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Abstract

Whether stress affects memory depends on which stress pathway becomes activated and

which specific memory system is involved. The activation of the sympathetic nervous sys-

tem (SNS), leads to a release of catecholamines. The activation of the hypothalamic-pitui-

tary-adrenal (HPA) axis, leads to a release of glucocorticoids. In thus study, it was

investigated whether SNS and/or HPA axis activation are associated with long-term mem-

ory (LTM) and/or working memory (WM) performance in humans. Thirty-three participants

underwent the socially evaluated cold-pressor test. Salivary alpha-amylase (sAA) was used

as a marker for the activation of the SNS and cortisol as marker for HPA axis activation.

Memory was assessed by means of word lists with 15 words each. The primacy effect (i.e.,

the correctly recalled words from the beginning of the lists) of the serial position curve was

considered as indicator for LTM. The recency effect (i.e., the correctly recalled words from

the end of the lists) were used as estimator for WM performance. In sAA responders, the

recency effect and, therefore, WM performance increased immediately after the stressor.

This was not found in sAA non-responders. In cortisol responders, the primacy effect and,

thus, LTM performance decreased 20 minutes after the stressor. No change in LTM perfor-

mance was found in cortisol non-responders. Our study supports the assumptions that 1)

SNS activation is associated with WM processes via stimulation of the prefrontal cortex, and

2) HPA axis activation is associated with LTM processes through interactions with the

hippocampus.

Introduction

Cognitive functions–especially memory–are not entirely independent of peripheral physiolog-

ical processes. Some peripherally transmitted molecules (e.g., some hormones) can pass the

blood-brain barrier (BBB) and can, therefore, affect neural activity directly. Other substances

indeed cannot pass the BBB but can still affect neural activity through indirect feedback loops
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by activating brain networks, which lead to the release of neuro modulators in brain regions

involved in cognitive processing (e.g. [1–3]).

One prominent candidate which can trigger such effects is stress. Stress can be defined as

“an actual or anticipated disruption of homeostasis or an anticipated threat to well-being” ([4],

p. 397). The acute stress response is dominated by two pathways (e.g., [5,6]; Fig 1A). The first,

which starts immediately after the onset of the stressor is the activation of the sympathetic ner-

vous system (SNS). This leads to the release of the catecholamines adrenaline and noradrena-

line which both cannot pass the BBB but can affect cognitive processing through indirect

pathways [1]. The peripherally transmitted catecholamines can activate the locus coeruleus in

the brainstem which stimulates the release of noradrenaline and dopamine in the prefrontal

cortex (PFC) via the ventral tegmental area [3,7,8]. The PFC is involved in a variety of higher

order cognitive functions, e.g., in working memory (WM) processes which are mainly con-

trolled by noradrenaline and dopamine [9].

The second stress response, which peaks with a short delay of a few minutes after the onset

of the stressor, is the activation of the hypothalamic-pituitary adrenal (HPA) axis. This leads to

the release of glucocorticoids (i.e., cortisol in humans or corticosterone in rodents) from the

adrenal cortex. After threatening socially-evaluative stressors (e.g., the Trier Social Stress Test;

[10]), HPA axis response peaks approximately 20 minutes after the end of the stressor (e.g.,

[11]). The stress hormone cortisol can pass the BBB and can, therefore, directly affect neural

processing [12]. Cortisol binds to two different receptors in the brain [13,14]. The first, the

mineralocorticoid receptor (MR, or type 1 receptor) can be found within the hippocampus

and the prefrontal cortex [15]. The second, the glucocorticoid receptor (GR, or type 2 recep-

tor) is widely distributed in different brain areas. Which cognitive processes (i.e., which mem-

ory functions) are affected after cortisol release depends on which receptors and, therefore, in

which brain area, cortisol binds to [16]. Both receptor types have different affinity for cortisol

[13]. The MRs have high affinity and are, therefore, usually occupied at basal cortisol concen-

trations. The GRs have a lower affinity for cortisol and are, thus, in many cases not occupied

unless cortisol levels are increased. The brain structure in which both MRs and GRs are local-

ized is the hippocampus which is also mainly involved in long-term memory (LTM) processes.

Therefore, there has been a long research history in the evaluation of the effects of cortisol

binding on GRs in the hippocampus and its associations with LTM processes (e.g., [17–19]).

Fig 1. a) Stress pathways that are activated after an acute stress situation, affected brain regions through indirect (dashed arrow) or direct pathways, and b) a simplified

memory model.

https://doi.org/10.1371/journal.pone.0213883.g001
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A classical model which involves both WM and LTM, was proposed by Atkinson and Shif-

frin [20]. According to this model, any new information first enters–after it has passed the so-

called sensory register–WM. After this, the information is either forgotten or it is stored in

LTM from where it can be retrieved at later time points (Fig 1B). One easy way to assess both

WM and LTM within one experiment is to investigate the so-called serial position effects

[21,22]. A typical experimental procedure is to present word lists of approximately 15 words to

the participants and to let them recall as many words as they can remember immediately after

the last word was presented. The classical observation is that words from the beginning as well

as from the end of the word list can be better recalled than words from the middle of the list.

The first effect is called the primacy effect (PE) which is associated with LTM processes. The

second is called recency effect (RE) and it is associated with WM [21]. The effects of acute

stress on the serial position effects have not been investigated so far.

The aims of the present study were to investigate whether SNS activation is associated with

WM and whether HPA axis activation is associated with LTM performance in humans after

an acute stressor. As measures of the functioning of the memory systems, the PE and the RE of

the serial position curve were examined. The hypotheses were that 1) SNS activation would

start immediately after the stressor and would be related with the RE and, thus, with WM and

2) that HPA axis activation would peak with a time delay of approximately 20 minutes and

would be associated with the PE and, therefore, with LTM performance. It was assumed that

these effects will only be found in participants who show indeed a SNS or HPA axis response,

respectively (the so-called responders). Furthermore, it was hypothesized that such effects will

not be found in the non-responder groups.

Materials and methods

Participants

Thirty-three healthy, German-speaking adults participated (mean age: 24.0 ± 5.7 years; eight

male; BMI = 22.2 ± 2.8 kg/m2). None of them reported endocrinological, neurological, or psy-

chological diseases. This was checked during a pre-screening. Persons with a psychiatric diag-

nosis (currently or in the past) were screened out. All participants gave their written and

informed consent. The study was carried out in accordance with the Code of Ethics of the

World Medical Association (Declaration of Helsinki) and was approved by the local ethics

committee of the Friedrich-Alexander University Erlangen-Nuremberg (protocol # 6_18 B).

Experimental procedure

The time course of the experiment is shown in Fig 2. The whole session–including instruc-

tions–lasted 60 minutes. For memory assessment, participants were presented three word lists

with 15 words each with inter-stimulus intervals of one second. The words were simple neutral

words with a short pronunciation time (e.g., the German words for ‘dog’, ‘coffee’, ‘bus’, or

‘door’). After the presentation of each list, the participants were asked to immediately recall as

many words as they had remembered. As measure for LTM performance, the PE was used

which was defined as the sum of correctly recalled words from the first three words of the lists.

Accordingly, the RE, which was used as a measure for WM performance, was defined as the

sum of correctly recalled words from the last three words of the lists. Memory testing was

repeated three times throughout the experimental session with three lists each time. The order

of the word lists was counterbalanced between the participants and between the memory

assessment time points.

Stress was induced by means of the socially evaluated cold-pressor test (SECPT, [23]) in

groups of two participants. The participants stood in front of a table on which transparent
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boxes filled with ice water were placed. Participants were instructed to immerse their hands in

the ice water as long as possible for up to three minutes. Mean immersion time was 2:20 ± 1:06

min (min. 0:18, max: 3:00). The hand of each participant was directly opposite of the hand of

the other person with the aim to introduce a competitive situation. Remaining time was dis-

played on a large-display digital clock that was visible for both participants. An auditory count-

down announced the last five seconds. Therefore, our protocol slightly differed from that

reported by Schwabe and colleagues (2008, [23]) and by Minkley and colleagues (2014) who

introduced the first group version of the SECPT [24]. One experimenter who wore a medical

uniform was present during the SECPT and was instructed to behave distanced and to keep a

neutral mimic.

Salivary alpha-amylase (sAA) and salivary cortisol were used as measures of SNS and HPA

axis activity [25–28]. Saliva was collected by means of salivettes (Sarstedt, Nümbrecht, Ger-

many) at seven time points during the experimental session. The first saliva sample (s0) was

collected immediately prior to the presentation of the first word list. The following samples

were collected immediately prior (s1) and immediately after (s2) the SECPT. The following

four samples were collected five (s3), ten (s4), 20 (s5), and 35 (s6) minutes after the end of the

SECPT. The participants were instructed not to eat, drink (except water), smoke, or brush

their teeth two hours before the start of the experimental session. Additionally, subjective stress

perception was rated on a ten-point Likert-scale with the anchors “not stressed at all” and

“totally stressed” during saliva collection.

Furthermore, some demographic and psychological variables were collected by means of

questionnaires during waiting time between the saliva samples (when no memory tests were

performed). Demographic variables that were assessed were sex, age, weight, and height. The

amount of regular physical activity was measured by means of the short form of the Interna-

tional Physical Activity Questionnaire (IPAQ; [29,30]). Chronic stress was assessed by means

of the screening scale of the Trier Inventory of Chronic Stress (TICS-SSCS; [31]) and the Per-

ceived Stress Scale (PSS; [32]). Additionally, burnout and depression were measured by means

of the Maslach Burnout Inventory [33] and the German version of the depression scale from

the Center for Epidemiological Studies (CES-D, [34,35]).

Fig 2. Time course of the experimental procedure. Stress was induced by means of the socially evaluated cold-pressor test (SECPT).

https://doi.org/10.1371/journal.pone.0213883.g002
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Sample processing

Saliva samples were stored at -30˚C after collection for later analyses. After the study was com-

pleted, samples were sent to Dresden LabService GmbH (Dresden, Germany) where they were

analyzed by means of high performance liquid chromatography.

Sample analysis

For statistical analyses, IBM SPSS Statistics (version 25) was used. For evaluation of the mem-

ory test, the number of recalled words for each position (1 to 15) was summed for the three

word lists at each the three measurement time points. First, only the memory tests were ana-

lyzed to ensure that primacy and recency effects were actually found.

Therefore, an analysis of variance for repeated measurement (rmANOVA) with the within-

subject factors ‘position’ (‘1’, . . ., ‘15’) and ‘time point (‘pre SECPT’, ‘post SECPT’, and ‘SECPT

+ 20 min.’) was calculated. The number of correctly recalled words was averaged over the per-

centiles (1st to 3rd, 4th to 6th, . . ., 13th to 15th word position; P1, . . ., P5) to make the following

post-hoc analysis easier to interpret. Only the percentiles were used for further statistical analy-

sis. If necessary, sphericity violations (determined by Mauchly’s test of sphericity; [36]) were cor-

rected by adjusting the degrees of freedom with the procedure by 36. As post-hoc tests, t-tests

with adjusted alpha levels according to the Bonferroni correction were calculated. Partial eta-

squares (ηp
2) for ANOVAs and Cohen’s d for t-tests are reported for effect sizes. If necessary,

Cohen’s d was corrected according to the method that was proposed by Morris (2008; [37]). For

further analysis (after the occurrence of an PE and RE was revealed), P1 was considered as a

measure of the primacy effect and, therefore, for long-term memory, and P5 was considered as a

measure for the recency effect and, thus, for working memory performance. To test whether the

PE and the RE differed between the three time points (‘pre SECPT’, ‘post SECPT’, and ‘SECPT

+ 20 min.’) and whether they were, therefore, related to the stress induction, a further rmA-

NOVA with the factors ‘time point’ and ‘memory effect’ (‘PE’ and ‘RE’) was calculated.

Because of positive skewness, cortisol levels were transformed by means of the natural loga-

rithm prior to further statistical analysis. Participants were classified as responders or non-

responders, separately for sAA and cortisol. Participants with an increase of more than 10 per-

cent between s1 and s2 for sAA and between s1 and s5 for cortisol were classified as responders.

Further rmANOVAS with the within-subject factors ‘memory type’ and ‘time point’ and the

between-subject factor ‘respondence’ were calculated. If necessary, post-hoc rmANOVAS with

the factors ‘time point’ and ‘respondence’ were calculated, separately for the PE and RE.

Results

Stress effects on memory

A main effect of the factor position (F(6.011, 192.35) = 24.80, p< .001, ηp
2 = .44), a main effect of

time point (F(2, 64) = 4.08, p = .022, ηp
2 = .11), and an interaction position � time (F(14.17, 453.42)

= 4.83, p< .001, ηp
2 = .13) were found (Fig 3A–3C). A further rmANOVA, in which the per-

centiles P1, P3, and P5 were compared, revealed a significant main effect of the factor time

point (F(1.61, 51.76) = 58.0, p< .001, ηp
2 = .64), a marginally significant main effect of the factor

percentile (F(2, 64) = 2.84, p = .066, ηp
2 = .08), and a significant interaction time point � percen-

tile (F(4, 128) = 13.19, p< .001, ηp
2 = .29). Post-hoc t-tests showed that both the primacy effects

(i.e., P1 > P3) and recency effects (i.e., P5 > P3) were found for all three time points (all p<
.001) in this sample.

For further analysis, the first (P1) and the last (P5) three words were used as measures for

the PE and RE. A further rmANOVA revealed main effects of the factors time point (F(2, 64) =

Associations between the physiological stress response to an acute stressor and serial position effects
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5.76, p = .005, ηp
2 = .15) and memory effect (F(1, 32) = 17.15, p< .001, ηp

2 = .35) and an interac-

tion time point � memory effect (F(1.67, 53.4) = 20.76, p< .001, ηp
2 = .39, Fig 3D). Post-hoc t-

tests showed that the strength of the PE and RE was the same before the SECPT and different

after the SECPT (i.e., the RE was stronger than the PE; both p< .001). Immediately after

SECPT, the PE was the same as before (p = .236). The PE was significantly weaker 20 minutes

after the SECPT than immediately after it (t(32) = 3.65, p = .001, d = -0.71). Therefore, LTM

performance did not differ immediately after SECPT, but decreased 20 minutes after the stress

induction. The RE was significantly stronger immediately after the SECPT than before (pre-

post: t(32) = -5.43, p< .001, d = 0.86), but did not change further in the following 20 minutes (p
= .122). Therefore, WM performance increased immediately after the SECPT, but did not

change afterwards.

Subjective stress perception

Subjective stress perception significantly differed between the seven time points (F(3.68, 117.75) =

13.56, p< .001, ηp
2 = .30). Post-hoc t-tests revealed that subjective stress perception was higher

Fig 3. Number of correctly recalled words in dependence of the word position, a) before the SECPT, b) immediately after SECPT, c) 20 minutes after the SECPT, and d)

strength of the primacy and recency effect in dependence of the measurement time-point.

https://doi.org/10.1371/journal.pone.0213883.g003
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immediately after the SECPT (s2) than before it (s1-s2: t(32) = -2.97, p = .006, d = 0.56) and fur-

ther declined until 20 minutes after the SECPT (s5, all p< .230, Fig 4A).

Salivary alpha-amylase

Salivary alpha-amylase concentration significantly differed between the seven time points (F(6,

192) = 2.32, p = .034, ηp
2 = .07, Fig 4B). Post-hoc t-tests revealed that sAA concentration

increased immediately after the SECPT (s1-s2: t(32) = -2.20, p = .035, d = 0.49) and then

decreased until it reached a minimum ten minutes after the SECPT (s3-s4: t(32) = 1.91, p = .033,

d = -0.32). Amylase concentration did not change further after s4.

Twenty-two participants were classified as sAA-responders with an sAA-increase of more

than ten percent between s1 and s2. Eleven participants were classified as sAA non-responders.

A further rmANOVA with the within-subject factors memory type and time and the between-

subject factor sAA respondence was calculated. This revealed a main effect of memory type

(F(1, 31) = 24.25, p< .001, ηp
2 = .44), a main effect of time (F(2, 62) = 4.49, p = .015, ηp

2 = .13), a

memory type � sAA respondence interaction (F(1, 1) = 5.29, p = .028, ηp
2 = .15), and a memory

type � time interaction (F(2, 62) = 15.41, p< .001, ηp
2 = .33).

Post-hoc analysis for the PE revealed only a main effect of time (F(2, 62) = 7.55, p = .001, ηp
2

= .20; Fig 5A). Thus, the PE and, therefore, long-term memory performance was not associated

with the sAA response. For the RE, a main effect of time was found (F(2, 62) = 18.24, p< .001,

ηp
2 = .37) and a main effect of sAA respondence were found (F(1, 31) = 4.77, p = .037, ηp

2 = .13;

Fig 5B). Only the sAA responders showed a main effect of the factor time effect (F(2, 42) =

23.37, p< .001, ηp
2 = .53), but not the sAA non-responders. Therefore, WM performance only

increased in sAA responders. However, it should be noted that the sAA-non responders had

higher baseline REs than the sAA-responders which might have prevented a further increase

(t(31) = -2.28, p = .030, d = -0.84).

Cortisol

Cortisol concentration also differed significantly between the seven time points (F(2.02, 164.48) =

7.08, p = .001, ηp
2 = .20, Fig 4C). Post-hoc t-tests revealed that cortisol concentration did not

differ between before and immediately after the SECPT (p = .368). Afterwards cortisol concen-

tration increased until it reached a maximum 20 minutes after the SECPT (s4-s5: t(32) = -3.35, p
= .002, d = 0.45).

Twenty-three participants were classified as cortisol-responders with a cortisol increase of

more than ten percent between s1 and s5. Ten participants were assigned to the cortisol non-

responders group. A further rmANOVA with the within-subject factors memory type and

time and the between-subject factor cortisol respondence was calculated. This revealed a main

effect of memory type (F(1, 31) = 16.51, p< .001, ηp
2 = .35), a main effect of time (F(2, 62) = 7.01,

p = .002, ηp
2 = .18), a memory type � time interaction (F(2, 62) = 13.12, p< .001, ηp

2 = .30), and

a memory type � time � cortisol respondence interaction (F(2, 1) = 4.07, p = .022, ηp
2 = .12).

Post-hoc analysis for the PE revealed a main effect of time (F(2, 62) = 4.92, p = .01, ηp
2 = .14)

and a time � cortisol respondence interaction (F(2, 31) = 11.79, p = .005, ηp
2 = .16). Post-hoc

analyses showed that, for the PE, a time effect was found only for the cortisol responders (F(2,

44) = 18.28, p< .001, ηp
2 = .45), but not for the cortisol non-responders (Fig 5C). Therefore,

long-term memory performance only decreased in cortisol responders after the SECPT, but

not in cortisol non-responders. For the RE, only a main effect of time (F(2, 62) = 15.44, p<
.001, ηp

2 = .51), but no interaction time � cortisol respondence or a main effect of cortisol

respondence were found (Fig 5D).
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Discussion

In this study, we investigated the time course of the physiological stress response and its associ-

ations with WM and LTM performance. The latter were operationalized by means of the PE

and the RE of the serial position curve. Our first finding was that WM performance increased

immediately after the stressor in participants who showed a sAA response. No changes in WM

performance were found in sAA non-responders. This is in line with our hypothesis and with

previous findings, in which improvements in WM performance after an acute stressor were

found as well [38–42]. However, other studies also found the opposite, i.e. impaired WM func-

tioning after an acute stressor (e.g., [43–47]). However, in contrast to our study, in most cases

spatial WM and not verbal WM was investigated in these previous studies. One explanation

that has been proposed to explain the different findings was that WM improves for simple

tasks, but that it is impaired for complex tasks [2]. This explanation fits well to the results of

Fig 4. Time course of subjective stress ratings (a), sAA concentration (b), and cortisol concentration (c) at different

time points before and after the SECPT.

https://doi.org/10.1371/journal.pone.0213883.g004

Fig 5. Primacy and recency effects for sAA (a, b) as well as for cortisol (c, d) responders and non-responders, before, after and 20 minutes after the SECPT.

https://doi.org/10.1371/journal.pone.0213883.g005
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our study because we used simple word lists with only 15 non-emotional words, and it can be

assumed that this was an easy task for our participants.

Our second finding was that LTM performance did not change immediately after the

stressor, but decreased 25 minutes after its onset in cortisol responders. This was also the time

point of the maximal cortisol response. This decrease in LTM performance was not found in

cortisol non-responders. Our finding is in line with many previous studies in which a drop in

LTM performance and a relation with glucocorticoids was found (e.g., [48–52]). However,

there are also a few studies which cannot support this conclusion [53,54]. It has been proposed

that the timing of the glucocorticoid release (or injection for pharmacological studies), is the

critical factor for the diversity of the findings [55–57]. This could also explain why we did not

find an effect on LTM performance immediately after the stressor.

Our findings support the view that peripherally transmitted noradrenaline leads via indirect

pathways to a release of noradrenaline and dopamine in the PFC (e.g., [2]). Furthermore, our

results are in line with previous findings that have shown that peripherally released cortisol

passes the BBB and binds to receptors that are located in the hippocampus (e.g., [17–19]).

However, in the PFC GRs can be found as well [15] and the hippocampus also receives nor-

adrenaline and dopamine input [58,59]. However, the association between PFC functioning

and peripheral glucocorticoid release can be found for longer time delays only [60]. Further-

more, associations between hippocampal dopamine release and memory have been found for

chronic stress and late long-term potentiation only [61,62].

In our study, we investigated SNS and HPA axis response to an acute stressor. However,

there are further peripheral-physiological stress responses which occur with a longer time

delay, but which might be related with memory processes as well (e.g., parasympathetic activa-

tion and activation of inflammatory processes; e.g., [63]). This should be investigated in future

research (e.g., by means of heart-rate variability analyses and collection of blood samples).

It is important to point out that neutral words were used in our study. There is an extensive

literature on the effects of (e.g., emotional) arousal or stress on emotional memory (e.g.,

[64,65]). It was found that emotional LTM is enhanced–and not impaired as it is for neutral

stimuli [66]. For memory formation of emotional stimuli, the amygdala plays a critical role

[67]. Emotional memory is indeed affected by SNS activity [68]. For example, it has been

found that the enhancement in emotional LTM is eliminated through a blockade of beta-

adrenergic receptors in humans [65]. Furthermore, it was shown that a noradrenaline injec-

tion after learning enhances LTM for emotional stimuli [64]. In animal studies, it has been

found that noradrenaline can have long-term effects on the hippocampus [69–72]. Besides,

glucocorticoids are also involved in LTM enhancement for emotional stimuli. For example,

Buchanan and Lovallo [73] found that a cortisol injection during learning enhanced recall one

week later. To combine these manifold findings, it has been suggested that both, the glucocor-

ticoid and the noradrenaline pathway, interact in emotional memory formation [74,75].

Furthermore, it should be noted that, in previous studies, LTM was assessed in a different

way than in our study. In most previous paradigms, participants were presented the material

on one day and the recall took place on another day. Thus, the elapsed time was much longer

than in our study. Our design has the advantage that learning as well as retrieval of the items

could both be tested at all three time points within one person. Therefore, our design offers

new insights in the effects of acute stress on memory performance.

Our study does not allow us to draw conclusions about the reasons for the sAA- or cortisol-

non respondence. It has been shown previously that stress responsiveness is associated with

childhood traumata and adversity (e.g., [76,77]). These might be factors underlying the non-

responsiveness in our study as well. Unfortunately, we did not ask our participants for this.

But, this should be investigated in future research.
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Moreover, our design should be repeated with emotional stimuli in future studies. Further-

more, it should be combined with imaging techniques to get more insight into the underlying

neural processes. Besides, our design should be supplemented by the collection of blood sam-

ples, because the use of sAA as marker for SNS activity is well-established [78,79], there are

still some valid concerns that need to be taken into account [80]. Furthermore, our design

should be supplemented by pharmacological treatments, which block either the MR or the GR,

because to understand the underlying mechanisms both receptor types should be taken into

account [16,81].

Conclusions

Our study supports the assumption that SNS activation after an acute stressor immediately

improves WM function. This is probably related with noradrenergic and dopaminergic activa-

tion of the PFC. Furthermore, we showed that HPA axis activity is associated with LTM pro-

cesses–probably through interactions with the hippocampus. Using the serial position effects

to measure both WM and LTM performance within one test seems to be a very good means

for further research on the effects of acute stress on memory.
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