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Abstract: Early-life exposure to di-(2-ethylhexyl)-phthalate (DEHP) has been suggested to relate to
hyperactivity, lack of attention, and working memory deficits in school-age children. Brain-derived
neurotrophic factor (BDNF) and endocannabinoids are induced by aerobic exercises to provide
beneficial effects on brain functions. This study investigated the mechanisms underlying working
memory impairment and the protective role of exercise in prenatal DEHP-exposed male rats.
Sprague Dawley dams were fed with vehicle or DEHP during gestation. The male offspring were
trained to exercise on a treadmill for 5 weeks, which was followed by an assessment of their working
memory with a T-maze delayed non-match-to-sample task. The expressions of BDNF, dopamine
D1 receptor (D1R), cannabinoid receptor 1 (CB1R), and fatty acid amide hydrolase (FAAH) in the
prefrontal cortex were detected by Western blot. The results showed that DEHP-exposed rats exhibited
working memory impairments without significant alterations in locomotor activities. The reduced
expressions of prefrontal BDNF and CB1R were obtained in the DEHP-exposed rats, while D1R and
FAAH were barely affected. Importantly, aerobic exercise during childhood-adolescence prevented
the impairment of working memory in the DEHP-exposed rats by recovering the BDNF and CB1R
expressions in the prefrontal cortex. These findings suggest that exercise may provide beneficial
effects in ameliorating the impairment of working memory in the prenatal DEHP-exposed male rats
at late adolescence.

Keywords: di-(2-ethylhexyl)-phthalate; working memory; brain-derived neurotrophic factor;
endocannabinoids; aerobic exercise

1. Introduction

Plasticizer di-(2-ethylhexyl) phthalate (DEHP) exposure is ubiquitous in humans due to its
widespread use in some consumer and industrial products [1]. There is a growing concern that DEHP
exposure, particularly during the prenatal period, may have an impact on a child’s neurobehavioral
development [2]. Prenatal DEHP exposure has been identified to alter social behavior, anxiety-like behavior,
and spatial memory in young rodents [3–5]. In school-age children, behavioral problems such as emotional
problems, aggression, hyperactivity, inattention, and working memory deficit are associated with prenatal
DEHP exposure [6–8]. The outcome of DEHP-associated behaviors has led many researchers to notice
the overlap with symptoms of attention-deficit hyperactivity disorder (ADHD) [9,10].
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ADHD is characterized by inattention, hyperactivity, impulsivity, and working memory deficit [11].
Working memory refers to the ability that provides temporary storage and manipulation of the
information necessary for complex cognitive tasks, which relies on the function of the prefrontal
cortex [12]. The dopaminergic system exerts a strong modulating effect on working memory through the
activation of dopamine D1 receptors (D1R) [13]. Several studies have reported the reduction in cortical
D1R density due to various underlying conditions, i.e., neuropsychiatric disorders including working
memory deficit [14–16]. Treatment with psychostimulant methylphenidate, a prescribed medication
used to treat ADHD, can increase dopamine release and D1R density in the prefrontal cortex with
improved behavioral outcomes [17,18]. Besides the involvement of D1R in working memory, a variety
of experiments have focused on the role of endocannabinoids in different components of cognitive
processing [19,20]. Anandamide, the most studied endocannabinoid, exerting its function through
cannabinoid receptor 1 (CB1R) is degraded by the enzyme fatty acid amide hydrolase (FAAH) [21].
CB1R is expressed in high concentrations in the prefrontal cortex [22]. Chronic cannabis exposure is
associated with cortical CB1R downregulation and cognitive impairment, with the most robust effects on
short-term episodic and working memory in humans [23–25]. Exposure to cannabinoid agonists during
critical periods of brain development is known to cause long-term changes in the functionality of several
neurotransmitter systems in adulthood, such as the dopaminergic, glutamatergic, and noradrenergic
systems [26–28]. These results support the notion that alterations in the endocannabinoid system
during the early stage of brain development can lead to the subtle dysregulation of cognitive function.

Regular exercise is associated with several health benefits. In preadolescent children,
exercise-enhanced cognitive function is observed in their executive function and attention [29,30].
One of the most investigated exercise-induced mediators is the brain-derived neurotrophic factor
(BDNF). BDNF is a member of the neurotrophin family and plays a major role in neuronal survival,
synaptic plasticity, learning, and memory [31]. Exercise is one of the most potent lifestyle factors
increasing BDNF levels in the circulation and brain [32]. Exercise-induced BDNF secretion is
associated with the improvement of anxiety, depression, and cognitive impairment in humans [33–35].
The neurophysiological changes induced by exercise, such as dopaminergic and noradrenergic systems,
considerable overlap with the neuropathological mechanisms implicated in ADHD [36]. Exercise is
suggested to be an effective adjunctive treatment for improving the symptoms of ADHD [37,38].

To date, most of the studies investigating the adverse effects of DEHP exposure on brain functions
have focused on the neurodevelopment of the hypothalamus and hippocampus. Few studies have
examined the effects of DEHP on the prefrontal function. Considering the critical roles of BDNF and
endocannabinoids in the regulation of prefrontal function, it is very likely that the DEHP-related
symptoms of ADHD may be a consequence of altered BDNF and endocannabinoid regulation in the
prefrontal cortex. While aerobic exercise provides beneficial effects on brain functioning, whether aerobic
exercise could prevent the symptoms of ADHD in DEHP-exposed male rats is still uncertain. The present
study was thus designed to address these issues by testing whether the mechanisms underlying the
prefrontal working memory were impaired in the prenatally DEHP-exposed male rats and testing
for the protective effects of exercise. To test this hypothesis, prenatal DEHP-exposed male rats were
trained to exercise on a treadmill during childhood-adolescence followed by the examination of their
working memory and the expressions of prefrontal BDNF, D1R, CB1R, and FAAH in late-adolescence.
Our findings suggest that prenatal DEHP exposure exerts a prolonged adverse effect on prefrontal
working memory, which is accompanied by BDNF and CB1R downregulations, and exercise provides
a protective effect on ameliorating these impairments.

2. Results

2.1. Delayed Non-Match-to-Sample Task

The T-maze delayed non-match-to-sample task was applied to investigate the working memory
(Figure 1). The working memory was assessed by the delayed non-match-to-sample task consisting of
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trials with no-delay (0 s), 30 s delay, and 60 s delay conditions (Figure 2). A two-way ANOVA revealed
that there were no significant effects of treatment or exercise in the no-delay and 30 s delay conditions.
In the 60 s delay condition, there were main effects of treatment (F (1, 36) = 6.128, p < 0.05, η2 = 0.15)
and exercise (F (1, 36) = 9.574, p < 0.005, η2 = 0.21) on the percentage of correct choices, while no
treatment × exercise interaction was found. A Bonferroni post hoc test showed that the percentage of
correct choices was reduced in the D group compared to the C (p < 0.05), Cex (p < 0.005), and Dex
groups (p < 0.01). This result suggested that prenatal DEHP exposure impaired the working memory;
however, such impairments were controlled by exercise training.
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Figure 1. The demonstration of the delayed non-match-to-sample task. A delayed period between
the information run and test run is required for the prefrontal activity to perform working memory
processing. The correct and wrong choices are indicated in the test run. The white food tray represents
a previously visited location in the information run.
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Figure 2. Choice accuracy in the delayed non-match-to-sample task. Animals were trained to perform
the rewarded alternation in trials with no-delay, 30 s delay, and 60 s delay conditions. No significant
differences were found in the no-delay and 30 s delay conditions. In the 60 s delay condition, the choice
accuracy was significantly decreased in the D group. Compared with the D group, exercise improved
the choice accuracy in the Dex group. C: control; D: di-(2-ethylhexyl)-phthalate (DEHP) exposure;
Cex: exercised control; Dex: exercised DEHP exposure. Data are presented in mean ± SEM (n = 10 in
each group). *: p < 0.05, **: p < 0.01, ***: p < 0.005.
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2.2. Open Field Test

The open-field test was used to investigate the locomotor activities. The two-way ANOVA
revealed that there were no significant effects of treatment or exercise on either the crossed squares
(Figure 3a) or center entries (Figure 3b). This result suggested that the locomotor activities in the
post-adolescent male rats were barely affected by the DEHP exposure or exercise training.
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Figure 3. Spontaneous locomotor activities in the open field test. Animals were allowed to explore in
an open field for 10 min. There were no significant differences among groups in (a) number of crossed
squares or (b) center entries. C: control; D: DEHP exposure; Cex: exercised control; Dex: exercised
DEHP exposure. Data are presented in mean ± SEM (n = 10 in each group).

2.3. Efficacy of Exercise Regimen

Peroxisome proliferator-activated receptor gamma coactivator 1−α (PGC-1α) is highly expressed
in the muscles after aerobic exercise to induce the mechanisms involved in muscular adaptation [39];
therefore, the expression of PGC-1α in gastrocnemius muscle was detected by Western blot to examine
the efficacy of the exercise regimen. The two-way ANOVA revealed that there was a main effect of
exercise (F (1, 36) = 109.155, p < 0.001, η2 = 0.75) on the expression of PGC-1α in gastrocnemius muscle
(Figure 4a), while no significant effect of treatment on the expression of PGC-1α was found. The post
hoc analysis showed that there was a significant increment of PGC-1α in the Cex group compared
to the C (p < 0.001) and D groups (p < 0.001). Meanwhile, the increased PGC-1α was also observed
in the Dex group compared to C (p < 0.001) and D groups (p < 0.001). This result suggested that the
expression of PGC-1α was minimally affected by DEHP exposure and its expression was increased by
aerobic exercise. This evidence supported the efficacy of the exercise regimen used in the present study.

2.4. Plasma Levels of BDNF

Exercise-induced BDNF protected against neuropathological diseases; therefore, the plasma BDNF
levels were detected by ELISA to assess the effects of DEHP exposure and exercise on neurotrophic
function. This result also provided evidence to examine the efficacy of an exercise regimen. The two-way
ANOVA revealed that there were effects of treatment (F (1, 36) = 25.234, p < 0.001, η2 = 0.41) and exercise
(F (1, 36) = 27.579, p < 0.001, η2 = 0.43) on the plasma BDNF levels (Figure 4b). However, there was no
effect of treatment × exercise interaction on the plasma BDNF levels. The post hoc analysis showed
that there was a significant reduction in plasma BDNF in the D group compared to the C (p < 0.005),
Cex (p < 0.001), and Dex groups (p < 0.001). The result suggested that plasma BDNF was decreased by
DEHP exposure, and this reduction was prevented by aerobic exercise. The efficacy of the exercise
regimen was supported by the enhancement of plasma BDNF observed in the Cex group compared to
the C group (p < 0.05).
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Figure 4. Muscle peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) and
plasma brain-derived neurotrophic factor (BDNF) levels analyzed by Western blot and ELISA,
respectively. (a) Increased PGC-1α expressions were observed in the Cex and Dex groups compared
to the C and D groups. (b) Plasma BDNF levels were significantly decreased in the D group,
whereas exercise normalized these reductions in the Dex group. C: control; D: DEHP exposure;
Cex: exercised control; Dex: exercised DEHP exposure. Data are presented in mean ± SEM (n = 10 in
each group). *: p < 0.05, ***: p < 0.005, ****: p < 0.001.

2.5. Protein Levels in the Prefrontal Cortex

The expressions of prefrontal BDNF, D1R, CB1R, and FAAH were analyzed by Western blot to
examine the effects of DEHP exposure and exercise on the expressions of biomarkers related to working
memory. The two-way ANOVA revealed that there were effects of treatment i.e., DEHP exposure
(F (1, 36) = 53.783, p < 0.001, η2 = 0.60) and exercise (F (1, 36) = 31.949, p < 0.001, η2 = 0.47) on the
prefrontal BDNF expressions (Figure 5a). A significant effect of treatment × exercise interaction on
the prefrontal BDNF levels was found (F (1, 36) = 16.660, p < 0.001, η2 = 0.32). The post hoc analysis
showed that there was a significant reduction in prefrontal BDNF in the D group compared to the
C (p < 0.001), Cex (p < 0.001), and Dex groups (p < 0.001). This result suggested that prefrontal BDNF
was decreased by DEHP exposure and this reduction was averted by aerobic exercise.

For prefrontal CB1R levels, the two-way ANOVA revealed that there were effects of treatment
(F (1, 36) = 55.238, p < 0.001, η2 = 0.61) and exercise (F (1, 36) = 84.483, p < 0.001, η2 = 0.70) on
the prefrontal CB1R expressions (Figure 5b). Additionally, the treatment × exercise interaction
(F (1, 36) = 26.413, p < 0.001, η2 = 0.42) had an effect on the prefrontal CB1R expressions. The post hoc
analysis showed that there was a significant reduction in prefrontal CB1R in the D group compared to
the C (p < 0.001), Cex (p < 0.001), and Dex groups (p < 0.001). This result suggested that prefrontal
CB1R was decreased by DEHP exposure and this reduction was prevented by aerobic exercise.

The two-way ANOVA revealed that there were no significant effects of treatment and exercise on
the prefrontal D1R expression (Figure 5c). This result suggested that the expression of prefrontal D1R
in the post-adolescent male rats were hardly affected by DEHP exposure or exercise training.

The two-way ANOVA revealed that there were effects of treatment (F (1, 36) = 6.255, p < 0.05,
η2 = 0.15) and exercise (F (1, 36) = 5.533, p < 0.05, η2 = 0.13) on the prefrontal FAAH expressions
(Figure 5d), while no significant treatment × exercise interaction was found. The post hoc analysis
showed that there was a significant reduction in prefrontal FAAH in the D group compared to the Cex
group (p < 0.01).
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Figure 5. Expressions of prefrontal BDNF, dopamine D1 receptor (D1R), cannabinoid receptor 1 (CB1R),
and fatty acid amide hydrolase (FAAH) analyzed by Western blot. (a) Decreased expressions of
prefrontal BDNF were observed in the D group, whereas exercise restored this impairment in the Dex
group. (b) Decreased expressions of prefrontal CB1R were observed in the D group, whereas exercise
restored this impairment in the Dex group. (c) No significant differences were found among groups in
their expressions of prefrontal D1R. (d) No significant differences were found among groups in the
expressions of prefrontal FAAH. C: control; D: DEHP exposure; Cex: exercised control; Dex: exercised
DEHP exposure. Data are presented in mean ± SEM (n = 10 in each group). **: p < 0.01, ****: p < 0.001.

3. Discussion

Hyperactivity and working memory impairment are two significant symptoms in ADHD
children [11]. Early-life phthalate exposure is related to the behavioral characteristics of ADHD
in humans [9,10]. However, the mechanisms underlying the effects of DEHP exposure on symptoms
of ADHD in the experimental animals have never been investigated. The present study showed
that working memory impairment without hyperactivity symptoms was observed in the prenatally
DEHP-exposed male rats. Biochemical data suggested that the DEHP-exposed rats exhibited reductions
in BDNF and CB1R in the prefrontal cortex. Importantly, exercise training during childhood-adolescence
reversed the impairment of working memory in the DEHP-exposed rats, which was accompanied by
the recovery of BDNF and CB1R expressions in these animals.

There was no significant difference in the locomotor activity between the control and
DEHP-exposed rats, suggesting that hyperactivity was absent in these animals. Previous studies have
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shown that the effects of DEHP on locomotor activity are inconsistent in male rodents. Neonatal DEHP
exposure can induce hyperactivity [4,40], but other studies show that locomotor activities are not
influenced by prenatal DEHP exposure [3,41,42]. These differences are probably caused by the doses
of DEHP, age of the subjects, or time of exposure. Our data were similar to previous studies showing
that locomotor activity in post-adolescent male rats was rarely affected by prenatal DEHP exposure.

The delayed non-match-to-sample task is widely used to investigate working memory in rodents.
In this task, the animals are typically cued to make a choice response to obtain a reward, but are prevented
from responding until after a delay period has been imposed [43]. Evidence shows that the impairment
of the prefrontal cortex impairs working memory (i.e., choice accuracy) without altering reference
memory (i.e., the maze task rule), suggesting that the prefrontal cortex is necessarily involved in the
delayed alternation task [44]. We reported that there was no significant difference in the choice accuracy
between the C and D groups under the no-delay condition, implying that prenatal DEHP exposure
does not affect motivation, motor function, or reference memory for getting rewarded. There were
no performance deficits at the short delay (30 s delay); however, the choice accuracy significantly
decreased in the D group as the delay was extended (60 s delay). Prefrontal activity during the delay
period is more important in memory retention than in inhibitory control or decision-making [45,46].
The impaired prefrontal cortex is capable of completing the correct choice at a short delay using an
alternate strategy, while it exhibits a poor accuracy at longer delays as working memory demands
increase [44,47]. Therefore, the DEHP-exposed rats exhibited decreased choice accuracy at longer
delays, suggesting that prenatal DEHP exposure impaired working memory in the post-adolescent male
rats. Currently, there is no report regarding the effect of DEHP on prefrontal working memory using
delayed non-match-to-sample tasks. A study regarding the prefrontal function shows that perinatal
exposure to a mixture of phthalates results in a deficit in cognitive flexibility [48]. Several studies
in rodent models implicate that prenatal DEHP exposure impairs hippocampus-dependent learning
and memory by enhanced oxidative damage, decreased N-methyl-d-aspartic acid (NMDA) receptors,
reduced neurogenesis, and the impairment of neuronal excitability [3,41,49,50]. Although mechanisms
involved in the adverse effect of DEHP exposure on hippocampal learning and memory have been
identified, there is little to no evidence regarding the mechanism of working memory deficit after
DEHP exposure.

Dopamine and endocannabinoids are two important regulators of prefrontal function.
Evidence shows that extreme hypo- or hyper-stimulation of either D1R or CB1R impairs working
memory, suggesting that appropriate levels of prefrontal D1R and CB1R are important for efficient
working memory processing [14,23,24,51]. In this study, the expression of D1R was mildly affected,
while the expression of CB1R was reduced in the DEHP-exposed rats. The effect of DEHP exposure
on dopaminergic function has been reported by some researchers. Preadolescent DEHP exposure
results in reduced midbrain tyrosine hydroxylase activity and decreased striatal D2R expression
in the post-adolescent animals [52,53]. However, neonatal DEHP exposure reduces the midbrain
D1R expression, but striatal D1R expression remains unchanged in the adolescent male rats [40,54].
These results suggest that the effect of DEHP exposure on dopaminergic function may depend on
the region-specific susceptibility or time of exposure. Prefrontal D1R density rises dramatically
at adolescence, and this upregulation of D1R is independent of gonadal hormones actions [55,56].
The anti-androgenic and estrogenic effects of DEHP may have less influence on the expression of
prefrontal D1R during development, or the ceiling effect of overexpression of prefrontal D1R may have
masked its detection in the present study.

Decreased prefrontal CB1R is strongly correlated with working memory disturbances in patients
with schizophrenia, Parkinson’s disease, and Huntington disease [57–59]. Besides this, specific single
nucleotide polymorphism in CB1R gene is associated with reduced prefrontal CB1R expression and
working memory deficit [19,60]. Endocannabinoids act as retrograde messengers in inhibiting the release
of γ-aminobutyric acid (GABA). The CB1R induced a reduction in GABA release, and GABA-mediated
synaptic inhibition is impaired in the animal models of ADHD and Huntington disease [61,62].
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Interestingly, evidence shows that DEHP acts as a low-affinity antagonist of CB1R [63], and DEHP
exposure increases the release of GABA in the hypothalamus [64]. Based on this evidence, our result
showed that reduced prefrontal CB1R may be part of the mechanisms underlying the working memory
impairment caused by prenatal DEHP exposure. Additionally, excessive endocannabinoids may
downregulate prefrontal CB1R and impair working memory [25]. Because anandamide is degraded by
the enzyme FAAH, the alteration in FAAH expression may influence the anandamide concentration
and CB1R expression. However, the prefrontal FAAH expression was not affected by DEHP exposure
in the present study. Although we did not measure anandamide concentrations, our result suggested
that the metabolism of anandamide was not influenced by DEHP exposure. In rodents, acute alcohol
exposure reduces the prefrontal CB1R levels, while both FAAH and anandamide were not changed
in the prefrontal cortex [65,66]. This inconsistency between CB1R and FAAH expressions suggests
that other endocannabinoids such as 2-arachidonoylglycerol or the alteration in FAAH activity may
respond to DEHP exposure.

We showed that prefrontal BDNF expressions were reduced in DEHP-exposed rats, in
agreement with the reduction in hippocampal BDNF levels after DEHP exposure in male rats [67,68].
BDNF participates in the survival of neurons and promotes synaptic transmission, whereas BDNF
deficiency is closely related to the pathogenesis of neuropsychiatric diseases [31]. Mice with a
conditional knockout of BDNF display symptoms of ADHD [69]. Similarly, the ADHD animal model
shows that there are reductions in BDNF expressions in the hippocampus and prefrontal cortex [70,71].
Besides this, the hippocampal BDNF enhances declarative and long-term memory, and the positive
correlation between prefrontal BDNF and working memory has been reported [72,73]. Besides this,
multiple reports have provided evidence for a crosstalk between BDNF and endocannabinoid signaling.
BDNF and CB1R interactions have been demonstrated in mediating neurogenesis, neuronal survival,
and protection against excitotoxicity [74]. Exogenous cannabinoids treatment increases prefrontal
BDNF release [75], and the genetic deletion of CB1R decreases the hippocampal BDNF expression [76].
BDNF increases CB1R expression in cultured cerebellar granule neurons and promotes neuronal
sensitivity to CB1R agonists [77]. In the present study, both BDNF and CB1R were reduced in the
prefrontal cortex of DEHP-exposed rats, suggesting a plausible mechanism underlying the working
memory impairment after DEHP exposure.

Exercise can enhance working memory and cognitive flexibility in humans [78,79].
The enhancement of BDNF release is the most important mechanism underlying the improvement
of cognitive function after exercise [33,35]. In the present study, DEHP-exposed rats underwent
exercise training for 5 weeks and exhibited an improvement in working memory and recovery of
prefrontal BDNF and CB1R expressions. We noticed a major effect of exercise on increases in plasma
BDNF and muscle PGC-1α, two effectors responding to aerobic exercise [33,44], providing evidence to
support the efficacy of the exercise regimen used in the present study. The stimulant methylphenidate
(MPH) is commonly used for ADHD treatment. A clinical study reported that, after 6 weeks of
treatment with MPH, the plasma BDNF levels of ADHD children were increased and showed a
significant correlation with the improvement in the symptoms of ADHD [80]. In the ADHD animal
model, both exercise and MPH can increase hippocampal BDNF release and improve the symptoms
of ADHD [71]. Similarly, our study showed that exercise improved the expression of BDNF in the
DEHP-exposed rats, which may suggest a mechanism underlying the recovery of working memory
in these rats. Exercise has been suggested as an effective adjunctive treatment for improving the
symptoms of ADHD [37,38].

A study has shown that aerobic exercise increases the plasma levels of endocannabinoids in
human runners [81], as well as anandamide levels and hippocampal CB1R density in rats [82].
Interestingly, there is evidence suggesting that anandamide increment during exercise may be involved
in exercise-induced BDNF release and may delay the return of BDNF to basal level [83]. Exercise-induced
BDNF and neurogenesis are impaired by CB1R antagonists, showing an association between CB1R
activation and BDNF released during exercise [84]. Because exercise-induced BDNF and CB1R
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activations are dependent on exercise intensity and both effectors are involved in exercise-induced
hippocampal neurogenesis, this synergism of BDNF and CB1R responding to exercise may provide
more beneficial effects on improving cognitive deficits. We showed that the impaired prefrontal BDNF
and CB1R expressions were recovered by exercise, suggesting that this synergism may be responsible
for the recovery of working memory after exercise in DEHP-exposed rats.

In conclusion, the present study shows that prenatal DEHP exposure impairs working memory in
the post-adolescent male rats. A possible mechanism underlying this finding is the downregulation of
prefrontal BDNF and CB1R. Aerobic exercise during childhood-adolescence restores prefrontal BDNF
and CB1R and improves working memory in DEHP-exposed rats. Therefore, because of the similarity
in working memory between rats and humans, these findings may be important when investigating the
ontogeny of ADHD, as well as the intervention of physical exercise in ameliorating ADHD symptoms.

4. Materials and Methods

4.1. Animals

Sprague Dawley rats (BioLasco, Taipei, Taiwan) were housed in a 12/12-h light/dark schedule
(lights on at 07:00) under constant temperature and humidity. DEHP-free Altromin 1320 rat pellets
(Altromin, Im Seelenkamp, Germany) and distilled water were provided ad libitum. This study
was carried out in strict accordance with the recommendations of the Guide for the Care and Use
of Laboratory Animals of the National Institutes of Health. All the experimental procedures were
approved by the Animal Care and Use Committee of Kaohsiung Medical University (IACUC Approval
Number: 106208, approved on 20 December 2017), and all efforts were made to minimize suffering
and the number of animals used.

4.2. Experimental Design

Normal female and male rats were mated for 5 days. A vaginal plug was obtained at gestation
day 1. Pregnant rats were housed individually and administered daily with corn oil (served as vehicle
control, n = 10) or DEHP (n = 10) by oral gavage from gestational days 14 to 21. The pups were
examined with anogenital distance on postnatal day 1, and the litters were culled to four males and
four females in one cage. The offspring male rats were weaned at postnatal day (PND) 21 and then
housed individually until the end of the experiment. The offspring male rats were divided into four
groups: control (C, n = 10), DEHP (D, n = 10), exercised control (Cex, n = 10), and exercised DEHP
(Dex, n = 10). For each group, one male sibling was taken from each litter to reduce “litter effects” [85].
In the exercised groups, the rats were trained to run on a treadmill for 5 weeks from PND 22 to PND
56. The open-field test was performed at PND 57 and the delayed non-match-to-sample task was
performed from PND 58 to PND 66. The post-adolescent male rats were sacrificed on PND 67 and the
samples of plasma, prefrontal cortex, and gastrocnemius muscle were isolated for further analysis.
The levels of plasma BDNF were analyzed by an enzyme-linked immunosorbent assay (ELISA).
The expressions of prefrontal BDNF, D1R, CB1R, FAAH, and muscle peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1α) were analyzed by Western blot.

4.3. Gestational Administration of DEHP

DEHP (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in corn oil (Sigma-Aldrich, St. Louis,
MO, USA), which was prepared fresh every day. The dose of DEHP exposure was 10 mg/kg/day.
The control group was supplied with corn oil, and the DEHP group was supplied with the
DEHP/corn oil mixture. The estimated DEHP exposure for the adult human population is 1 to
30 µg/kg/day [86]. According to the conversion coefficient, based on the body surface area difference
between humans and rats, humans are exposed to DEHP doses corresponding to 0.18–2.5 mg/kg/day
for exposure in rats [87,88]. The no-observed-adverse-effect level (NOAEL) of DEHP for humans is
48 mg/kg/day, which is converted to equivalent dose corresponding to 300 mg/kg/day for rats [88].
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Therefore, prenatal exposure to DEHP at the dose of 10 mg/kg/day is lower than NOAEL and considered
human friendly with no known adverse effects.

4.4. Treadmill Running

Because rats are nocturnal animals, they were trained to run on a treadmill at night (19:00–1:00,
when the light was off) to increase their motivation in running. Initially, rats in the exercise groups
were allowed to run on a motor-driven horizontal treadmill (Model Exer 3/6, Columbus Instruments,
Columbus, OH, USA), starting at a very low speed and gradually reaching 6 m/min for 30 min each day
for 7 days to become familiar with treadmill running. Then, the animals were trained for 30 min/day,
7 days/week for 4 weeks. The running speed started at 8 m/min, increased to 11 m/min every week,
and reached up to 20 m/min at the end of the training period. The rats were trained on a treadmill
without electric foot shock to reduce stress during treadmill running. In contrast, animals in the
non-exercising group were placed on the treadmill without running for 10 min each day for 5 weeks.

4.5. Open Field Test

An open field apparatus that consists of an empty square arena (60 cm length × 60 cm width)
divided into 36 identical squares and surrounded by black plastic walls (40 cm height) was used.
Each rat was first placed in the center of the arena and its locomotor activity was recorded for 10 min.
The arena was thoroughly cleaned with 40% ethanol and allowed to dry between subjects to eliminate
the possibility of any odor cues. All trials were conducted between 19:00 and 21:00 and each rat was
tested only once. The spontaneous locomotor activity was determined by the total number of crossed
squares and the number of entries in the central area (20 × 20 cm) (center entries). Data were recorded
respectively for each rat by an observer blind to the experimental treatments. Both parameters were
counted for all four paws being inside the square or the central area.

4.6. Delayed Non-Match-to-Sample Task

The T-maze delayed non-match-to-sample task was applied to investigate the performance of
working memory, as previously reported [89]. Again, all the trials were conducted between 19:00 and
21:00. A T-maze apparatus consists of a start arm (50 cm length × 12 cm width × 25 cm height) and
two-goal arms (60 cm length × 12 cm width × 25 cm height each) made from gray plastic. The crossed
central area was equipped with three sliding doors. The goal arms were specified for the food reward
supplied in the food trays. To increase the rats’ motivation to obtain food, they were fed with restricted
amounts of chow that was sufficient to maintain each animal above 90% of its free-feeding body
weight throughout the experiment. There were three steps for the delayed non-match-to-sample task:
habituation, non-match-to-sample, and a delayed non-match-to-sample task. The animals underwent
a habituation process from PND 58 to PND 60. The rats were allowed to explore the T-maze apparatus
for 3 days (five explorations/day). During each exploration, the rats were allowed to explore freely in
the T-maze and eat the food reward available at the end of both goal arms. The food reward was a
piece of cereal (Quaker oats, Chicago, IL, USA) in each goal arm. After eating the cereal from both
sides, the rats were returned to the start arm with the door closed for 1 min before starting another
round. The T-maze was thoroughly cleaned with 40% ethanol and allowed to dry between subjects to
eliminate any odor cues. After habituation, the non-match-to-sample task was performed from PND 61
to PND 65. The rats were trained to perform the rewarded alternations, in which a trial consisted of an
“information run” and a “test run”. In the information run, one goal arm was blocked, forcing the animal
into another goal arm to get the food reward. After finishing the food reward, the block was removed
and the rat was returned to the start arm to perform the test run. The rats were trained to locate the
previously visited goal arm and alternate the choice to get another food reward. Rats received one food
reward for choosing the previously unvisited arm (correct choice), whereas choosing the previously
visited arm got no reward (wrong choice). Left/right allocations for the information and test runs were
pseudo-randomized over eight trials per day, with no more than three consecutive information run to
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the same side. The inter-trial interval was 1 min. After 5 days of training, the percentage of correct
choices >75 % was required to fulfill the criterion for evaluations. In this study, all the animals reached
this criterion. Following this trial, the delayed non-match-to-sample task was performed on PND 66.
The procedure of delayed non-match-to-sample task was almost identical to the rewarded alternations,
except for a delayed period between the information run and test run. After finishing the information
run, the rats were returned to the start arm with the door closed and stayed there for 0, 30, or 60 s in a
randomized order. There were four trials for each delay and the percentages of correct choices were
calculated for comparison. Data were recorded respectively for each rat by an observer blind to the
experimental treatments.

4.7. Blood and Tissue Sample Collection

The animals were sacrificed by the inhalation of CO2 for 3 min. The blood samples were collected
from the atria and centrifuged at 1500 rpm for 30 min, then the supernatants were collected and stored
at −80 ◦C. After blood collection, the brain and gastrocnemius muscle were removed and soaked in an
ice-cold phosphate-buffered saline solution (0.05 M Na2HPO4 and 0.137 M NaCl, pH 7.4). The whole
prefrontal cortex was isolated under microscopic observation by dissecting the lateral to the forceps
minor of the corpus callosum, anterior to the genu of the corpus callosum, and demarcated laterally
by the accessory olfactory bulb. The muscle sample was dissected from the mid-belly region of the
gastrocnemius muscle.

4.8. Western Blot

The tissue samples were homogenized in an ice-cold lysis buffer (20 mM Tris, pH 7.5, 150 mM
NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 1% deoxycholate, 1 mM sodium fluoride, and 2 mM
sodium orthovanadate) and centrifuged at 13,000× g for 20 min at 4 ◦C. Protein in the supernatant
was quantified using a BCA Protein Assay Kit (ThermoFisher, Waltham, MA, USA) according to the
manufacturer’s instructions. Thirty micrograms of protein were mixed with NuPage LDS sample
buffer (Invitrogen, Carlsbad, CA, USA) and separated by pre-cast 4–12% Bis-Tris gel (Invitrogen,
Carlsbad, CA, USA) in MOPS running buffer (Invitrogen, Carlsbad, CA, USA) for 50 min under
120 mA and 200 V. Proteins were transferred to polyvinylidene difluoride (PVDF) membrane (Millipore,
Burlington, MA, USA) in NuPage transfer buffer (Invitrogen, Carlsbad, CA, USA) for 60 min under
170 mA and 30 V condition. After blocking with 5% nonfat milk in TTBS buffer (10 mM Tris, pH 7.5,
150 mM NaCl, and 0.1% Tween 20), the membrane was incubated with primary antibodies specific for
each protein for 24 h at 4 ◦C: rabbit anti-BDNF antibody (1:1000, ab108319, Abcam, Eugene, OR, USA),
mouse anti-D1R antibody (1:200, sc-33660, Santa Cruz, Santa Cruz, CA, USA), rabbit anti-CB1R
antibody (1:200, ab23703, Abcam, Eugene, OR, USA), mouse anti-FAAH antibody (1:200, sc-100739,
Santa Cruz, Santa Cruz, CA, USA), mouse anti-PGC-1α antibody (1:200, ST1202, Merck, Kenilworth,
NJ, USA), rabbit anti-GAPDH antibody (1:3000, ab9485, Abcam, Eugene, OR, USA), and mouse
anti-actin antibody (1:5000, A2228, Sigma-Aldrich, St. Louis, MO, USA). After washing, the blot was
incubated with horseradish peroxidase (HRP)-conjugated goat secondary antibodies (1:2000, ab97051
and ab97023, Abcam, Eugene, OR, USA) for 60 min at room temperature. The expression of the
protein was detected by enhanced chemiluminescence (Invitrogen, Carlsbad, CA, USA) according to
the recommended conditions. A Western blot analysis was performed in duplicate for each sample,
and average protein levels were calculated for comparison. Digital images of the blots were created
by scanning the blots, and the optical densities were determined with the Image-Pro Plus software
(Media Cybernetics, Rockville, MD, USA). Each protein level was normalized to the control samples
from the same membrane and presented as a percentage.

4.9. Enzyme-Linked Immunosorbent Assay (ELISA)

The levels of plasma BDNF were determined by commercially available assay kits optimized
for small volumes, according to the manufacturer’s instructions. The detection limit of each kit
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for the corresponding hormones is 12 pg/mL for BDNF (ERBDNF, Invitrogen, Carlsbad, CA, USA).
In brief, 100µL of standards and diluted serum samples (dilution factors: 2× were added to wells and
incubated at room temperature for 2 h with gentle shaking. Assay diluent served as a zero standard
for background subtraction to construct a standard curve. The solution was then discarded and the
wells were washed four times with 400µL of wash buffer before adding 100µL of BDNF biotinylated
antibody and incubating for 1 h at room temperature. Wells were washed 4x with buffer, followed by
adding 100µL HRP-avidin to each well for 1 h at 37 ◦C. An amount of 100µL TMB substrate was then
added in each well for 30 min before adding the stop solution. The wells were protected from light
at all times after the addition of substrate solution. The optical density of each well was measured
using an automated microplate reader (PowerWave 340, Bio-Tek, Winooski, VT, USA) set to 450 nm
(correction wavelength set to 550 nm) within 30 min of adding the stop solution. A standard curve was
constructed by plotting the mean absorbance for each standard against the concentration to draw a
best-fit curve through the points on the graph. The concentration read from the standard curve was
then multiplied by the dilution factor. Each sample was measured in duplicate, and the average level
from the same rat was used for comparison.

4.10. Statistical Analysis

The data were analyzed by a two-way ANOVA with two main effects (treatment and exercise)
and possible interactions. If significant main effects or interactions were found, the Bonferroni post
hoc test was performed for multiple comparisons. The statistical analysis was performed with SPSS
Statistics (v. 19.0, IBM, Armonk, NY, USA). The effect size was shown by eta square (η2). All the values
were expressed as mean ± standard error of the mean (SEM) in the figures. Significance was assumed
as p < 0.05.
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Abbreviations

ADHD attention-deficit hyperactivity disorder
BDNF brain-derived neurotrophic factor
CB1R cannabinoid receptor 1
D1R dopamine D1 receptor
DEHP di-(2-ethylhexyl)-phthalate
FAAH fatty acid amide hydrolase
GABA gamma-aminobutyric acid
PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1-alpha
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