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Abstract

variation upon environmental stress.

Remodeling of the sperm epigenome by lifestyle factors before conception could account for altered metabolism
in the next generation offspring. Here, we hypothesized that endurance training changes the epigenome of human
spermatozoa. Using small RNA (sRNA) sequencing and reduced representation bisulfite sequencing (RRBS), we,
respectively, investigated sRNA expression and DNA methylation in pure fractions of motile spermatozoa collected
from young healthy individuals before, after 6 weeks of endurance training and after 3 months without exercise.
Expression of 8 PIWI interacting RNA were changed by exercise training. RRBS analysis revealed 330 differentially
methylated regions (DMRs) after training and 303 DMRs after the detraining period, which were, in both conditions,
enriched at close vicinity of transcription start sites. Ontology analysis of genes located at proximity of DMRs
returned terms related to neurological function at the trained state and, to a much lesser extent, at the detrained
state. Our study reveal that short-term endurance training induces marked remodeling of the sperm epigenome,
and identify genes related to the development of the central nervous system as potential hot spots for epigenetic

Introduction
Gametes contain epigenetic information that plays a fun-
damental role in embryonic development [1]. Any pre-
conceptional disturbance of the gametic epigenome has
thus the potential to alter the phenotype of the next gen-
eration offspring through so-called epigenetic inherit-
ance. In spermatozoa, not only methylation of DNA and
post-translational modifications of histones carry epigen-
etic signals but also, sperm-borne small RNA (sRNA)
can contribute to epigenetic inheritance, as supported by
microinjection experiments of spermatozoal RNA into
fertilized oocytes [2—4].

Epidemiological evidence indicates that paternal nutrition
before conception can alter the phenotype of the following
generation [5, 6]. Numerous animal studies have now clearly
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established that environmental factors can remodel the
sperm epigenome at the level of post-translational modifi-
cations of histones, DNA methylation, and sRNA [7-14].
Previously, we showed that sRNA expression and DNA
methylation are altered in sperm cells of obese men after
gastric-bypass-induced weight loss [15]. Whether physical
exercise, a potent intervention to treat or prevent obesity
and related diseases like obesity and type 2 diabetes (T2D)
[16, 17], can concomitantly remodel the sperm sRNA and
DNA methylation profile is unknown.

Here, we hypothesized that endurance training changes
the epigenetic profile of human spermatozoa. We used an
intervention protocol of exercise training and detraining,
to dissociate the effect of exercise to that of time, and to
analyze the potential long-term memory of endurance
training on the sperm epigenome. We show that exercise
training specifically remodels the expression of several
sRNAs and changes DNA methylation at specific gene
hotspots related to brain function and development.
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Results and discussion

Single ejaculates were obtained at three different time
points; at baseline (referred to as Untrained), 4 days after
ending a six-week endurance exercise intervention (re-
ferred to as Trained) and after 3 months without exercise
training (referred to as Detrained). Analysis of DNA
methylation was performed on the 12 participants while
for sSRNA, a subset of 6-9 participants was analyzed (see
method section for details, see Additional file 1: Figure S1
for an overview). Clinical characteristics of the volunteers
at the three time points are presented in Table 1A and B.
As expected, aerobic capacity, as measured by VO, peak,
was increased from a median value of 44.15/46.2 (respect-
ively for the DNA methylation/sRNA subsets) ml/kg/min
at the untrained state to 56.2/53.7 ml/kg/min at the
trained state (p < 0.001/p < 0.005). Three months after the
training program, VO, peak decreased to 51.2/50.7 ml/kg/
min, and was no longer significantly higher than baseline.
We did not observe any inter-individual differences in
sperm quality throughout the course of the exercise inter-
vention, nor the detraining period.

Exercise training modulates sperm sRNA expression in a
reversible fashion

We first investigated small RNA (sRNA) expression in
purified sperm from the same subjects at the Untrained,
Trained and Detrained state by sSRNA sequencing. Con-
sistent with previous reports, PIWI-interacting RNAs
(piRNA) are expressed at higher levels than tRNA frag-
ments (tRF) and microRNAs in human sperm [15, 18]
(Fig. 1a, Additional file 2: Figure S3, Additional file 3:
Figure S4, Additional file 4: Figure S5). To analyze the
effect of training on sRNA expression, we identified 5
piRNAs and 27 fragments of repetitive elements that
were differentially expressed between the Trained and
the Untrained state. Between any two time-points, a
total of 3 miRNAs, 2 tRNAs, 6 piRNAs, and 38 repeti-
tive elements were differentially expressed (Fig. 1b, Add-
itional file 5: Figure S6), false discovery rate [FDR] < 0.1;
Additional file 6: Tables S1-S4, Additional file 7: Table
S5). To identify reversible SRNA expression changes, we
compared the changes observed between Untrained/
Trained with the changes at the Trained/Detrained and
Untrained/Detrained. We found several piRNAs under-
went a transient change in expression (Fig 1b). The ex-
pression of five of the six piRNA was changed between
the Untrained and Trained state, while no piRNA was
differentially expressed when comparing the Untrained
and Detrained state, indicating a specific response to ex-
ercise training. On the other hand, no miRNAs were dif-
ferentially expressed between the Untrained and Trained
state, but one out of three were found between Untrained
and Detrained and two of three were found between
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Trained and Detrained, suggesting changes in miRNA ex-
pression are not primarily triggered by exercise training.
Expression of tRNAs followed a similar pattern where all
changes were exclusively detected when comparing the
Untrained to the Detrained state. Lastly, repetitive ele-
ments did not follow a specific pattern (Additional file 8:
Figure S2). Taken together, our results suggest exercise in-
duces acute response in piRNA expression, which is
reverted after cessation of training. Expression of miRNA
and tRNA, however, seems to be more stable with time.

In silico target prediction for piR-hsa-28,160 returned
multiple copies of the ILF3/NF90-interacting RNA Small
ILF3/NF90-associated RNA (SNAR), a regulator of the let7
family member let7a, a miRNA family well documented in
inflammation, glucose metabolism [19-23] and, more re-
cently, epigenetic inheritance [11]. Of the remaining piR-
NAs, one has no predicted target, one targets FAM225A
and B, two ncRNAs with no known function which are
highly expressed in testis and one targets NSD1, a transcrip-
tion factor that has been associated with Sotos syndrome
[24], the symptoms of which include mild intellectual im-
pairment and co-occur with autism [25]. The remaining two
piRNAs target small nucleolar RNAs (snoRNAs). Both of
those snoRNAs are predicted to regulate ribosomal RNA
(rRNA) maturation. snoRNAs have been implicated in both
cancer and lipotoxicity, and thought to exert miRNA-like
function, notably for the regulation of alternative splicing
[26, 27]. It was previously shown that a loss of snoRNA
leads to a variety of diseases, such as the Prader—Willi syn-
drome, which is characterized by morbid obesity and intel-
lectual impairment [28]. Thus, it is possible that changes in
the expression of sperm-borne snoRNAs after endurance
training influences the developmental programming of the
embryo and predispose/protect from disease. Altogether,
our data demonstrate that sperm-borne sRNA content can
be dynamically affected by a 6-week endurance training
intervention. The functional relevance of the exercise-
induced sRNA differential expression in human sperm on
the developmental programming of the embryo remains to
be investigated.

Exercise training remodels methylation of brain genes

To investigate the effect of exercise training on DNA
methylation, we performed Reduced Representation Bisul-
fite Sequencing (RRBS) on the pure sperm fractions col-
lected at each time point. In total, 119,624 CpG clusters
covering more than 1.4 million individual CpGs were in-
terrogated by the RRBS protocol. Results were analyzed
using a FDR 5 or 10% cut-off (Additional file 7: Table S6).
With a FDR 10% cut-off, compared to the Untrained state,
the Trained state returned 330 differentially methylated
regions (DMRs), while 303 DMRs were detected 3 months
after the last training session of the training program
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Table 1 Clinical characteristics of subjects at the Untrained, Trained, and Detrained state

A

Cohort used for DNA CpG analyses, n =12
Untrained Trained Detrained

Age — years 22 (18 a 27) 23 (18 a 27) 23 (19 a 28)
Weight - kg 79.0 (63.7 a 105.8) 775 (63.7 a 102.2) 79.1 (626 a 105.3)
Body mass index - kg/m2 228 (195 a 27.6) 229 (196 a 26.7) 231 (192 a274)
Waist — cm 87 (79 a 90) 79% (73 a 87) 808" (72.6 a 92.6)
Hip - cm 93 (88 a 104) 89* (82 a 99) 90" (82 a 101)
Waist/Hip 0.92 (0.88 a 0.99) 0.88 (0.83 a 0.96) 091 (0.86 a 0.97)
VO, 2780 (3585 a 4469) 4440* (3319 a 5793) 3971 (2763 a 4766)
VO,/kg 44.1 (39.7 a 53.9) 56.2* (484 a 65.2) 51.2 (383 a55.5)

Glucose (fasting) = mmol/I

Insulin — pmol/I

HOMA-IR

HbAlC - %

Plasma cholesterol (total) — mmol/I
Low density lipoprotein — mmol/!

High density lipoprotein — mmol/I
Triglyceride — mmol/I

C-reactive protein — mg/I

Leukocytes — x 10%/I

Cohort used for SRNA analyses, n =6

Age — years

Weight - kg

Body mass index - kg/m?

Waist — cm

Hip — cm

Waist/Hip

VO,

VO,/kg

Glucose (fasting) — mmol/I

Insulin — pmol/I

HOMA-IR

HbAC - %

Plasma cholesterol (total) — mmol/I
Low density lipoprotein = mmol/|

High density lipoprotein — mmol/I
Triglyceride — mmol/I

C-reactive protein — mg/I

Leukocytes — x 10%/1

48 (43a54)

55 (31 a 106)

1.85 (1.11 a 4.03)
32 (26 a 39)
34a56
19a33
1.0a 1.7
06a15
10a30

2 (
3(
14 (
0 (
0(
03B3a71

)
)
)
)
)
)

Untrained, n=6
23 (1812 269)
79.8 (644 a 88.5)
228 (19.8 2 24.8)
885 (786 a2 95.2)
92 (88.2 2 99.8)
09(09a1)
3736 (2766 a 4460)
45 (40.1 a 53.8)
48 (43a54)
80 (544 a 107.5)
29 (18a4.1)
335(29.2 2 3839)
46 (392a58)
6(2.1a36)
3(1a1d)
12(09a16)
1(1a28)
6.1 34 2a8)

48 (44 a5.7)
51 (25a117)
19 (09 a 49)
33 (28 a 36)
0(3.0a438)
4 (18a30)
14(1.1a16)
9(06a17)
0(1.0a1.0)
54(43a6.7)
Trained, n=6
23 (18.1 a 26.9)
79.8 (64.3 a 86.2)
227 (198 a 24.1)
79.2% (724 a 88)
90.2 (854 a 972
09 (08209
4221 (3459 a 5167)
52.6 (48.1 a 63.5)
48 (46a58)
56 (414 a1214)
2(15a52)
335(28.1a36)
1(362a48)
5(19a32)
14 (1 a15)
1.1(0.7a17)
1(Tafl)
6.1 (42a77)

47 (43a53)
57 (27 a 80)
19 (09 a 29)
317 (23 a 36)
43 (34a54)
26(1.8a34)
13(10a18)
09(05a18)
0(1.0a25)
54 (412 65)
Detrained, n=6
24 (192 27)
81.2 (63.0 a 89.7)
22.9 (194 a 24.0)
80.5 (724 a 93.9)
91 (83 a 99)
091 (0.83 a 0.95)
3830 (2766 a 4621)
50.7 (374 a 55.5)
47 (442 53)
58 (45 a 81)
20(1.7a29)
30* (26 2 37)
51 (43a58)
14(10a19)
29 (24 a4.1)
11(082a19)
0(1.0a29)
54 (443 112)

A Subjects studied for DNA methylation. B Subjects studied for sSRNA expression. HOMA-IR: Homeostatic Model Assessment of Insulin Resistance. Results are medians with
2.5 and 97.5 percentiles. Differences between time points were determined using a paired t test or a Wilcoxon signed rank (Insulin and HOMA-IR in both tables and
Triglyceride in Table 1a) and are Holm-Bonferroni corrected. Age and C-reactive protein were not tested. *P < 0.05 Untrained vs. Trained, *P < 0.05 Untrained vs. Detrained
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Fig. 1 Effect of endurance training and detraining on sperm-borme small non-coding RNA and subsets of repetitive elements. a Median abundance of
selected sRNA subtypes at the three different time points. Median error bars are from lowest to highest observation from sRNA-seq data. b The expression
levels of selected subsets of SRNA (miRNA, green; tRNA, red; piRNA, purple) are presented at the three different time points for each individual.

Data are presented as log-transformed sequence reads per million (1 = Untrained, 2 =Trained, 3 = Detrained)

(at the Detrained state). With a 5% FDR cut-off, we found
177 DMRSs at the Trained and 190 DMRs at the Detrained.
Analysis of median methylation showed that, while the
clusters investigated followed a bi-modal distribution of
low or high methylation, the DMRs were almost entirely
located in a low methylated context (Fig. 2a). In both the
Trained and Detrained state, DMRs were enriched at pro-
moter regions over exon, intron and distal intergenic re-
gions (Fig. 2b, c). Closer analysis of promoter regions
revealed that DMRs were most preferably located in a
10 kb region centered on the transcription start site (TSS)
(Fig. 2d, e). Collectively, these data show that DNA methy-
lation changes in response to exercise occur at specific
genomic elements, and strongly suggests a role in the con-
trol of transcription initiation.

To gain insight into the functional relevance of differ-
ential methylation after exercise, we performed a gene
ontology analysis for the genes proximal to exercise
DMRs at 5 or 10% FDR using g:Profiler [29]. Regardless
of the FDR cut-off, at the Trained state, significant en-
richment was found for the ontology terms related to
the development of the central nervous system such as
“neurogenesis”, “neuron differentiation”, and “axon guid-
ance” (Additional file 9: Tables S7 and S8 and Fig. 3a). It
is noteworthy that the gene ontology term “neurogenesis”

contains all genes of the aforementioned terms, except
the gene PPPIRI3L. While some DMRs survived 3 months
after training, gene ontology analysis of the Detrained state
only returned the more generic term “regionalization” (Fig.
3a). Study design of published intervention studies (includ-
ing from our group) did not establish if epigenetic variation
in sperm is simply time-related or specifically triggered by
the intervention itself [15, 30]. Here, the loss of both ontol-
ogy term specificity and number at the Detrained state in-
fers that exercise triggers specific DNA methylation
changes and that these changes are not caused by simple
time-related effect.

Genes related to the development of the central nervous
system were previously identified as genes escaping epigen-
etic reprogramming in human primordial germ cells and
early embryogenesis [31]. While we did not find, using a
hyper-geometric test, a statistically significant overlap be-
tween our exercise-responsive DMRs and regions escaping
epigenetic reprogramming during human gametogenesis
[31], we found seven genes proximal to our DMRs in com-
mon; SMCOI, PCDHI10, FAM160A1, TRIMLI, ABLI, SETX,
and TSPY3 (see Table 2). Testing for overlap between our
gene list and past reports investigating sperm DNA methyla-
tion changes in health and disease, we also did not de-
tect specific enrichment between genes at proximity of
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our exercise DMRs and genes reported in sperm from
obese [15], from an autism cohort [32] or after 3 months
of endurance training [30]. These results may imply that
while genes related to the development of the central ner-
vous system are epigenetically susceptible to environmen-
tal influences in male gametes, each environmental insult
triggers changes on a specific subset of genes. Alterna-
tively, the difference in regions covered by each of these
studies could explain the lack of overlap across cohorts.
Nevertheless, our results strengthen that a subset of genes
involved in the development of the central nervous system
represents a genomic hotspot for epigenetic variation
under environmental influences that has potential to con-
vey reprogramming signals to the embryo.

To identify if epigenetically variable genes in sperm carry
common sequence features, we searched for motifs sur-
rounding the exercise DMRs found in a low methylation

context using the MEME suite [33]. We discovered that
two motifs cover the majority of DMRs (96% of DMRs con-
tained at least one motif, and 64% contain both). Prediction
of transcription factor binding returned putative binding
site for the transcription factors EHF, MAZ, STATI, and
MNT (Fig. 4a), and SP2, SP3, SP4, and KLF16 for the re-
spective motifs. Most importantly, a genomic scan for genes
containing each respective motif returned that genes con-
taining the motif of Fig. 4a were enriched for the term “ner-
vous system development” (Fig. 4c) while motif of Fig. 4b
did not (Fig. 4d). This observation indicates that we identi-
fied motifs located at proximity of epigenetically-variable
genes and reinforces our finding that epigenetically variable
genes in human sperm relate to the development of the
central nervous system.

This study contains a few limitations worth noting. The
sample size is relatively small (n =6 for sSRNA and n =12
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for RRBS), due to a technical limitation when extracting
DNA and RNA from the on single ejaculate, and in all
three time-points (Untrained, Trained, and Detrained).
However, the fact that each participant were assessed at all
of the three time points considerably increases statistical
power [34]. The lack of a control group accounting for
time-related epigenetic alterations during the 6 week of ex-
ercise intervention can be seen as a limit to this study; how-
ever, others have reported no significant alterations in total

methylation levels in spermatozoa of a control, non-
exercising group, in a 3-month sampling interval [30].

In conclusion, our data provide evidence that endur-
ance training remodels sRNA expression and the DNA
methylation profile at close proximity of transcription
start sites, specifically, at genes related to neurological
development and function. These findings highlight the
dynamic nature of the spermatozoal epigenome in re-
sponse to environmental or lifestyle factors in humans.

Table 2 Selected DMRs at the trained state. DMRs which are found to be responsive to exercise and whose nearest gene has been
found to escape epigenetic reprogramming, Chr is chromosome, Difference is the median of methylation differences observed

within the cluster, upon exercise training

Chr Start End Difference  Distance to TSS ~ Gene Symbol Description

chr3 196,260,561 196,260,561 - 53% — 18324 SMCO1 Single-pass membrane protein with coiled-coil domains 1
chr4 132,671,876 132,671,876 2.8% — 1,398,594 PCDH10 Protocadherin 10

chr4 152,283,426 152,283,475 —158% — 46,923 FAM160A1 Family with sequence similarity 160 member A1

chr4 189,100,182 189,100,182 —30.9% 35,385 TRIML1 Tripartite motif family like 1

chr9 133,616,767 133,616,767 —13.0% 27,499 ABL1 ABL proto-oncogene 1, non-receptor tyrosine kinase
chr9 135,127,959 135,128,001 —472% 77,885 SETX Senataxin

chry 9,384,788 9,384,795 12.8% 19,299 TSPY3 Testis specific protein, Y-linked 3
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Future studies will determine the role of environmentally
induced epigenetic changes in sperm on the develop-
ment of the embryo and phenotype of the offspring.

Material and methods

Subjects and sample collection

The study was approved by the Ethics Committee from the
Capital Region of Denmark (reference H-1-2013-064) and
informed consent was obtained from all participants. A por-
tion of this cohort has previously been described [35]. Clin-
ical characteristics of participants at all three time-points
are presented in Table 1A and B. For the analysis of SRNA
nine participants were analyzed at the untrained and
trained, six participants were analyzed at the detrained
state. Analysis of DNA methylation was performed on 12
participants at all three time points. All recruited partici-
pants were young, healthy, sedentary Caucasian males in
their reproductive age (1835 years). Exclusion criteria were

regular smoking, alcohol consumption of >14 units per
week, presence of chronic or acute disease as well as daily
intake of medicine. Men exercising more than twice per
week, or who within the last 2 years had performed exercise
on competitive levels, were excluded. VO,,. tests were
performed by incremental exercise to volitional fatigue on
an electromagnetically braked cycle ergometer (Monark
Ergomedic 839E, Sweden) under fasting conditions. Pul-
monary gas exchange was measured during the test breath-
by-breath with a gas analyzing system (Oxycon Pro, Jaeger,
Germany). All participants were fecund and cleared for tes-
ticular and andrological abnormalities by inspection, anam-
nesis, and palpation. Microscopy was used to rule out
spermatozoal morphological abnormalities and to count
sperm concentration. Semen samples were delivered by
masturbation after an overnight fast and a period of mini-
mum 3 and maximum 7 days of ejaculative abstinence.
Ejaculates were immediately stored at 37 °C. Venous blood
was drawn at fasting conditions.
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Exercise intervention

Before the exercise intervention, all participants delivered
a semen sample, blood sample and performed a VO,
test (Untrained). The 6-week exercise program was per-
formed by five weekly 1-h sessions for 6 weeks with super-
vised spinning classes by a certified instructor. The
spinning classes were kept at an intensity of 70% of the
participants’ individual reserve capacity of their max pulse,
determined by a max test performed before the exercise
intervention. All participants participated in all sessions
within the 6 weeks, and performance at each session was
in accordance with the required intensity, as monitored
individually by personal pulse monitors. After the 6-week
exercise intervention, participants rested for 4 days before
delivering the Trained ejaculate and performing VO,max
test. Participants returned to their habitual Untrained ex-
ercise level for the following 3 months until their last ses-
sion of semen sample delivery, blood sampling and
VO,max were performed (Detrained). Compliance with
the detraining program was verified by self-reporting at
regular check-ups by investigator.

Changes in clinical parameters were only analyzed on
respective subset of participants included for DNA
methylation or sRNA expression. Thus, sSRNA was cal-
culated based on data from six participants. Tests for
the RRBS cohort was based on 12 participants. Clinical
parameters were tested for normality using a Shapiro-
Wilk test, p values for normally distributed parameters
were calculated with a paired t-test, while non-normal
variables were tested with a Wilcoxon signed rank test.
All p values were corrected for family-wise error rate by
the Holm—Bonferroni method.

Isolation of motile spermatozoa

A “swim-up” procedure was performed to exclude som-
atic cells and to isolate motile spermatozoa, which re-
sulted in the isolation of the spermatozoa with the
highest fertilization potential: 0.5 ml of semen was over-
laid with 2 ml of medium (Earle’s Balanced Salt Solution
(Sigma) with 3.2 mg/ml Human Serum Albumin (Sigma)
and 25 mM Hepes) in round-bottom tubes and incu-
bated at 37 °C at a 45° angle for 2 h. The upper fractions
were pooled per ejaculate, and the spermatozoa counted
by microscopy. The potential presence of somatic cells
was inspected under a photon microscope.

sRNA-Seq and RRBS

Total RNA was isolated by the TRIzol° method (Life
Technologies) from the sperm cells of six men before
and after the 6-week exercise intervention, and after
3 months of detraining. The sRNA libraries were pre-
pared using the NEBNext® Multiplex Small RNA Library
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Prep Set for Illumina (New England Biolabs), according
to the manufacturer’s instructions. Molecules of 20-50
nucleotides were separated by acrylamide gel electro-
phoresis, extracted, and sequenced on a HiSeq2500
[lumina instrument as 50 bp single-end reads, and proc-
essed by CASAVA 1.8.2.

The filter for including a feature in the sSRNA analysis
was dependent on the type of feature being analyzed.
Due to the vast differences in sequencing depth of the
different SRNA types, a single count per million (CPM)
cutoff would have either included features with almost
no reads or excluded features with many reads. Instead,
a dynamic cutoff was used that depended on the total
number of reads for that feature. The formula used to
calculate the cutoff was:

cutOff =5 x median (%)

Where 7,45 is a vector containing the total number
of reads assigned to this type of sSRNA for each sample.
This translates to a cut-off of 0.2 for miRNA, 0.5 for
tRNA, 2.7 for piRNA and 2.9 for Repetitive Elements
(Additional file 6: Tables S2—S4, Additional file 7: Table
S5). Features with more than the cut-off in 1/3 or more
of the samples (eight or more samples) was included in
the test for differential expression.

For DNA methylation analysis, genomic DNA was ex-
tracted from the sperm cells of 12 men before and after
the exercise intervention, as well as after the detraining
period, with the Nucleon™ BACC Genomic DNA Extrac-
tion Kit (GE Healthcare, Life Sciences). The protocol
was modified for processing of sperm, according to the
manufacturer’s recommendations. Reduced Representa-
tion Bisulfite Sequencing libraries were constructed as
previously described [15]. Briefly, 200 ng of genomic
DNA was digested with 40 U of Mspl enzymes (New
England Biolabs) and ligated to TruSeq (Illumina) se-
quencing adaptors. Bisulfite conversion was conducted
once with the EpiTect bisulfite kit (Qiagen) in accord-
ance with the manufacturer’s instructions, and the con-
verted DNA was amplified by PCR and sequenced on a
HiSeq2500 Illumina instrument as 50 bp single end
reads, and processed by CASAVA 1.8.2.

Analysis of sequencing data

SRNA reads were aligned to hgl9 using the subread
aligner using the recommended settings for miRNA
mapping with the exception that only uniquely mapping
reads were kept [35]. Unmapped reads were aligned first
ribosomal sequences allowing for up to 10 mappings per
read, reads that were still unmapped were aligned to
miRNA-, piRNA-, tRNA- and repeatmasker-sequences
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in that order, keeping only reads that could be uniquely
mapped. Reads that mapped to the genome in the first
step were counted using Feature Counts [36], assigning
reads to the feature they overlapped the most, and added
to the counts generated in the subsequent mapping
steps. Features were filtered for low expression using a
dynamic filter, see above, prior to testing for differential
expression. Detection of differentially expressed sSRNAs
was calculated by edgeR and included both participant
and training effects. Features with a false discovery rate
less than 0.1 were deemed significant. Human mature
miRNAs and their precursor sequences were obtained
from miRBase [37] version 20. piRNA sequences were
downloaded from piRBase version 1.0 [38]. Human
tRNAs were retrieved from UCSC genome browser [39].
piRNA targets were predicted using piRNAQuest [40]
which uses sequence similarity to predict piRNA targets.
Biotype composition of sRNA is visualized as barplots
with a height equal to the median and error bars extend-
ing from the minimum to maximum observation. A plot
of a PCA analysis based on the sRNA composition is
available in Additional file 10: Figure S7.

Preprocessing of RRBS reads were done with Trim
Galore v0.4.0 & Cutadapt v1.8.3 using the —rrbs flag.
Bismark v0.14.4 [41] was used for aligning the reads to the
hgl9 genome and for computing the CpG coverage. The
BiSeq package v1.10 [42] calculated methylation levels
and found DMRs. Standard settings were used, except for
the function: “clusterSites”, where the settings perc.sam-
ples = 0.5 and min.sites = 5 were used. The model formula
used was ~ Condition + Patient | Condition. A FDR cutoff
of 0.1 was used for selecting the final DMRs, additionally
a more stringent cut-off of 5% FDR coupled with a mini-
mum methylation change of 5% and 10% were tested.
Gene ontology analysis of nearby genes revealed that simi-
lar types of genes were discovered under all levels of strin-
gency. Motif discovery was done using MEME-ChIP [43]
on DMRs with a median methylation of less than 20% as
the foreground and clusters with the same methylation
levels that were not differentially methylated as back-
ground. Prior to motif discovery all regions were widened
to 500 bp centered on the DMR/cluster. Hierarchical
clustering of samples based on estimated methylation is
available in Additional file 10: Figure S7. Summary statis-
tics of both sequencing experiments are available in
Additional file 11: Table S9. Individual methylation results
at each CpG site within DMRs are provided in
Additional file 12: Table S10.

Differences between the distribution of distances to a
TSS for DMRs and non DMRs were tested using a
Kolmogorov—Smirnov test (K-S test). Overlap between
the DMRs discovered in this paper and previously re-
ported DMRs were tested with a hypergeometric test
(Additional file 13: Figure S8).
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Additional files

Additional file 1: Figure S1. Overview of the experimental setup.
(TIFF 1386 kb)

Additional file 2: Figure S3. Median abundance of all sRNA subtypes
at the three different time points, height is median error bars are from
lowest to highest observation. (TIFF 285 kb)

Additional file 3: Figure S4. Observed abundance of selected sRNA
subtypes at the three different time points, columns represent different
participants. (TIFF 189 kb)

Additional file 4: Figure S5. Observed abundance of all sSRNA subtypes
at the three different time points, columns represent different
participants. (TIFF 218 kb)

Additional file 5: Figure S6. Boxplot of the expression levels of
selected subsets of SRNA (miRNA, green; tRNA, red; piRNA, purple) are
presented at the three different time points for each individual. Data are
presented as log-transformed sequence reads per million (1 = Untrained,
2 =Trained, 3 = Detrained). (TIFF 973 kb)

Additional file 6: Tables S1 - S4. Differences in sSRNA expression
profiles in the spermatozoa between the Untrained, Trained and Detrained
state. miRNAs, piRNAs, Repetitive Elements, tRNAs and mRNA fragments
differentially expressed between Untrained and Trained, Trained and
Detrained, Untrained and Detrained. logFC: Log2 Fold Change; logCPM:
Log2 counts per million; LR: Likelihood ratio; feature: SRNA name; FDR:
False Discovery Rate. (ZIP 1010 kb)

Additional file 7: Tables S5 and S6. Differences in methylation in the
spermatozoa between the Untrained, Trained and Detrained state. S5 Table
shows results for the FDR 10% cut-off and S6 Table shows results for the
FDR 5% cut-off. Regions differentially methylated between, Untrained and
Trained as well as Untrained and Detrained. median.p: median P-value in
DMR; median.meth.untrained/trained/detrained: median methylation of
CpGs in DMR; median.meth.diff: median methylation difference between
conditions; annotation: location relative to nearest gene. (ZIP 198 kb)

Additional file 8: Figure S2. The expression levels of selected subsets of
Repetitive Elements are presented at the three different time points for
each individual. Data are presented as log-transformed sequence reads per
million (1 = Untrained, 2 =Trained, 3 = Detrained). (TIFF 1371 kb)

Additional file 9: Tables S7 and S8. Gene ontology analysis of gene
located at proximity of the Trained (S6) or the Detrained (S7) DMRs. GO:
Gene ontology term. FDR: False Discovery Rate. (ZIP 61 kb)

Additional file 10: Figure S7. PCA plot of the samples based on
sncRNA distribution. The three samples 25_2_2,7_1_2 and 15_1_2 were
investigated as possible outliers, but no reason to exclude them could be
found. (TIFF 220 kb)

Additional file 11: Table S9. Overview of sequencing results. Number
of reads sequenced, number of reads aligned, mapping rate and number
of unique aligned reads for the sSRNA and RRBS experiment. (XLSX 52 kb)

Additional file 12: Table S10. Detailled DNA methylation results at
Differentially Methylated Regions. Sequencing counts are indicated at
each CpG for every participants. (XLSX 149 kb)

Additional file 13: Figure S8. Hierarchical clustering of samples based
on estimated methylation across all covered CpGs. Sample 17_1 was

sequenced less deeply and did not appear to be an outlier. (TIFF 1655 kb)
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Author summary

In addition to genetic information, sperm cells deliver epigenetic information
to the oocyte at fertilization that has potential to alter the development of the
embryo. Epidemiological evidence indicates that paternal nutrition before
conception can alter the phenotype of the following generation. In this work,
we investigated the effect of a 6-week endurance training intervention
in healthy men on the spermatozoal epigenome. We discovered several
small non-coding RNA molecules differentially expressed after training
and identified that methylation of sperm DNA is remodeled at genes
controlling the development of the central nervous system. We propose
that genes differentially methylated after exercise in sperm are hot-spots
for epigenetic variation. Our work provides important new insight to the
role of lifestyle factors on the modulation of the sperm epigenome.
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