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Chorioamnionitis (CA) predisposes to preterm birth and affects the fetal mucosal
surfaces (i.e., gut, lungs, and skin) via intra-amniotic (IA) inflammation, thereby
accentuating the proinflammatory status in newborn preterm infants. It is not known
if CA may affect more distant organs, such as the kidneys, before and after preterm
birth. Using preterm pigs as a model for preterm infants, we investigated the impact of
CA on fetal and neonatal renal status and underlying mechanisms. Fetal pigs received an
IA dose of lipopolysaccharide (LPS), were delivered preterm by cesarean section 3 days
later (90% gestation), and compared with controls (CON) at birth and at postnatal day
5. Plasma proteome and inflammatory targets in kidney tissues were evaluated. IA LPS-
exposed pigs showed inflammation of fetal membranes, higher fetal plasma creatinine,
and neonatal urinary microalbumin levels, indicating renal dysfunction. At birth, plasma
proteomics revealed LPS effects on proteins associated with renal inflammation (up-
regulated LRG1, down-regulated ICA, and ACE). Kidney tissues of LPS pigs at birth
also showed increased levels of kidney injury markers (LRG1, KIM1, NGLA, HIF1A,
and CASP3), elevated molecular traits related to innate immune activation (infiltrated
MPO+ cells, complement molecules, oxidative stress, TLR2, TLR4, S100A9, LTF, and
LYZ), and Th1 responses (CD3+ cells, ratios of IFNG/IL4, and TBET/GATA3). Unlike in
plasma, innate and adaptive immune responses in kidney tissues of LPS pigs persisted
to postnatal day 5. We conclude that prenatal endotoxin exposure induces fetal and
postnatal renal inflammation in preterm pigs with both innate and adaptive immune
activation, partly explaining the potential increased risks of kidney injury in preterm
infants born with CA.

Keywords: intrauterine bacterial infection, chorioamnionitis, plasma proteomics, renal inflammation, acute
kidney injury, immune activation
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INTRODUCTION

Preterm birth (before 37 weeks of gestation, 15 million cases
per year, and ∼10% of all pregnancies) is a global health
problem and a leading cause of infant mortality and morbidity
(1, 2). A majority of preterm births (40–70%) are caused by
chorioamnionitis (CA, inflammation of the fetal membranes),
which is often derived from bacterial infections in the lower
genital tract and amniotic fluid (3–5). CA is often associated with
multiple neonatal complications after preterm birth, including
necrotizing enterocolitis (NEC), bronchopulmonary dysplasia,
periventricular leukomalacia, and sepsis, depending on the
location, timing, and severity of maternal inflammation (6).
Despite these associations, it remains unclear how CA interacts
with reduced gestational age at birth (preterm birth) to affect
infant organs, both at birth and later.

Due to the limited access to biological samples in infants,
animal models are essential to better understand the underlying
organ-specific, pathophysiological mechanisms of prenatal
insults. Intra-amniotic (IA) administration of lipopolysaccharide
(LPS) has been used to induce CA in rhesus macaques, sheep, and
mice (7–10). However, the postnatal effects of prenatal insults in
these models are largely unknown, partly due to difficulties in
rearing preterm animals. Exposure to IA LPS or microbes often
elevates levels of immune cells and pro-inflammatory cytokines
in the amniotic fluid, which are thought first to interact with
fetal mucosal surfaces (e.g., gut, lung, and skin) to evoke local
tissue inflammation, and later the inflammatory signals may or
may not extend to the circulation and other internal organs (11,
12). In rodents, lambs, and pigs, CA effects on fetal lung and gut
inflammation (via neutrophil and/or macrophage infiltration
and TLR signaling modulation) (13–19) as well as on fetal acute
brain injuries (20, 21) have well been investigated. In contrast,
the effects on other internal organs, both at birth and in postnatal
periods, remain elusive.

Neonatal kidney inflammation and acute kidney injury
(AKI) are under-recognized neonatal conditions with challenging
diagnosis due to the lack of reliable diagnostic biomarkers
(22). As nephrogenesis mainly occurs in the last trimester of
human pregnancy (23) and extra-uterine environment seems
not optimal for glomerular development (24), preterm infants,
especially those born before 28 weeks of gestation, may be at high

Abbreviations: ACE, Angiotensin-converting enzyme; ACE2, Angiotensin I
Converting Enzyme 2; AKI, Acute kidney injury; C3, Complement C3; C3,
Complement C3; C4, Complement C4; CA, Chorioamnionitis; CA, Carbonic
anhydrase 2; CASP3, Caspase 3; CD14, CD14 molecule; CKD, Chronic kidney
disease; FDR, False discovery rate; FOXP3, Forkhead box P3; GA, Gestational
age; GATA3, transcription factors GATA3; HIF1A, Hypoxia inducible factor 1
subunit alpha; HPRT1, Hypoxanthine-guanine phosphoribosyltransferase; ICA,
Carbonic anhydrase inhibitor; IHC, Immunohistochemistry; IL10, Interleukin
10; IL17, Interleukin 17; IL4, Interleukin 4; INFr, Interferon-gamma; KIM-1,
Kidney injury molecule-1; LPS, Lipopolysaccharide; LRG1, Leucine-rich alpha-
2-glycoprotein 1; LTF, Lactotransferrin; LYZ, Lysozyme; MDA, Malondialdehyde;
MS, Mass spectrometry; NGLA, Neutrophil gelatinase-associated lipocalin; RAS,
Renin-angiotensin system; RT-qPCR, Reverse transcription quantitative real-time
PCR; ROS, Reactive oxygen species; S100A9, S100 Calcium Binding Protein A9;
SEM, Standard error of the mean; SOD, Superoxide dismutase; SAA, Serum
Amyloid A; TBET, Transcription factors T-bet; TLR, Toll-like receptor; TLR2,
Toll-like receptor 2; TLR4, Toll-like receptor 4; TNF-α, Tumor necrosis factor-α.

risks of developing AKI. In fact, ∼50% of preterm infants with
extremely low birth weight (<1000 g) are diagnosed with early-
onset AKI and AKI is also associated with increased mortality
(25–29). Neonatal AKI can also be induced by fetal distress
and postnatal exposure to hypotension, sepsis, and nephrotoxic
medications (25, 26, 28–30). Further, CA has been reported
to be associated with renal and electrolyte abnormalities in
indomethacin-treated preterm infants (31). Fetal lambs following
IA LPS administration have reduced nephron numbers (32, 33),
implying possible sub-optimal renal functions in preterm infants
born after CA (32, 34).

Preterm pig delivered at 90% gestation has been used as
a clinically relevant model for preterm infants to investigate
the effects of nutritional, microbial and immuno-modulatory
interventions on organ functions and development (35, 36).
Similar to preterm infants, preterm pigs possess multiple
immaturities (e.g., underdeveloped gut, lungs, brain, and
immune and cardiovascular systems) that make them highly
susceptible to systemic infection and organ dysfunctions (37).
Relative to rodents, the immune system in pigs is more similar
to that in humans (38), with more human-like inflammatory
responses to immune challenge (39). We have previously
established a preterm pig model of CA to study effects of
IA LPS on gut and lung injuries (35). In the current study,
we hypothesized that IA LPS would also affect more distant
organs like the kidneys, both at birth and during the neonatal
period after preterm birth. We investigated clinical parameters,
plasma markers of inflammation by proteomics, and kidney
tissue evaluation of targets related to inflammation and innate
and adaptive immune activation.

MATERIALS AND METHODS

Animal Procedures
All animal procedures were approved by the Danish National
Committee of Animal Experimentation (license number 2014-
15-0201-00418). The animal experiment was conducted at the
pig neonatal intensive care unit, the section for comparative
pediatrics and nutrition, Copenhagen, Denmark. Three pregnant
sows (Large White × Danish Landrace × Duroc) were operated
(35) at day 103 of gestation (term at day 117 ± 2), and
each fetus received an IA dose of 1 mg LPS/fetus (LPS group,
n = 28, from Escherichia coli 055:B5, Sigma-Aldrich, Copenhagen,
Denmark) in the area close to their mouth, or a control treatment
(saline injection or no injection, CON group, n = 26). 3 days
later, preterm piglets were delivered by cesarean section (90%
of gestational age). The piglets were randomized according to
their sex and birth weight into two subgroups within each
treatment group. For each treatment, a fraction of piglets were
euthanized right after delivery (n = 14 CON, 16 LPS), and the
remaining pigs were reared by formula feeding until euthanasia
at postnatal day 5 (n = 12 for both CON and LPS groups), as
previously described (35). The preterm pig study was designed
with parenteral nutrition and enteral nutrition using an infant
formula to induce multiple clinically relevant complications,
including NEC, shortly after birth (35). The study period of 5
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postnatal days was selected to investigate the postnatal effect of
IA LPS when the animals were not severely affected by formula-
inducing complications. At euthanasia, the pig was initially
anesthetized with an intramuscular injection of Zoletil mix (dose
0.1 ml/kg, including 0.25 mg/kg Zoletil, 0.25 mg/kg Butorphanol,
1.25 mg/kg Xylazin, and 1.25 mg/kg Ketamine), followed by
an intracardiac injection of 20% Pentobarbital (Sigma-Aldrich,
Copenhagen, Denmark) (35). Serum and urine samples at
euthanasia (day 1 and day 5) were used for biochemistry (Advia
1800 Chemistry System. Siemens, Erlangen, Germany), and
EDTA-treated plasma was used for proteomics. Kidney and liver
tissues were snap-frozen and stored at−80◦C for future analyses,
and chorioamnion samples were fixed in paraformaldehyde 4%
for histology. To balance the effect of litter and sex for treatment
comparisons, one pig of each sex from each litter were selected for
each treatment group in the validation stage. A random number
selection method was used to choose the sample when more than
one pig was eligible for each litter, sex and treatment, resulting
in nine pigs in each group selected for the further validation
analysis. Due to the sample availability, sample numbers may vary
according to different sample types.

Proteomic Analysis
The plasma samples were centrifuged at 1,000 × g for 5 min and
measured in duplicates for protein content using a NanoDrop
2000 Spectrophotometer (Thermo Scientific, United States). The
preparation procedures were based on a PVDF membrane-
based proteomic sample processing method (MStern blotting)
(40). Plasma protein (10 µg) was diluted into saturated urea
followed by a reduction by 10 mM TCEP and alkylation
by 50 mM chloroacetamide. Immobilon-P PVDF membrane
(Millipore; 0.5 mm2) was incubated with saturated urea for 5 min
and transferred to a 96-well, 1.5-ml deep well plate. Samples
were incubated with the membrane for 10 min at ambient
temperature using a thermomixer for continuous shaking. After
incubation, samples were discarded, and the membranes washed
with 150 µl, 50-mM ammonium bicarbonate (Ambic). Digestion
buffer (100 µl, 5% TFE (v/v), 5% ACN (v/v), Trypsin 1:35
in 50 mM Ambic) was added to each sample and incubated
overnight at 37◦C in air incubator keeping high humidity. Tryptic
peptides were recovered to collection tube followed by extraction
of remaining peptides with 150 µl of 40% acetonitrile (ACN,
v/v) 0.1% formic acid (FA; v/v). The pooled extracts were dried
by vacuum centrifuge and resuspended with loading solvent (2%
ACN, 0.1% trifluoroacetic acid, 0.1% FA in Milli-Q water) before
loading into the LC-MS system.

The individual serum samples were randomized and
sequenced on a hybrid trapped ion mobility spectrometry
(TIMS) quadrupole time of flight (QToF) mass spectrometer,
i.e., timsTOF in tims-off mode, (Bruker Daltonics, Bremen,
Germany) coupled to modified nano-electrospray ion source
(CaptiveSpray, Bruker Daltonics) with an applied voltage of
1800 V. Liquid chromatography was performed using a Dionex
RSCL Proflow UHPLC (Dionex, Thermo Scientific, Waltham,
United States) setup. Each sample was loaded onto a 2-cm
reverse-phase C18-material trapping column and separated on
a 75 cm analytical column (both from Acclaim PepMap100,

Thermo Scientific). The liquid phase consisted of 96% solvent
A (0.1% FA) and 4% solvent B (0.1% FA in ACN), at a flow rate
of 300 nl/min. The peptides were eluted from the column by
increasing to 8% solvent B and subsequently to 30% solvent B on a
35 min ramp gradient and introduced into the mass spectrometer
by a Captivespray emitter for electrospray ionization (Bruker;
Germany). The mass spectrometer was operated in positive
mode with data-dependent acquisition (DDA), alternating
between survey spectra and isolation/fragmentation spectra,
using the Top20 method. All samples were analyzed in duplicates
in a random order.

Tissue Histology
Fixed chorioamnions were embedded in paraffin, sectioned, and
stained with hematoxylin and eosin, as previously described
(35). Frozen kidney tissues were sectioned and stained for
myeloperoxidase (MPO), using rabbit anti-human MPO
polyclonal antibody (AO398, Dako, Glostrup, Denmark),
followed by anti-rabbit biotin-conjugated secondary antibody
(Dako Denmark) and visualized with nickel-DAB. Frozen
kidney sections were also stained for CD3, using CD3e-
UNLB porcine primary antibody (monoclonal antibody PPT3)
followed by Primary Antibody Enhancer, HRP Polymer (All
from SouthernBiotech, Birmingham, United Kingdom), and
visualized with nickel-DAB (Sigma-Aldrich) (41). Hematoxylin
was used as counter-staining. All pictures were captured using
Leica MC190 HD and positively stained area fraction in the
total tissue area was quantified using ImageJ software (LOCI,
University of Wisconsin).

Gene Expressions by qPCR
Transcription of selected genes related to inflammation and
innate and adaptive immune pathways in the liver and
kidney tissues were determined by real-time RT-qPCR, using
predesigned primers (Supplementary Table 4). Briefly, total
RNA in tissue homogenates was isolated with RNeasy Lipid
Tissue Mini Kit (Qiagen, Copenhagen, Denmark). RT-qPCR in
kidney tissues was performed using QuantiTect SYBR Green
PCR Kit (Qiagen) on a LightCycler 480 (Roche, Hvidovre,
Denmark), and relative levels of target genes were normalized
to the housekeeping gene HPRT1 (42). Gene expression in liver
tissues was analyzed by 96.96 Dynamic Array Integrated Fluidic
Circuits (Fluidigm, CA, United States), and relative expressions
of target genes were normalized to the most stable reference
genes (GAPDH, HPRT, RPL13A, PPIA, TBP, B2M, and TBP1), as
previously described (35).

Complement Proteins and Targets
Related to Reactive Oxygen Species
The frozen kidney samples (Day 1: n = 9, Day 5: n = 8 in control
and 9 in LPS) were also homogenized for analyses of superoxide
dismutase (SOD) activity (SOD determination kit, Sigma-
Aldrich, MO, United States), membrane attacking complex
(MAC, C5b-C9, human C5b-9 ELISA kit, BD Biosciences
Pharmingen, CA, United States), and peroxidation product
malondialdehyde (MDA, MDA assay kit, Sigma-Aldrich).
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Western Blot
Renal protein expression level of leucine-rich alpha 2
glycoprotein 1 (LRG1) was analyzed by Western blot, using
rabbit anti-human LRG1 polyclonal antibody antibodies (Sigma
Aldrich, St. Louis, United States). Total proteins (Day1: n = 9,
Day5: n = 8 in control and 9 in LPS) were extracted and separated
by 10% Tricine SDS Gels (30 µg) and then transferred onto
PVDF membrane (Millipore, Bedford, MA, United States).
After blocking in 5% BSA 1 h at room temperature, the
membranes were incubated with primary antibodies (1:1000
dilution) overnight at 4◦C. The membranes were then washed
twice with PBST, incubated with HRP-conjugated secondary
antibody at 1:20000 dilutions for 1 h at room temperature, and
visualized by the SuperSignal West Pico PLUS chemiluminescent
substrate (Thermo ScientificTM, MA, United States). Mouse
anti-porcine GAPDH monoclonal antibody (1:1000, Santa Cruz,
CA, United States) was used as a loading control to generate
the relative expression level of target protein. The Western blot
results were quantified by Image J software (43). The target
protein LRG1 level was analyzed by relative quantification and
presented as a fold change to the loading control GAPDH.

Data Analysis and Statistics
Mass spectrometry raw files were processed with MaxQuant (v
1.6.2.3) using the Andromeda search engine. Default MaxQuant
settings were used using protein oxidation and N-terminal
acetylation as variable modifications and carbamidomethyl
cysteine as a fixed modification. Label-free quantification
was performed using the MaxQuant label-free-quantification
(MaxLFQ) algorithm.

Univariate analysis was applied to raw proteomics data
(Supplementary Data Sheet 1) at each sampling time point
using R studio 3.4.1 (R Studio, Boston, MA, United States).
Briefly, a linear mixed effect model was fitted to each protein
with treatment as the fixed factor, and litter as a random factor,
using the lme4 package (44). To control the type I error, p
value tests were further adjusted by false discovery rate (FDR,
α = 0.2) into q values (45). Proteins with a q value ≤ 0.10 in
any comparisons were chosen for the functional assignment. The
protein interaction network analysis of biological processes and
signaling pathways were performed using Cytoscape and ClueGO
with a p-value cut-off q ≤ 0.1. Dunn’s Kruskal–Wallis multiple
comparisons test of clinical data and Pearson’s correlation
test were conducted in R. Results from qPCR, Western blot,
and ELISA assays were analyzed by a linear mixed model, as
described above, and a p-value < 0.05 was regarded as statistically
significant. Data were presented as mean± SEM.

RESULTS

Effects of IA LPS on Amniotic Fluid, Fetal
Membranes, Plasma Proteome, and
Systemic Endpoints
Intra-amniotic LPS increased the number of infiltrated
inflammatory cells in the chorioamnion (Figure 1A), similar to

our previous report (35). Consistent with our previous report
(35), amniotic fluid leukocyte counts and cytokines IL-6, IL-1β,
TNF-α, and IL-10 were all highly elevated after IA LPS exposure
(all p < 0.05, Supplementary Table 1).

Mass spectrometry-based plasma proteomics identified and
annotated 245 proteins. IA LPS altered levels of 45 proteins
at birth and two proteins at postnatal day 5. Analyses of
pathway enrichment and protein-to-protein interaction revealed
(Figures 1B,C) key regulated pathways, including complement
and coagulation cascades, platelet activation, and acute phase
response, indicating increased acute systemic inflammation
in LPS pigs at birth. According to physiological functions,
differentially regulated plasma proteins at birth were categorized
into five groups: coagulation, acute phase response, protein
processing, metabolism, and other functions (Supplementary
Table 2). Acute-phase response to IA LPS at birth, but
not on postnatal day 5, was confirmed by the increased
expressions of liver genes. 64 genes in total were validated in
transcription level in liver tissues (Supplementary Table 6), and
eight genes were significantly changed in at birth, including
C3, SAA, S100A8, TRL4, ITUH4, CXCL10, TTR, and CD14
(Figure 1D); only two genes were significantly changed at
postnatal day 5 (Supplementary Table 6). Notably, apart
from the classical systemic inflammation-related proteins, a
group of plasma proteins related to renal functions, including
angiotensin-converting enzyme (ACE), carbonic anhydrase
2 (CA2), and LRG1 (Figure 1E), were also altered by
IA LPS at birth.

Markers of IA-LPS Induced Kidney
Inflammation in Plasma, Urine, and
Kidney Tissues
As plasma proteomics showed IA LPS-induced changes of
markers related to kidney inflammation, including LRG1 and
inhibitor of carbonic anhydrase (ICA), these proteins and
related targets were further examined in kidney tissues. Plasma
LRG1 and renal LRG1 expression after IA LPS exposure were
both elevated at birth (q < 0.001 and p < 0.01, respectively,
Figures 2A,B). This result was confirmed by Western blot
analysis of LRG1 in kidney tissues (p < 0.05, Figures 2C,D). At
postnatal day 5, the transcription level of LRG1 was significantly
decreased in LPS pigs, but no changes were detected at protein
level in both plasma and kidney tissues, probably reflecting
differences in the post-transcriptional regulation of this gene
between the two groups after birth.

Plasma LRG1 levels were also positively correlated with levels
of urine Na + and plasma creatinine, a diagnostic marker of
AKI (r = 0.6 and 0.647, respectively, p < 0.001, Figure 2E and
Supplementary Figure 1). Despite lower levels of plasma ICA
in LPS vs. CON pigs at birth, renal ICA mRNA levels were
not altered by fetal LPS exposure (Figures 2F,G). However, the
expression of CA2 (carbonic anhydrase 2) in kidney tissues were
elevated in LPS pigs at birth (p < 0.05, Figure 2H). Carbonic
anhydrase is abundantly distributed in renal tissues and thought
to play a pivotal role to catalyze the hydration–dehydration
reaction of CO2 and bicarbonate reabsorption (46, 47). These
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FIGURE 1 | Effects of IA LPS exposure on chorioamnionitis (CA), changes of plasma proteome, and liver acute gene responses in preterm pigs at birth.
(A) Inflammatory cell infiltration in the chorioamnion. (B) Pathway enrichment of differentially regulated proteins in plasma between LPS vs. CON pigs at birth (day 1).
Every pathway is labeled according to the color. (C) Differentially regulated protein networks in plasma in LPS vs. CON pigs at birth (list of differential expressed
proteins in Supplementary Table 2). (D) Changes of acute response genes in the liver of LPS pigs at birth. n = 10 in both groups. (E) A subgroup of differentially
regulated proteins in plasma showed their functions related to kidney injury. The pathway enrichment was performed by GeneMANIA (84). Color code for (E) Blue:
pathway interaction; Yellow: shared protein domains; Purple: co-expression; and Red: physical interactions. Width of the edge shows a weighted interaction network
where each pair of genes is assigned an association weight (84). Data are presented as mean ± SEM. *, ***p < 0.05 and 0.001, respectively. #p < 0.1.
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FIGURE 2 | Markers of neonatal acute kidney injury. (A) The protein levels of LRG1 in plasma. (B) mRNA level of LRG1 in kidney tissues. (C,D) The protein levels of
LRG1 in kidney tissues by Western blot and the relative quantification to loading control GAPDH. (Day 1: n = 9, Day 5: n = 8 in control and 9 in LPS; samples were
randomly selected to balance the effect of litter and sex for treatment comparisons; E) Correlation of plasma LRG1 levels and plasma creatinine levels. Samples with
creatinine levels below detection range were not shown in the figure. Plasma LRG1 is positively correlated with levels of plasma creatinine levels. (F) The protein
levels of ICA in plasma. (G,H) mRNA levels of ICA and CA2 in kidney tissue. Data are presented as mean ± SEM. The Western blot results were quantified by Image
J software (43). The target protein LRG1 level was analyzed by relative quantification and presented as a fold change to the loading control GAPDH. *q or p < 0.05;
**q or p < 0.01, and ***q or p < 0.001. CA2, LRG1, and ICA, carbonic anhydrase 2, leucine-rich alpha-2-glycoprotein, and inhibitor of carbonic anhydrase.

findings suggest an IA LPS-induced imbalance in renal ICA and
CA activity, potentially contributing to kidney inflammation.

Intra-amniotic LPS also altered clinical and biochemical
parameters and other kidney injury markers both at birth and
postnatal day 5. Relative kidney weight showed no difference
at birth but decreased in LPS vs. CON pigs at postnatal day 5
(p < 0.05, Figure 3A). Plasma creatinine was elevated by LPS
exposure only at birth (p < 0.05) but not on day 5 (Figure 3B).

Both the microalbumin levels and the ratio of microalbumin
over creatinine in urine were higher on day 5 in LPS vs. CON
pigs (p < 0.05, Figures 3C,D). The renal pathological score
and glomerular sizes were unavailable due to a lack of high-
quality formalin fixation tissue in the current study. Other
markers of kidney injury (48, 49) (kidney injury molecule-1,
KIM-1, and neutrophil gelatinase-associated lipocalin, NGLA),
hypoxia, and apoptosis (HIF1A and CASP3) were also evaluated
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FIGURE 3 | Effects of IA LPS on biochemical parameters and renal injury, hypoxia, and apoptosis markers. (A) Relative kidney weight, (B) Plasma creatinine,
(C) Urinary microalbumin, (D) Urinary microalbumin/creatinine. (E,F) Renal expressions of two biomarkers for acute kidney injury KIM1 and NGLA. (G,H) Renal
expressions of hypoxia and apoptosis markers HIF1A and CASP3. Data are presented as mean ± SEM. *p < 0.05 and **p < 0.01. Serum samples: Day 1: n = 8 in
control and 10 in LPS, Day 5: n = 13 in control and 15 in LPS; Urine samples: Day 1: n = 11, Day 5: n = 10 in control and 12 in LPS. KIM1, NGLA, HIF1A, and
CASP3: kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, hypoxia-inducible factor 1- alpha, and caspase 3.

with consistently higher levels in LPS vs. CON pigs at birth
(p < 0.05, Figures 3E–H). These biochemical and qPCR data
further confirmed renal inflammation in LPS pigs at birth, while
differences in kidney weight and urine microalbumin potentially
indicate renal IA LPS effects persisting until postnatal day 5.

IA LPS Stimulates Renal Innate Immune
Activation
Next, we sought to examine innate immune responses in kidney
tissues modulated by IA LPS. The area of infiltrated MPO+
cells (a marker of macrophages and/or neutrophils) was highly
elevated both at birth and postnatal day 5 in LPS vs. CON pigs
(p < 0.001 and 0.01, respectively, Figures 4A,B). The same trend
was observed for the expression levels of TLR2 and TLR4 (all
p < 0.05 except 0.07 for TLR2 on day 5, Figures 4C,D). mRNA
levels of the neutrophil and/or macrophage components LTF
(product of the secondary granules of neutrophils), S100A9 (an
inflammation marker released by neutrophils and macrophages),
and LYZ (a marker presented in all three types of human
neutrophil granules) were also higher in LPS vs. CON pigs at
birth (all p < 0.05, Figures 4E–G). These data indicate that IA
LPS stimulated innate inflammatory responses in kidney tissues
both at birth and postnatal day 5 via infiltration of neutrophils
and/or macrophages.

IA LPS Activates the Fetal and Postnatal
Renal Complement System
As IA LPS-induced kidney effects were strongly associated with
innate immune activation, we next assessed the status of the

renal complement system, a crucial component of the innate
immunity. Plasma proteomics data at birth revealed increased
levels of C3, C4, and CFB in LPS vs. CON pigs (all q < 0.01,
Figures 5A–C). In kidney tissues, the mRNA levels of C3 were
elevated in LPS vs. CON pigs on day 5 (p < 0.01, Figure 5D).
To verify the actions of the complement system, the final
complement product, membrane attacking complex (MAC) C5b-
C9 was determined with higher levels in both plasma and kidneys
at birth and also higher levels in the kidneys at postnatal day 5 in
LPS vs. CON pigs (all p < 0.05, Figures 5E,F).

IA LPS Alters the Renal ACE System and
Increases Renal Oxidative Stress
As plasma proteomics revealed lower levels of ACEs in LPS vs.
CON pigs at birth (q < 0.1, Figure 6A), we also sought to
determine IA LPS effects on status of the renal ACE system
and its role in the production of oxidative stress. ACEs are
key components in the renin-angiotensin system (RAS) that
modulates blood pressure, reactive oxygen species (ROS), and
renal status (50). Especially, angiotensin II is damaging to
renal tubules via ROS generation and inflammation and may
contribute to glomerular injury and proteinuria (51, 52), while
ACE2 functions to degrade angiotensin II, thereby decreasing
ROS generation (50). Our data showed no IA LPS effects on ACE
levels but ACE2 levels were lower in the kidneys of LPS vs. CON
pigs, both at birth and postnatal day 5 (p < 0.05, Figures 6B,C).
LPS pigs at birth also showed increased oxidative stress with
decreased renal levels of SOD activity and increased renal levels
of MDA, relative to CON pigs (p < 0.01 and 0.05, Figures 6D,E).
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FIGURE 4 | Kidney innate immune response at birth and postnatal day 5 following IA LPS exposure. (A,B) MPO+ stained cells (brown) in the frozen kidney, (C–G)
mRNA levels of toll-like receptors (TLR2 and TLR4) and neutrophil/macrophage components (LTF, S100A9, and LYZ) in kidney tissues. Data are presented as
mean ± SEM. *p < 0.05 and **p < 0.01. Day 1: both n = 9, Day 5: n = 8 in control and 9 in LPS. The scale bars in (A) represent 100 µm. LTF, lactoferrin; TLR,
toll-like receptor; and LYZ, lysozyme.
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FIGURE 5 | Kidney complement activation induced by IA LPS. (A–D) Protein levels of C3, C4, CFB in plasma, and mRNA levels of C3 in kidneys. (E,F) Membrane
attacking complex (MAC and C5b-9) in plasma and kidneys. Data are presented as mean ± SEM. *q or p < 0.05; **q or p < 0.01, and ***q or p < 0.001.

FIGURE 6 | Effects of IA LPS on the renal renin-angiotensin system and generation of reactive oxygen species. (A) Protein levels of ACEs in plasma. (B,C) mRNA
levels of ACE and ACE2 in kidney tissues. (D) SOD activity in kidney tissue. (E) Lipid peroxidation (malondialdehyde, MDA) level in kidney tissue. Data are presented
as mean ± SEM. *q or p < 0.05 and **q or p < 0.01. ACE, angiotensin-converting enzyme; SOD, superoxide dismutase.
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These data suggest that IA LPS elevated ROS activity in kidney
tissues with potential involvement of the renal ACE system.

IA LPS Stimulates Renal Adaptive
Immune Activation
Likewise, the renal adaptive immune responses were also
modulated by IA LPS exposure. The density of renal CD3+
cells (T cells) was significantly up-regulated in LPS pigs both
at birth and postnatal day 5 (P < 0.01 and 0.001, Figure 7A).
At birth, the kidneys of LPS pigs showed increased Th1
responses, with higher mRNA levels of Th1-polarizing cytokines,
ratio of Th1/Th2 cytokines (IFNG, ratio of IFNG/IL4), Th1
transcription factor (TBET), and ratio of Th1/Th2 transcription
factors (TBET/GATA3), as well as decreased mRNA levels of
Th2 transcription factor (GATA3, all p < 0.05, Figures 7B–G).
At postnatal day 5, LPS pigs had lower renal mRNA levels of
Th2-polarizing cytokines (IL4, IL10) and marker of regulatory
T cells (FOXP3 expression, all p < 0.05, Figures 7C,H,I). IL17
expression was also reduced in LPS vs. CON pigs on day
5 (p < 0.05, Figure 7J). These data indicate increased fetal
and postnatal renal inflammation in LPS vs. CON pigs with
the activation of both innate and Th1-mediated immunity. In
contrast to the systemic acute phase response (as assessed by
plasma proteomics and liver gene expression above), the renal
effects of IA LPS exposure persisted in the postnatal period, at
least until day 5.

DISCUSSION

Preterm infants born with CA are often at increased risk of
developing neonatal morbidities and organ injuries, including
renal inflammation and AKI (21% of hospitalized neonates) (53).
Due to the disruption of natural fetal nephrogenesis at a crucial
developmental time point, the kidney size and nephron number
are reduced in surviving premature infants (54). Fetal insults,
including CA that is often accompanied with preterm birth, elicit
inflammation in multiple organs and may further worsen the
renal outcomes. Early management of kidney inflammation may
ameliorate growth failure and suboptimal neurodevelopmental
outcomes for preterm infants (55, 56), but reliable diagnostic
markers for neonatal kidney diseases are lacking, and underlying
mechanisms of the diseases are poorly understood. In the current
study with preterm pigs, we demonstrated for the first time that
CA, induced by IA LPS exposure, resulted in renal inflammation
both at birth and 5 days after preterm birth with the involvement
of innate and adaptive immune activation. Our data imply that
prenatal insults may play a critical role in determining neonatal
kidney outcomes and may explain the high incidence of AKI in
preterm infants (46, 57–60), although reduced gestational age at
birth is also a risk factor (61).

First, we demonstrated that prenatal IA LPS induced CA-
like responses in the fetal membranes, marked systemic immune
responses at birth, and altered plasma levels of markers related to
kidney injuries, including LRG1, ACE, and ICA. Via evaluation
of biochemical parameters, together with analyses of endpoints
related to inflammatory pathways in kidney tissues, we showed

that IA LPS exposure resulted in renal inflammation not only
at birth but also in the neonatal period after preterm birth.
Considering that IA LPS-induced lung and gut inflammation
mainly occurs at birth (35), our data indicate that the preterm
kidneys are relatively sensitive to prenatal endotoxin exposure.
This is noteworthy also from the perspective that mucosal
surfaces in the gut, lungs, and skin have more direct contact
with endotoxin and inflammatory molecules in the amniotic
sac following IA LPS or IA inflammation. Conversely, IA
inflammation may affect systemic organs, such as kidneys, more
gradually and for a longer time, following the translocation of
inflammatory signals across the immature gut, lung, and skin
barriers. Based on our results, Figure 8 was suggested to illustrate
possible mechanisms whereby prenatal insults may lead to fetal
and neonatal kidney inflammation in preterm neonates.

At birth, IA LPS-exposed preterm pigs had elevated levels
of plasma creatinine, a commonly used diagnostic marker for
AKI (62) and also increased renal transcription levels of two
well-known kidney injury markers (KIM1 and NGAL) (63–65).
The renal injury in these pigs seemed to persist to postnatal
day 5 when urinary levels of microalbumin and the ratio of
microalbumin/creatinine were elevated, together with decreased
relative kidney weight. The mechanisms may include strong
infiltrations of macrophages and/or neutrophils (MPO+ cells)
with elevated expression levels of TRL2 and TRL4 in kidney
tissues both at birth and postnatal day 5. This was further
supported by elevated expression levels of the neutrophil and/or
macrophage components LTF, S100A9 and LYZ in LPS pigs
at birth. As prenatal inflammation is often associated with
hypoxia-ischemia (HI) and apoptosis in internal organs (66), we
also validated the corresponding markers and found elevated
expressions of HIF1A and CASP3 in the kidneys of LPS vs. CON
pigs at birth.

Mucosal surfaces, like skin, gut, and lungs, may adapt more
rapidly to fetal endotoxin exposure than the kidneys, consistent
with the need of epithelia to tolerate the abrupt changes from
a relatively sterile in utero environment to a microbes-rich
environment ex utero. In the kidneys, an IA LPS-induced innate
inflammatory response via neutrophil/macrophage activation
was further potentiated by Th1 adaptive immune responses,
i.e., dramatically elevated levels of infiltrated CD3+ T cells,
expression of IFNG (Th1 cytokine), TBET (Th1 transcription
factor), and ratios of IFNG/IL4 and TBET/GATA3, together with
decreased expression levels of GATA3 (Th2 transcription factor)
at birth. Although these Th1 markers were not different between
LPS and CON pigs on day 5, LPS pigs showed lower expression
levels of anti-inflammatory genes, including IL4, IL10 (Th2
cytokines), and FOXP3 (regulatory T cell transcription factor).
Likewise, the reduced FOXP3 and IL10 levels further demonstrate
reduced regulatory T cell population in postnatal day 5. Thus,
the adaptive immune responses may also last at least until day 5,
probably via the action of other Th1 cytokines or Th1-enhanced
activities of neutrophils/macrophages.

On the other hand, RAS, regulated by ACE molecules, may
also be involved in IA LPS-induced renal inflammation as plasma
ACEs were down-regulated at birth in LPS pigs and the renal
mRNA level of ACE2 was down-regulated at both time points.
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FIGURE 7 | Kidney adaptive immune responses both at birth and postnatal day 5 following IA LPS exposure. (A) The density of renal CD3+ cells (T cells). (B–J)
mRNA levels of Th1-polarizing cytokine IFNG, Th2-polarizing cytokines IL4 and IL10, the ratio of Th1/Th2 cytokines IFNG/IL4, Th1 transcription factor TBET, Th2
transcription factor GATA3, the ratio of Th1/Th2 transcription factors TBET/GATA3, markers of Treg FOXP3, and marker of Th17 IL17. Data are presented as
mean ± SEM. *p < 0.05; **p < 0.01, and ***p < 0.001. The scale bars in (A) represent 100 µm.
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FIGURE 8 | Overview of the suggested mechanisms that IA LPS induces fetal and neonatal acute kidney injury before and after preterm birth. Compared with
control pigs, LPS preterm pigs showed compromised kidney function, increased immune cell infiltration with complement system activation and production of
reactive oxygen species, and increased level of hypoxia and apoptosis in the kidneys. The inflammatory state in kidney tissues is persistent from fetal to neonatal
periods, in contrast with the acute mucosal inflammatory response in the gut and lungs being attenuated at postnatal day 5. ACE, Angiotensin-converting enzyme;
Ang, Angiotensin; C3, Complement protein 3; LPS, Lipopolysaccharides; LRG1, Leucine-rich alpha-2-glycoprotein 1; MAC, Membrane attack complex; MDA,
Malondialdehyde; MPO, Myeloperoxidase; ROS, Reactive oxygen species; SOD, Superoxidase dismutase; Th, T helper cell; Treg, Regulatory T cell; and TLR,
Toll-like receptor.

The balance between ACE and ACE2 controls the production
of angiotensin II (ANG II) and angiotensin-(1–7) (ANG-(1–7)
(67). Decreased ACE2 level has been reported to cause ANG
II accumulation, thereby enhancing ROS and oxidative damage.
Consistent with this, we showed IA LPS-induced reduction of
SOD enzyme activity (enzyme neutralizing ROS), as well as
increased levels of malondialdehyde [MDA, a marker of lipid
peroxidation leading to tissue damage (68)] in the kidneys. In LPS
pigs, the neutrophil/macrophage and complement activation in
kidney tissues may generate vast amounts of ROS while the renal
ACE and anti-oxidative systems could be less efficient, potentially
leading to increased ROS-induced tissue damage.

The current study results also suggested plasma markers and
therapeutic targets of prenatal inflammation and related organ
responses including renal inflammation, namely, LRG1 and ICA
(increased and decreased by IA LPS, respectively). LRG1 is a
neutrophil component and has been reported to play a crucial
role in immune responses, cell proliferation and apoptosis,
neovascularization, and hypoxia (69–73). LRG1 has been shown
to be elevated in the urine of patients with IgA nephropathy and
chronic kidney disease (74, 75). In our study, both mRNA and
protein levels of LRG1 were increased in the kidneys of LPS pigs
at birth and correlated with plasma creatinine, a classical marker
of AKI. LRG1 may also play a crucial role in the progression of
hypoxia by regulating HIF1A expression (76). As HIF1A was also

up-regulated by IA LPS in the current study, we speculate that
LRG1-mediated hypoxia via HIF-1α activation also contributes to
kidney injury and that LRG1 may be a promising diagnostic and
therapeutic target of prenatal inflammation and organ responses
including neonatal renal inflammation. On the other hand, the
ICA is a CA inhibiting protein and pH (acid-base balance)
regulating enzyme in multiple cells and tissues (77–79), although
in humans it may only be a pseudogene (80). Instead, we found
elevated expression of renal carbonic anhydrase II (CA2) in LPS
pigs at birth and speculated that the imbalance between ICA and
CA2 may enhance bicarbonate generation and low tissue pH,
contributing to inflammation-related kidney dysfunction.

The nephrogenesis in pig occurs during both intrauterine
and extrauterine periods, from day 29 of postconceptional age
to postnatal day 21 (81), whereas the nephrogenesis in human
completes before gestational week 36. No new nephrons are
formed after gestational week 36 over the lifetime in humans
(82). We speculate that some postnatal parameters related to
inflammation and oxidative stress that were reduced over time
may be due to the ongoing extrauterine nephrogenesis in pigs or
partly resolved inflammation following fetal acute responses.

In conclusion, prenatal IA LPS exposure induced clear signs
of fetal and neonatal kidney inflammation in preterm pigs.
In contrast to conditions in the lungs, gut, and liver, the
kidney inflammatory effects persisted into the postnatal period,
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possibly driven by sustained activation of both innate and
adaptive immune cells. Plasma LRG1 may be a new promising
diagnostic and therapeutic target for prenatal inflammation
and organ responses including neonatal renal inflammation.
Preterm infants born after CA may suffer from dysfunctions
of multiple organs, including kidneys, that require special
care and treatments to prevent further short- and long-
term complications.
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