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Abstract: The need for miniaturized biological sensors which can be easily integrated into medical
needles and catheters for in vivo liquid biopsies with ever-increasing performances has stimulated
the interest of researchers in lab-on-fiber (LOF) technology. LOF devices arise from the integration
of functional materials at the nanoscale on the tip of optical fibers, thus endowing a simple optical
fiber with advanced functionalities and enabling the realization of high-performance LOF biological
sensors. Consequently, in 2017, we demonstrated the first optical fiber meta-tip (OFMT), consisting
of the integration of plasmonic metasurfaces (MSs) on the optical fiber end-face which represented a
major breakthrough along the LOF technology roadmap. Successively, we demonstrated that label-
free biological sensors based on the plasmonic OFMT are able to largely overwhelm the performance
of a standard plasmonic LOF sensor, in view of the extraordinary light manipulation capabilities of
plasmonic array exploiting phase gradients. To further improve the overall sensitivity, a labelled
sensing strategy is here suggested. To this end, we envision the possibility to realize a novel class
of labelled LOF optrodes based on OFMT, where an all-dielectric MS, designed to enhance the
fluorescence emission by a labelled target molecule, is integrated on the end-face of a multimode
fiber (MMF). We present a numerical environment to compute the fluorescence enhancement factor
collected by the MMF, when on its tip a Silicon MS is laid, consisting of an array of cylindrical
nanoantennas, or of dimers or trimers of cylindrical nanoantennas. According to the numerical
results, a suitable design of the dielectric MS allows for a fluorescence enhancement up to three
orders of magnitudes. Moreover, a feasibility study is carried out to verify the possibility to fabricate
the designed MSs on the termination of multimode optical fibers using electron beam lithography
followed by reactive ion etching. Finally, we analyze a real application scenario in the field of
biosensing and evaluate the degradation in the fluorescence enhancement performances, taking
into account the experimental conditions. The present work, thus, provides the main guidelines for
the design and development of advanced LOF devices based on the fluorescence enhancement for
labelled biosensing applications.

Keywords: all-dielectric metasurfaces; fluorescence enhancement; lab-on-fiber; labelled biosensing

1. Introduction

Metamaterials are subwavelength structured materials engineered to exhibit unique
optical properties that are not commonly available in natural materials [1,2]. Such artificial
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materials have received attention from researchers, and they allowed to attain extraordinary
light phenomena such as negative refraction [3], super lensing [4], and complete control of
the electromagnetic fields [5]. Recently, the two-dimensional counterpart of metamaterials,
known as metasurfaces (MSs), has gained increasing attention due to their simpler fabrica-
tion using common techniques, such as photolithography and electron-beam lithography,
and on-chip and on-fiber assembling. A MS is an ultrathin planar optical element composed
of resonating elements that exhibits the ability to control light at the nanoscale. By properly
designing those nanoantennas, it is possible to mold at will an impinging electromagnetic
field, thus enabling flat-optics and photonics [6,7]. MSs have been reported in various
applications, including wavefront shaping [8–10], dispersion engineering [11,12], nonlinear
optics [13], communications [14], sensing [15–19], and microscopy [20].

In 2017 a pioneering work by Principe et al. [21] showed the first integration of a MS
with an optical fiber, giving birth to the optical fiber meta-tips (OFMT). The integration of
MSs with optical fibers represents a valuable addition to the growing field of “Lab-on-fiber”
(LOF) technology [22–24], endowing optical fibers with the extraordinary capabilities of
MSs that might be crucial to improving the performances of LOF-based devices. Further-
more, OFMTs are particularly apt for miniaturization and integration with plug-and-play
devices [25,26]. First, the OFMTs presented in [21] were based on plasmonic phase gradient
MSs made of inhomogeneous arrays of rectangular aperture nanoantennas milled in a thin
gold layer, previously deposited on the fiber end-face. The proof-of-concept application
was the beam steering of a transmitted beam by an arbitrary deflection angle. It was also
shown that OFMTs deflecting the output beam by 90◦ are able to efficiently couple normally
incident light to surface waves and exhibit a sensitivity to local refractive index variations
higher than that of the corresponding gradient-free uniform array [21,27,28].

More recently, using the well-established biotin–streptavidin pair as a benchmark,
Consales et al. demonstrated the capability of a suitably designed MS-enhanced LOF
biosensor to significantly outperform standard plasmonic biosensors in real biological
experiments [27,28]. In the same work, they also demonstrated the capability of the realized
MS-assisted label-free optrode to detect Streptavidin in running buffer solutions with a
limit of detection as low as 3 ng/mL [28].

With the aim of further improving the sensing performances of LOF biosensors, in
this paper, we explore the possibility of developing advanced MS-assisted fluorescence
(FL)-based optrodes. To this aim, with reference to the schematic illustration reported in
Figure 1a, the integration on the fiber tip of properly designed MSs able to enhance the
fluorescence signal emitted by a target molecule would allow the realization of a label-
based biosensor characterized by very low limits of detection, thanks to the FL-intensity
enhancement. This would, in turn, represent a valuable addition to the arsenal tools
available in the LOF technology.

So far, several papers have demonstrated FL-intensity enhancement up to three orders
of magnitude exploiting plasmonic MSs [29–32]. Metal enhanced fluorescence [33,34] is
well established and is of importance to many research areas reviewed in [35]. However,
plasmonic materials suffer from high dissipation losses causing heat generation in the
structure, which can be a limitation in many applications [36,37]. Besides, owing to the
high absorbance of metals, a quantum emitter positioned in the vicinity of a plasmonic
nanostructure (NS) undergoes quenching, which makes dielectric spacers essential between
the emitter and the NS, compromising the field enhancement near the NS [38,39].

For these reasons, high-index dielectric NSs have been explored as an alternative to
plasmonic metal nanoantennas [40–42]. Sub-wavelength dielectric NSs support Mie reso-
nances, producing enhanced field intensity in their proximity [43]. Moreover, high-index
materials feature a large electron bandgap and thus weaker absorption losses in the visible
and infrared regimes. Importantly, while metal NSs feature only electric modes and need
complex geometries to acquire resonance of a magnetic nature, dielectric NSs support both
electric and magnetic resonances [44,45]. NSs featuring spectral overlap of electric and
magnetic dipole resonance offer the opportunity to achieve the desired directionality with
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a more compact design [46], as predicted a few decades ago by Kerker et al. [47]. Thus,
dielectric nanoantennas have a great potential to enhance the fluorescence intensity by
improving the excitation and emission rates of a fluorophore and controlling its emission
directivity [48]. Several papers have been published in the last years exploiting dielectric
NSs for several applications, including fluorescence enhancement [49–55], Raman scat-
tering [50], and biosensing [56]. A comparative experimental study between dielectric
silicon and plasmonic dimers shows how the former avoids any parasitic heating and
quenching [51,57]. In [58], a fluorescence enhancement factor exceeding 1000 has been
experimentally demonstrated by employing an array of silicon cylindrical disks featuring
Mie resonances. Fluorescence enhancement up to 3600 was also achieved using gallium
phosphide (GaP) nanoantennas [53]. Moreover, FL-sensing platforms based on all-dielectric
FL biosensors were able to directly detect a target antibody at very small concentrations (or-
ders of femtomolar) [59] and to detect nucleic acid targets [60], proving that FL biosensors
based on all-dielectric MSs exhibit high performance.
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Figure 1. Schematic illustration of the studied geometries. (a) A schematic of a fiber with NSs
fabricated on its tip. A square-periodic array of: (b) cylindrical Si NSs (c) dimers of Si cylindrical NSs
and (d) trimers of cylindrical Si NSs on SiO2 substrate in a homogeneous medium with a refractive
index = 1.33.

Combining the advantages of all-dielectric MSs with fiber optic technology, we envi-
sion a high sensitivity miniaturized platform for labeled biosensing applications, in which
a single fiber probe can be used to detect biological targets up to very low concentrations
thanks to the fluorescence-intensity enhancement. The fiber optics technology will allow
the development of a point of care device and decrease the complexity of the optical setup
by using the fiber optic as a light coupled substrate that illuminates the sample under
analysis and simultaneously collects the emission from the FL molecules labeling the
biological target.

A substantial quantity of work on planar substrates consisting of all-dielectric MSs for
fluorescence enhancement already exists; however, to the best of our knowledge, no work
has considered optical fibers as substrate for fluorescence-based labelled biosensors. With
the final goal of realizing an advanced labeled LOF biosensor based on the integration of FL-
enhancing all-dielectric MSs, we designed resonant dielectric structures to be realized on the
end face of optical fibers, capable of enhancing fluorescence emission and collection when
operating in reflection mode. Specifically, here we present a comparative numerical study
of FL enhancement of emitters when coupled to different optical MSs, made of periodic
arrays of silicon cylindrical NSs, or of dimers or trimers of cylindrical nanoantennas.
The period of the arrays is chosen to match the work wavelength (which coincides with
the NSs resonance wavelength) to the first Rayleigh-Wood anomaly [61,62]. As a result,
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the localized excitation of the individual NSs and the surface lattice resonance interfere,
producing narrow spectral features and significantly enhanced field intensities in the
proximity of the NSs [63]. Using the commercial software Comsol Multiphysics based on
the Finite element method (FEM), we compare the three different geometries numerically
and study their influence on enhancing the fluorescence emission of emitters, by assuming
that such MSs lie on the tip of a 200 µm-core MMF, which is used both as the excitation
source and as the collective probe. An efficient collection of the emitted photons is also
necessary to improve the ultimate sensitivity; indeed, the effect of light redirection induced
by the nanoantennas will improve the number of collected photons by the MM optical fiber,
whose numerical aperture is taken into account in the numerical study.

2. Materials and Methods
2.1. Structure and Method

In the following, we will study how a periodic array of various dielectric structures
affects the fluorescence emission enhancement from an emitter. Three dielectric geometries
that consist of silicon NSs are considered: (i) the simplest case was an array of single
nanocylinders; then (ii) more complex structures were studied, made of dimers with
20 nm-gap; and (iii) trimers of cylindrical NSs. These NSs, supported by SiO2 substrate
(i.e., the fiber end-face) and embedded in a medium, were designed to maximize the
collected FL signal at the wavelength of 650 nm.

The refractive index of amorphous silicon (a-Si) in the wavelength range of interest
was evaluated from ellipsometry measurements of a layer deposited on a glass substrate
via e-beam evaporation and that of SiO2 is set to 1.45 and the medium to 1.33 neglecting
their dispersion. The field maps, and the computation of the fluorescence enhancement
factors, were performed using the RF module based on the finite element method (FEM)
implemented in the commercial software Comsol Multiphysics [64]. For the computation of
the reflectivity spectrum, the rigorous-coupled wave analysis (RCWA) is also adopted [65],
to double-check the results.

The unit cell includes the silicon nanoantenna with periodic boundary conditions
applied in the x and y directions. Ports were assigned to the upper and lower boundaries
in the z-direction to illuminate the structure with a normal incident plane wave linearly
polarized, traveling along z. Indeed, it is assumed that most of the power will be delivered
to the fundamental mode, which has a (approximately) Gaussian transverse profile that
behaves locally (within the unit cell) as a plane wave [66].

An adaptive meshing is used with a maximum element size of λm/10 and a minimum
element size of λm/15, where λm is the wavelength traveling in the domain. The diameter
(D) and height (h) of the cylindrical antenna were varied to produce Mie resonances in the
visible range while the period (Λ) is fixed. A parametric study is carried out in order to
obtain resonance at the maximum absorption wavelength of the intended dye molecule.

2.2. Fluorescence Enhancement Factors

The fluorescence enhancement intensity fl of the emitters coupled to the NSs is com-
puted as the product of the excitation rate enhancement (γexc), quantum yield ( ηη0

), and

collection efficiency enhancement
(
κcoll
κ0

coll

)
[67]

fl = γexc ∗
η

η0
∗ κcoll

κ0
coll

(1)

The resonant NSs will create near-field enhancements which improve light-matter
interaction resulting in a boosted excitation rate. The excitation rate enhancement of the
fluorophore γexc placed in the vicinity of an optical antenna is defined as [68]:

γexc =
|p . E|2

|p . E0|2
(2)
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where p is the dipole moment modeling the fluorophore, E and E0 are the electric field
in the presence and in the absence of the NSs, respectively, at the dipole location. In our
numerical analysis, the electric field is computed in a single point at a specific distance
from the NS, or its average value is computed inside a square volume surrounding the NS
where the fluorophores are expected to be (Figure 2a).
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Figure 2. Schematic representation of geometries used for computing the three factors separately.
(a) Square volume surrounding the NS to compute the average electric field enhancement with
Floquet-type periodic boundary conditions (PBC) around. (b) Dipole above the nanostructure
surrounded with perfectly matched layers (PMLS) to compute the quantum yield enhancement of
the fluorophore. (c) Dipole above the NS, to compute the far field radiation pattern.

After excitation, the fluorophore can return to its ground state, emitting a photon at a
longer wavelength λem or decaying non-radiatively. This phenomenon is characterized by
the quantum yield of the fluorophore. In a homogeneous medium, the intrinsic quantum

yield, a property of the dye, is defined as η0 = γ0
r

γ0
r+γ

0
nr

where γ0
r and γ0

nr are, respectively,
the radiative and non-radiative decay rates of the molecule in free space. The decay rates
of an emitter coupled to an antenna are altered when the resonant wavelength is tuned to
overlap the emission wavelength leading to a change in its quantum yield as [69]

η

η0
=

γr/γ0
r

η0
(
(γr + γnr)/γ0

r
)
+ (1− η0)

(3)

The factors γr
γ0

r
and γnr

γ0
r

are computed numerically as γr
γ0

r
= Pr

P0
r

and γnr
γ0

r
= Pabs

P0
r

where

Pr is the radiated power by the molecule coupled to the NS, P0
r is the radiated power by the

emitter in a homogeneous medium (in absence of the NS), and Pabs is the power absorbed
by the nanoantenna [70–72]. An oscillating electric dipole representing a fluorophore is
used inside a finite structure to calculate the emission enhancement from an emitter when
coupled to NSs [69,72]. Perfectly matched layers are used in the x, y, and z boundaries,
including the NS and the dipole (Figure 2b). The radiated power (Pr) from the dipole
is computed by integrating the energy flux on a sphere closely surrounding the dipole.
The dimension of the sphere, which does not affect the calculated power, was chosen to
avoid any intersection with the nanoantenna structures. The absorbed power (Pabs) by the
nanoantenna is computed by integrating the losses over the nanoantenna (Figure 2c).

The directionality properties of the emitter coupled to the NSs have been studied. This
is a crucial aspect for our purpose since the MMF has a limited numerical aperture with
a fixed orientation. Thus, the designed MS must also be able to redirect photons into the
acceptance angle of the optical fiber.

The 3D scattering patterns is further processed in Matlab to compute the collection
efficiency (κcoll) of the system that was computed as follows [70]

κcoll =

∫ 2π
0

∫ θmax
0 Pr(θ,ϕ) sin(θ)dθdϕ∫ 2π

0

∫ π
0 Pr(θ,ϕ) sin(θ)dθdϕ

(4)
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Thus, only light emitted in the acceptance cone can contribute to a measurable signal
by a setup with a numerical aperture NA = n ∗ sin (θmax), where θmax is the maximum
acceptance angle range of the collection objective and n is the refractive index of the
medium. Note that to take into account the effect of the periodic array designed, array
factor multiplied by the power emitted to the far-field Pr(θ,ϕ) is considered in the above
calculation. Array factor (AF) for N ×M elements in planar geometry (2D) along x and y is
calculated as follows [73]:

AF =
N
∑

n=1

M
∑

m=1
anmejkψnm(θ,ϕ)

ψnm(θ,ϕ) = xn sin(θ) cos(ϕ) + ym sin(θ) sin(ϕ)
(5)

For equally spaced arrays: along the x-axis xn = n.d, along the y-axis ym = m.d,
where d is the distance between elements, anm is the array coefficients or weights, which
are all equal in our case.

3. Results
3.1. Optical Properties of Investigated Structures

We are interested in resonance around λ = 650 nm, which correspond to the maximum
excitation wavelength of the fluorophores we consider (i.e., the cyanine 5, whose excitation
and emission spectra are shown in Figure 3). However, this study can be applied on a wide
range of different fluorophores, and the dimensions of the NSs can be modified accordingly
to have the resonance at the required wavelength. The scattering from dielectric NSs
generates strong electric and magnetic resonant modes as described in Mie theory. The
existence of electric and magnetic dipole resonance depends on both the height and the
diameter of the cylindrical NSs with a defined refractive index [74]. Thus, to choose the
geometrical dimensions of our design that will result in a resonant behavior, the height
(h) and diameter (D) were varied, while fixing the period and wavelength at 448 nm and
650 nm, respectively. The period (Λ) of the structure is equal to the resonance wavelength
in the medium (λ = nΛ) to exploit the interference between lattice surface mode and the
antenna’s resonance. This results in a resonance characterized by narrow spectral line
cuts and increased field intensities in the proximity of the NS array [63]. The resulting
color-map (illustrated in Figure 4) clearly shows two resonance branches for diameter
values ranging between 100 and 400 nm and height values ranging between 20 and 150 nm.
The local electric field enhancement E/E0 is averaged in a square domain surrounding the
nanoantenna at a distance of 15 nm which represents the volume where the molecules are
expected to spread.
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In Figure 4, the numerical averaged electric field enhancement and the reflectance
are shown at λ = 650 nm. In both maps, it is possible to identify the electric and magnetic
resonances. From these maps, we choose the most convenient design in order to maximize
the electric field enhancement and the photons collection (see Section 3.3). The complete
overlap of the two resonances yields an almost flat reflectivity spectrum [46], however,
having a peak in reflection is convenient for the characterization and validation of the
fabricated sample. Hence, we chose a configuration where the partial overlap of the
transverse electric (TE) and transverse magnetic (TM) resonances is enough to guarantee a
high electric field enhancement and an asymmetric radiation diagram of a dipole in close
vicinity (as shown in Section 3.3). The chosen parameters are: h = 120 nm and D = 160 nm.
A resonance peak is shown at λ = 650 nm in the reflectance spectrum, and a peak in the
average electric field enhancement. In order to clarify the TE and TM resonances overlap,
we define a cylinder height-diameter aspect ratio as X = h/D and study the electric and
magnetic fields for different values of X. In accordance with reference [46], for X > 0.5 we
have an overlap of electric and magnetic dipole resonance while for X < 0.5 the structure
will feature non-degenerate electric and magnetic dipole resonances. As an example, in
Figure 5 we study the behavior of a periodic array of cylindrical nanoantennas with the
parameters h = 120 nm and D = 160 nm having an X = 0.75, and cylindrical nanoantennas
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with the parameters h = 60 nm and D = 200 nm, having lower aspect ratio X = 0.3. The
electric and magnetic field maps at λ = 650 nm in a cut plane through the center of the
nanoantenna are shown in Figure 5. The resonance with the lower aspect ratio (X < 0.5)
exhibits electric dipole mode characteristics, with the electric field profile showing an
antinode and the magnetic field profile showing a node at the center. On the contrary, for
X > 0.5 there exists an overlap of electric and magnetic dipole resonance, as can be seen
from the electric and magnetic field maps.
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Similar calculations have been performed for the dimer and trimer of cylindrical Si
nanoantennas. Although smaller gaps might yield larger field enhancement [51], a gap of
20 nm was chosen in consideration of the fabrication limits and of the space needed for
the intended biological target to reach the maximum localized enhancement field inside
the gap.

The diameter and height of the cylindrical NSs that exhibit a resonant behavior at
the desired wavelength are D = 120 nm and h = 85 nm in the dimer configuration, and
D = 100 nm and h = 105 nm in the trimer configuration. The field enhancement in the
vicinity of the nanoantenna can reach a value of 20 in the dimer and trimer cases, which
is about two times higher than the value obtained in the case of single cylindrical NSs.
In the trimer configuration, where the three cylinders are positioned at the vertices of an
equilateral triangle, the presence of a third cylinder does not improve the electric field
enhancement with respect to dimer configuration, but yield a good field enhancement
for both incident polarizations. This is demonstrated in the field maps in Figure 6, where
it is evident that the electric field is maximized around the NS in the case of a single
nanoantenna and inside the gaps in the dimer and trimer configurations.
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The influence of the incident polarization on the field enhancement is highlighted in
the studied geometries. The maximum electric field enhancement is not affected by the
incident polarization in the symmetrical case (the cylindrical configuration). However, a
transverse polarization does not yield any significant enhancement in the nanogap of a
dimer configuration. Thus, the dimer nanoantennas will result in a field enhancement in
the nanogap when the incident polarization is along the dimer direction. As for the trimer
configuration, the electric field enhancement will be localized in the gap between the base
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NSs and the central one when the incident field is Y-polarized, recording a maximum field
enhancement of about 15.

3.2. Resonant-Driven Excitation and Emission

In the following, we compared the contributions of the three factors described in
Section 2.2 for the designed arrays of the single, dimer, and trimer cylindrical NSs sup-
porting resonances. The enhancement of the excitation rate γexc

γ0
exc

is obtained from the
calculated electric field enhancement at λ = 650 nm by using Equation (1). The variation of
the excitation rate enhancement with the distance z above the three different structures is
depicted in Figure 7a. Maximum excitation rate is present at the NSs surface and decreases
when increasing the distance z. The dimer structure resulted in the maximum excitation
rate enhancement of 170, an order of magnitude higher than that of single cylinder and
trimer structures. This is explained by the “hot spot” localized in the gap of the dimer NSs
and could be of great advantage for enhancing the excitation of a single fluorophore with
the possibility of controlling its position precisely.
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Figure 7. Excitation and emission enhancement as a function of distance z (nm). (a) Excita-
tion enhancement and (b) quantum yield enhancement variation of a fluorophore with an x-
orientation and intrinsic quantum yield η0 = 0.3 when coupled to different geometries. (c) Quan-
tum yield enhancement variation with distance z (nm) for fluorophores having intrinsic quan-
tum yield η0 = 0.03, 0.3, 1 when coupled to dimer nanoantenna. (d) Quantum yield enhance-
ment variation of a fluorophore with X, Y, and Z orientation with an intrinsic quantum yield
η0 = 0.3 coupled to dimer nanoantenna.

Figure 7b–d illustrates the quantum yield enhancement variation as a function of the
distance z between the single emitter and the structures. The position of the emitter is
centered above the structure with an intrinsic quantum yield η0 = 0.3 in a homogeneous
medium. The results show that the quantum yield of a fluorophore is altered when coupled
to the structures. This is due to the modification of the fluorophore decay channels when
coupled to a resonant structure. Since dielectrics have significantly reduced absorption
compared to plasmonics, quantum yield is enhanced even at distances as low as 7 nm. This
will eliminate the need to use dielectric spacers taking advantage of the maximum enhanced
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field in the vicinity of the structures with negligible ohmic losses. This enhancement will
also strongly depend on the intrinsic quantum yield of the emitter and its orientation.
This has been illustrated in Figure 7c where an x-oriented dipole is coupled to the dimer
structure considering lower intrinsic quantum yield values. A 6.5-fold enhancement of
quantum yield is achieved for an emitter with η0 = 0.03 centered at z = 7 nm above the
structure. For higher intrinsic quantum yield fluorophores, a lower enhancement of about
2 is obtained. Moreover, this enhancement will change with the orientation of the emitter
(Figure 7d), an emitter with a Y-orientation coupled to dimer NS will have almost 50%
lower quantum yield enhancement than the X-oriented dipole at low distance. Thus, the
quantum yield enhancement will critically depend on the intrinsic quantum yield of the
emitter and its relative position to the structure.

An efficient collection of the emitted photons is also needed for good performance.
Coupling an emitter to a resonant structure will break the symmetrical scattering of light,
and a controlled directivity is achieved [76]. The effect of light redirection will improve the
number of collected photons by optical instruments having a limited NA. In the following,
we considered an array of cylindrical NSs on the tip of a MMF with NA = 0.5.

3.3. Collection Efficiency Enhancement

The illumination of the molecules and the collection of their emission are assumed
to be both through the same optical fiber. The partial overlap of electric and magnetic
dipole modes in the spectrum of this resonant structure results in obtaining higher emission
in the desired direction (towards the optical fiber end-face). This controlled directivity
will enhance the collection efficiency of the optical fiber as defined in the above section.
The computed radiation pattern of the emitted light intensity to the far-field P(θ,ϕ) is
illustrated in Figure 8. The dipole oriented along x is emitting symmetrically in Figure 8a
when positioned in water above the glass, while the dipole will emit in the direction of
the optical fiber when coupled with the resonant structure. To quantitatively analyze the
enhancement in terms of directivity of the emitters when coupled to periodic silicon NSs,
the radiation diagram of the MS, and the collection efficiency of the optical fiber with an
acceptance angle θmax = 22◦ have been computed according to Equation (4). Table 1 shows
the collection efficiency enhancement of the setup for the three different orientations of a
dipole coupled to the different considered structures. The dipole is located at 7 nm above
the structures. For an array of cylinders coupled with X and Y-oriented emitters, the same
collection efficiency enhancement is recorded due to the symmetry of the structure, while
in the Z-oriented dipole case, the collection efficiency enhancement will diminish. In the
case of an array of dimers and trimers, the collection efficiency enhancement is maximum
when the dipole is parallel (X-oriented) to the dimer direction, this enhancement decreases
when the dipole is perpendicular to the dimer direction (Y-oriented dipole). The presence
of the third cylinder in the trimer case will result in a significant increase in the collection
efficiency enhancement when coupled with a Z-oriented dipole.
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Table 1. Collection efficiency enhancement of an optical fiber with NA = 0.5. The dipole is located at
the center 7 nm above the structure. X, Y, and Z orientations of the dipole are considered.

Dipole Orientation Array of Cylinders Array of 20 nm
Gap Dimers Array of Trimers

X-oriented dipole 10 8.5 8.24
Y-oriented dipole 10 3.29 5.42
Z-oriented dipole 0.11 0.11 61.49

4. Discussion
4.1. Overall Fluorescence Enhancement with Resonant Dielectric MSs

In this section, we compute the overall fluorescence enhancement (fl) of an emitter
with an intrinsic quantum yield η0 = 0.3 when coupled to the designed structures. We study
different locations and orientations of the dipole. For the single cylinder MS, the emitter is
centered 7 nm above or aside the nanoantenna; for the dimer and trimer configurations, the
emitter is centered 7 nm above or in the gap. An x-directed and a random orientation are
considered (Figure 9). The calculation is carried out at the maximum excitation wavelength
of 650 nm. Tables 2 and 3 demonstrate the improvement of the fluorescence signal provided
by the periodic arrays of the dielectric structures in different cases. The array of resonant
dimer antennas can generate a more significant enhancement factor than the arrays of
the single cylinder or trimer structures. The enhancement factor is maximized when the
x-oriented emitter is placed inside the gap (fl = 6.4 × 103), while this enhancement will
decrease to fl = 2.8 × 103 when it is above the structure. This behavior is mainly due to the
excitation rate enhancement factor.
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Figure 9. Schematic illustration of: (a) cylinder NS on SiO2 substrate with a point dipole, which
represents a fluorophore situated above the NS; (b) dimer NSs; and (c) trimer NSs on SiO2 substrate
with a point dipole situated in the gap.

Table 2. Comparison of the fluorescence enhancements of an emitter coupled with arrays of different
geometries, 7 nm above the structure at λ = 650 nm for an x-oriented dipole (top row) and averaged
over dipole orientation (bottom row).

Nanostructure γexc
η
η0

κcoll
κ0

coll
fl

X-Oriented Dipole
Cylinder 17 1.6 10.2 277

Dimer 170 2 8.5 2890
Trimer 22 1.5 8.24 271

Averaged-Oriented Dipole
Cylinder 17 1.6 6 163

Dimer 170 1.5 4 1020
Trimer 22 1.6 25 880

However, considering a more realistic case, in which the orientation of the emitter
is random, an average of the X, Y, and Z orientations of an emitter is performed. The
fluorescence enhancement of an emitter above the structure will decrease in the case of
cylinder and dimer nanoantennas. However, it will increase when coupled to the trimer
structure due to the large increase in the collection efficiency enhancement, which is a result
of the z-oriented emitter, as shown in Table 1. The same contribution from the z-oriented
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emitter is found when it is on the side of a cylinder structure, which increases the overall
fluorescence enhancement to fl = 3.2 × 103.

Table 3. Comparison of the fluorescence enhancements of an emitter coupled with arrays of different
geometries at λ = 650 nm. The dipole is in the gap of the dimer and trimer and on the side of
the cylinder.

Nanostructure γexc
η
η0

κcoll
κ0

coll
fl

X-Oriented Dipole
Cylinder 61 1.82 8.28 919

Dimer 324 2.33 8.55 6454
Trimer 432 1.89 7.5 6123

Averaged-Oriented Dipole
Cylinder 61 1.62 32.79 3240

Dimer 324 1.61 3.92 2044
Trimer 432 1.69 8.04 5869

Experimentally, the advanced MS assisted probe with high fluorescence enhancing
capability, will be used for sensing biomolecule targets. Figure 10 shows a schematic of
the proposed aptamers-based displacement assay, where labeled Aptamers are used for
detecting target molecules in solution. In detail, the aptamers design implies that when the
labeled strand is attached to the silicon NSs and the recognition aptamer (containing the
quencher) hybridizes, the quencher comes in close proximity and fluorescence quenching
occurs. In the presence of the target, the specific and strong interaction with the aptamer
lead to the aptamer/target complex in the solution. The quencher and the fluorophore are
no longer in proximity which results in fluorescence emission recovery related to the target
concentration in the solution. The fluorescence intensity is enhanced due to the dielectric
NSs found on the fiber tip. This will allow the target detection in a solution with a very low
concentration. As the schematic shows, the emitters will be randomly spread around the
NS at a distance equal to the length of the used biomolecules. On this basis, we considered
the average electric field enhancement inside a square volume surrounding the NS at a
maximum distance equal to 15 nm to calculate the overall fluorescence enhancement. In
this case, the overall fluorescence enhancement will decrease mainly due to the decrease in
the excitation rate enhancement as the distance increases from the nanoantenna. The overall
fluorescence enhancement decreased to fl = 144 in case of an array of single cylindrical NS,
to fl = 210 in the case of dimer NS (an order of magnitude lower than the case considering
lower distances), and to fl = 267 in the case of trimer NS.

4.2. Feasibility Study of Fabricating Dielectric MSs on MM Fiber end Face

Lithographic methods have been proven to be effective in creating an array of silicon
nanoantennas [18,46] on planar substrates. Such a method provides high repeatability and
precision in creating complex structures with controlled geometric parameters (diameter,
thickness, position). The same process can be adopted to realize the proposed all-dielectric
MSs on the tip of standard optical fibers. We start with the less complex structure to be
fabricated, i.e., an array of silicon cylinder NSs with a thickness of 120 nm, a diameter
of 160 nm, and a period of 448 nm. The NSs were fabricated by means of electron beam
lithography (EBL) and reactive ion etching (RIE) on the tip of a MM fiber (FP200ERT) with
core and cladding diameter of 200 µm and 225 µm, respectively. The fiber tip is cleaved,
then treated with ethanol in an ultrasonic bath to remove any residues and deposited with
an a-Si layer of thickness 120 nm via electron beam evaporation. After the deposition
of the a-Si layer, a positive tone electron beam resist has been deposited onto the optical
fiber tip by means of a customized spin coater, whose rotating plate has been properly
drilled to host the fiber tip. A negative mask consisting of a periodic array of holes has
been patterned into the resist layer through the EBL Raith 150 system with an acceleration
voltage of 10 kV, a numerical aperture of 15 µm and a dose of 130 µC/cm2. After the resist
development, a 25 nm thick chromium layer has been deposited onto the patterned resist
via a DC sputter coater; a properly drilled holder keeps the fiber tip orthogonal to the
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chromium target. Then, a lift-off process (as reported in [77]) is performed to realize the
hard mask that will allow the pattern transfer to the active a-Si layer. The transfer occurs
via the Oxford Plasmalab 80 Plus RIE system, with a forward radiofrequency power of
300 W in a mixture of CF4 and O2 gases with a 50:2 sccm ratio. Finally, the chromium
hard mask is removed via a wet etching process. Morphological analysis via a scanning
electron microscope (SEM) is performed at every lithographic step in order to evaluate the
feasibility of the fabrication process for the proposed design. The first trials show that the
dielectric NSs with the selected periodicity, height and diameter are feasible to be fabricated
on the tip of MM fibers. As shown in Figure 11, a homogenous array of a-Si cylinders has
been successfully fabricated onto a MM fiber tip. The slight difference between the desired
cylinder radius and the fabricated one (about ~10 nm) is due to the fabrication tolerance
caused by the several fabrication steps. This variation could be reduced by acting on the
EBL mask dimensions according to the feasibility of the subsequent fabrication steps. The
lateral walls of the cylinders appear slightly sloped due to the underetch effect, which is an
intrinsic issue of the RIE process even for small NSs height. To mitigate this effect, a very
thin itanium (Ti) layer (about 7 nm) has been interposed between the fiber end-face and the
a-Si active layer. Indeed, this metallic layer reduces the CF4 ions scattering during the RIE
process, allowing the fabrication of NSs with a reasonable shape. We are aware that the
presence of Ti might reduce fluorescence enhancement; hence, possible future directions
are: (i) to include Ti layer in the optimized numerical procedure; and (ii) to optimize the
fabrication technique in order to eliminate the need of the Ti layer.
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Figure 10. (a) Probe’s nanoantenna schematic. (b) Proposed detection technique based on the probe’s
nanoantenna functionalization with a strand labeled with a fluorophore capable to hybridize with a
complementary aptamer bearing a quencher. When the fluorophore and the quencher are in close
proximity, fluorescence quenching occurs. Fluorescence is recovered in the presence of the target.
(c) Illustration of the fluorescence intensity enhancement.
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5. Conclusions

In this paper, we laid the basis for the development of plug-and-play LOF optrodes
based on the integration of fluorescence-enhancing a-Si MS on the tip of multimode fibers.
Specifically, we developed a numerical environment based on FEM analysis to compute the
fluorescence enhancement factor provided by a-Si MSs fabricated on the tip of a multimode
fiber, which is used both as illuminating and collecting probe. We compared the perfor-
mance of arrays based on cylindrical a-Si NSs in the single and dimer/trimer configuration
fabricated on the Silica substrate of the fiber tip. According to the numerical analysis, the
enhancement factor, evaluated as the product of three factors: (i) excitation enhancement;
(ii) quantum yield enhancement; (iii) collection efficiency enhancement, was found to be
up to three orders of magnitude when the location of the fluorescent emitter is controlled.
Furthermore, we envisioned a realistic case study where the advanced LOF probe is used in
a realistic scenario in order to evaluate the degradation in the overall fluorescence enhance-
ment when considering the random spread of the labelled fluorophores around the NSs at
further distances with unpredictable dye orientation. The feasibility analysis to fabricate
the designed MS, based on single Si cylinder, on the termination of multimode optical
fibers has been carried out using EBL and RIE techniques, demonstrating that the selected
fabrication route enables the correct integration of the nanoantennas. In conclusion, this
work presents the guidelines for the design and development of advanced LOF platforms
which are expected to reach very high sensitivity, thus yielding a major breakthrough in
the development of point of care devices.
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