynamic monitoring for multiple

diseases (52–55). Some machine learning algorithms, such as

Extreme Gradient Boost (XGBoost), can calculate and predict

the relative size of variables in a specific result, which makes the

level of insight into individual risk factors and their prognostic

significance comparable to that of logistic regression models

(56). Gradient Boosting (GBM) is a widely used method to

predict the incidence of AKI (57). Huang et al. (58) proposed

a GBM-based risk prediction model for AKI after percutaneous

coronary intervention (PCI). They collected a large amount of

data from 947,091 patients receiving PCI to construct a baseline

model, and time verification was carried out through the data of

more than 900,000 hospitalized patients. The AUC of the GBM

model was 79% larger than that of the baseline linear regression

model. Lee et al. (59) proposed an AKI-prediction model based

on several machine learning algorithms, and compared their

performance in patients undergoing liver transplantation and

heart surgery. Both the studies found that GBM had the most

reliable performance.

In conclusion, CSA-AKI is a complex and

multifaceted syndrome with significant morbidity and

mortality. The application of machine learning in

nephrotic clinical practice, including CSA-AKI, has a

promising prospect.

We found that age, SCr, type of surgery, BMI, CBP time,

and blood pressure were significant predictors for CSA-AKI. A

large multinational and multicenter RCT, which involved 4,752

participants from 19 different countries, reported that Patients

who underwent cardiac surgery without CPB were significantly
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FIGURE 8

C-index in the training set: other models.

FIGURE 9

C-index in the test set: logistic regression.

less likely to have AKI 30 days after surgery [28 vs. 32.1%, RR =

0.87, 95% CI (80–0.96), p= 5.01] (17).

This systematic review and meta-analysis, based on a large

sample size, showed that machine learning was effective in

predicting the risk of CSA-AKI. Recently, the most common

machine learning method is conventional logistic regression,

followed by artificial neural networks, while SVM and RF are

also commonly used. A study by Tseng et al. (16) demonstrated

that machine learning could successfully predict CSA-AKI,

which reflects the risks of cardiac surgery, enabling the
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FIGURE 10

C-index in the test set: other models.

optimization of postoperative treatment processes to diminish

the postoperative complications following cardiac operations.

This study also has some limitations: first, this study focused

on the accuracy of the machine learning model and did not

predict the risk factors of CSA-AKI. Second, some of the

included models contained special variables (such as SCr and

eGFR), which were related to the diagnosis of AKI, and these

variables would be of value for further verification and research

in subsequent studies.

Conclusion

Logistic regression remains the most commonly used model

in CSA-AKI prediction, while it might not be the optimal option.

Other models, such as NNET, XGBoost, and GBM, are of more

remarkable performance. Using predictive models for early risk

assessment has a relatively desirable effect on preventing CSA-

AKI; however, it still needs to be further improved. Therefore, we

look forward tomore validatedmachine learningmethods based

on convenient, noninvasive, or minimally invasive predictive

indicators that could be of remarkable performance and

accuracy in the prediction of CSA-AKI.
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