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The incidence of chronic kidney disease (CKD) is associated with major abnormalities in circulating lipoproteins and renal lipid
metabolism. This article elaborates on the mechanisms of CKD and lipid uptake abnormalities. The viewpoint we supported is
that lipid abnormalities directly cause CKD, resulting in forming a vicious cycle. On the theoretical and experiment fronts, this
inference has been verified by elaborately elucidating the role of lipid intake and accumulation as well as their influences on
CKD. Taken together, these findings suggest that further understanding of lipid metabolism in CKD may lead to novel

therapeutic approaches.

1. Introduction

Lipids contain many molecules that contribute to structural
components of membranes and signal transduction that reg-
ulates a variety of cellular events to maintain physiological
homeostasis. Recent research on the relationship between
lipid disorders and kidney disease concluded that when the
balance of lipid uptake, synthesis, and excretion in the kidney
is disrupted, lipid accumulation occurs and causes nephro-
toxicity and chronic kidney disease (CKD) [1]. Chronic kid-
ney disease represents a serious public health problem due to
its increased morbidity and prevalence worldwide. Dyslipid-
emia is frequently found in every stage of CKD, and lipid
disorders aggravate the progression of CKD. In fact, dyslipid-
emia leads to impairment of the glomerular filtration barrier
and proteinuria. The increase in serum triglyceride to high-
density lipoprotein (HDL) ratio is a characteristic of dyslipid-
emia in CKD patients and is also an independent indicator of
disease progression. Several clinical studies have confirmed

that an elevated serum triglyceride to HDL ratio has a major
impact on the decrease of the estimated glomerular filtration
rate (eGFR) and the development of CKD [2]. Dyslipidemia
itself is not enough to cause kidney injury; however, it is
one of the necessary components of the multistep mecha-
nisms since it also induces inflammation, oxidative stress,
and lipotoxicity [1]. CKD also leads to marked alterations
of secondary abnormalities in lipid metabolism [3]. Several
studies have documented that CKD leads to decreased fatty
acid oxidation (FAQO), which could be an additional mecha-
nism resulting in lipid accumulation [4]. An increased abun-
dance of saturated C16 or C20 free fatty acids (FFAs)
accompanied by impaired B-oxidation has been noted in
the late stage of CKD, contributing to further accumulation
of saturated fatty acids (SFA) and leading to cell dysfunction,
cell death, and the further progression of CKD [5]. Nowa-
days, most studies emphasize the impact of lipid metabolism
disorders in chronic kidney disease (CKD). Less attention has
been paid to the lipid intake of patients with CKD and the
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possibility of using this as a tool to improve CKD. In conclu-
sion, this article focuses on the mechanism of lipid intake
leading to CKD and possible therapeutic approaches.

2. High-Fat Diet Intake and CKD

A high-energy, high-fat diet (HFD), especially one with a
high-SFA intake, promotes obesity and metabolic syndrome
abnormalities [6-10]. The excessive intake of energy, includ-
ing a HFD, causes an imbalance between renal lipogenesis
and lipolysis, which is considered to be an initial reason for
renal lipid accumulation, and eventually renal injury [11].
After evaluating the population-based dietary pattern with
the risk of incident CKD in a 6.1-year follow-up, it turned
out that a high-fat, high-sugar diet was associated with an
observable increase in the occurrence (46%) of incident
CKD, whereas a lactovegetarian diet might be protective
against the incidence of CKD by 43% [12]. Western diet pat-
terns characterized by red and processed meat, saturated fat,
and sweets were positively associated with a decrease in renal
function after 11 years of follow-up in the participants from
the Nurses’ Health Study (NHS). Furthermore, participants
who were in the highest third of the high-fat, high-sugar die-
tary pattern had a 49% increased rate of developing CKD,
independent of diabetes and hypertension [13]. These studies
show that dietary intake is a vital modifiable risk factor that is
associated with delaying or preventing the development of
CKD in humans [14-16]. However, there were also clinical
studies showing a reverse association of body mass index
(BMI) and survival in patients with advanced chronic kidney
disease (CKD) as compared to the general population [17,
18]. Adequate management with respect to the specific role
of obesity in different stages of CKD should be further inte-
grated in routine renal care [19].

3. Lipid Uptake in the Kidney

Renal cells take up lipoproteins by scavenger receptors (SRs),
including SR-B (CD36), SR-A, and SR-E (LOX-1). Under
pathogenic stimulation, the scavenger receptors are dysregu-
lated and their level is positively associated with the level of
renal injury [20]. Furthermore, the expression of scavenger
receptors (SRs) is not downregulated by intracellular choles-
terol. As a result, cells expressing SRs can internalise a mass
of cholesterol esters, leading to foam cell formation. All of
these mechanisms result in the excessive absorption of lipids
by kidney cells [1].

3.1. CD36-Mediated Lipid Uptake. CD36 is expressed on var-
ious cell types, such as monocytes, macrophages [21], and
proximal tubular cells (PTCs) [22], and mediates phagocy-
tosis and degradation of oxidized low-density lipoprotein
(ox-LDL) [23]. CD36 is also one of the most important
transporters and transmembrane glycoproteins with a
high-affinity uptake of long-chain fatty acid (LCFA, as sche-
matically shown in Figure 1) [24-29]. Its level is positively
correlated with the degree of renal injury if pathogenic stim-
uli, such as aminonucleoside (PA), have been applied [20].
Most nonesterified fatty acids (NEFAs) in the blood are
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combined with carrier proteins (mostly albumin), and their
uptake requires dissociation from carrier proteins mediated
by CD36 [30]. Albumin-bound fatty acids are extracted
from filtrate by albumin endocytosis mediated by CD36 or
by a receptor in the proximal renal tubules [31]. Although
the filtration barrier prevents exposure of the proximal
tubules to large lipoproteins, in individuals with proteinuria
nephropathy including diabetic kidney disease (DKD), the
proximal tubular cells are exposed to high amounts of fil-
tered albumin and NEFAs. The excessive accumulation of
nonesterified FFAs and triglycerides in the kidney leads to
cytotoxicity, contributing to CKD progression [32]. The role
of CD36 in the kidney has been investigated extensively
[33]. SFA, which increase CD36 expression in podocytes,
are major ligands for CD36, resulting in enhancement of
FFA uptake, which will contribute to the generation of the
vicious cycle [34]. Recently, the transgenic overexpression
of CD36 in the kidneys of mice has been shown to induce
lipid accumulation in the kidney [35]. It has been verified
that CD36 increased podocyte apoptosis in primary
nephrotic syndrome [36]. Saturated FFAs induce podocyte
apoptosis through the CD36 signaling pathway by increas-
ing oxidative stress [37]. CD36 has been reported to be
upregulated in the kidney tissue of a nephrotic mouse.
When glucose or fatty acid levels rise, the upregulation of
CD36 can promote epithelial-mesenchymal transition in
renal tubular epithelial cells and apoptosis of podocytes,
thereby promoting the occurrence of diabetic nephropathy
[36, 38]. Increased CD36 expression in the kidneys of
CKD patients leads to renal dysfunction accompanied by
systemic abnormalities, including proteinuria, renal lipid
accumulation, and glomerular lesions [37, 39]. Recent stud-
ies have shown that renal abnormalities are attenuated in
CD36"" mice, suggesting that CD36 plays an important role
in the pathogenesis of kidney diseases [33, 37, 38]. The dele-
tion of CD36 in mice largely reduced fatty acid uptake and
ectopic renal lipid accumulation and prevented the progres-
sion of renal disease. In vitro, silencing CD36 almost abro-
gated inflammatory cytokine-induced fatty acid uptake,
cellular FFA accumulation, and cellular stress. Ox-LDL
uptake in renal tubular cells is mainly mediated by CD36
[22, 40]. A recent study found that the CD36-mediated sig-
nal pathway leads to proteinuria-induced tubulointerstitial
injury [41, 42]. These researches suggest that CD36 can be
a promising target for the treatment of renal injury [34].

3.2. Megalin- and Cubilin-Mediated Endocytosis. In addition,
the renal proximal tubule retrieves albumin-bound FFA from
the filtrate by megalin- and cubilin-mediated albumin endo-
cytosis [31, 43-45]. It has been proposed that the excess of
free fatty acids in the proximal tubule may result from the
lipid cargo brought by increased filtered albumin, resulting
in an increase in the rate of lipid uptake by albumin endocy-
tosis through the receptor megalin and its extracellular bind-
ing partner cubulin [31, 43]. The megalin-cubulin complex is
considered to be a low-affinity mechanism that operates in a
high-capacity endocytic system that can readily account for
the uptake of approximately 10 gg/ml of albumin in the tubu-
lar filtrate [31]. Albumin is an efficient carrier of fatty acids.
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FIGURE 1: Schematic representation of fatty acid cellular uptake in the kidneys. FA transport across the plasma membrane occurs mainly by
protein-mediated mechanisms or receptor-mediated endocytosis. In the cells, FAs bind to different FABPs with respect to the subcellular
localization and have multiple functions in energy generation and storage, membrane synthesis, and activation of nuclear transcription
factors like PPAR/RXR. Abbreviations: FATP: fatty acid transport protein; FABP: fatty acid-binding protein; FAO: fatty acid oxidation;
PPAR: peroxisome proliferator-activated receptor; RXR: retinoid X receptor.

In megalin knockout mice fed with a high-fat diet, the kidney
has lesser fatty acid-rich albumin uptake than the HFD-fed
control mice [46]. Megalin could also mediate proximal
tubular uptake of L-FABP, which may also exert nephrotoxic
effects [47].

3.3. SLC27 A2- and SR-A-Mediated Lipid Uptake. In addition
to CD36, SLC27A1-6 and fatty acid transporter proteins take
up fatty acids by mediating their transmembrane movement
and capturing NEFAs with CoA synthetases. SLC27 A2
(FATP2) is highly expressed in renal tubules according to
the human protein profile. Therefore, it is an important can-
didate for mediating the uptake of fatty acids in the kidney
[4]. In vitro microperfusion and in vitro experiments with
NEFA-bound albumin at concentrations mimicking apical
proximal tubule exposure during glomerular injury showed
remarkably reduced NEFA absorption and palmitate-
induced apoptosis in microperfused Slc27a2”" proximal
tubules and Slc27a2”" or FATP2 shRNA-treated proximal
tubule cell lines in comparison to wild-type or scrambled
oligonucleotide-treated cells, respectively. Thus, FATP2 is a
major apical proximal tubule NEFA transporter that regu-
lates lipoapoptosis and may be a target that can prevent
CKD progression [48]. Restoring PPARA signaling through
drugs or genetics means to improve FAO or block FA trans-
porter SLC27A2 and help protect mice from renal toxicity
[49]. Scavenger receptor Al (SR-Al), which is highly
expressed in macrophages, is capable of taking up oxidized
LDL (ox-LDL) and is not regulated by intracellular choles-
terol [50-53]. Lipids become oxidized and bound to extracel-

lular matrix proteins under conditions of inflammation.
Inflammatory cytokines and growth factors enhance the
expression of influx pathways, especially SR-A, and inhibit
efflux pathways, resulting in a significant accumulation of
intracellular lipids [3]. SR-A is also expressed in low levels
on renal tubular epithelium. Both mRNA and protein levels
of SR-A were increased in 5/6 nephrectomized CRF rats,
which contribute to elevated levels of lipid accumulation in
the remnant kidney [54]. Additionally, studies on hypercho-
lesterolemic mice showed that an increase of SR-A interstitial
cells suggest that SR-A+ may play a role in inflammation and
renal fibrogenesis [22].

4. Ectopic Lipid Accumulation and Fatty
Acid-Induced Renal Toxicity

The toxicity of lipids includes fatty acid toxicity and choles-
terol toxicity. In this paper, we focus on the relationship
between fatty acid toxicity and CKD [55-58]. Ectopic lipid
(renal lipid accumulation at ectopic sites), also known as
lipotoxicity, refers to the accumulation of FAs in nonadipose
tissue. Kidney biopsy specimens from patients with diabetic
nephropathy showed lipid accumulation in the glomeruli
and tubulointerstitium compared to the normal control
group [59, 60]. One hypothesis is that NEFAs bound to
serum albumin pass through the glomerular filtration barrier,
promoting toxicity by converting NEFAs into toxic proin-
flammatory metabolites [61]. Since fatty acids are the pre-
ferred energy source for proximal tubular cells, a reduction
in fatty acid oxidation in CKD affects renal lipid metabolism



by disturbing the balance between fatty acid synthesis,
uptake, and consumption [35]. As a result, increased intra-
cellular lipid accumulation has a key role in the development
of renal disease [35, 38, 62, 63]. Genes associated with FAO
are downregulated [35] in the kidneys of mice and humans
with CKD. Experiments have confirmed that lipids play a
direct role in the initiation and progression of CKD [63-
67]. More precisely, ample evidence has shown that ectopic
lipids are associated with structural and functional changes
in mesangial cells, podocytes, and proximal tubular epithelial
cells in the kidneys to induce obesity-related CKD progres-
sion [68-70]. It has also been demonstrated that strategies
to reduce lipid levels have beneficial effects on kidney health
[71, 72] (Figure 2).

4.1. Lipid Accumulation and Glomerular Injury. Palmitate is
the predominant circulating saturated FFA and is increased
in states of insulin resistance [73]. In an animal model of type
1 diabetes, the increase in sterol regulatory element-binding
protein (SREBP) in the renal cortex led to the upregulation
of enzymes responsible for FFA synthesis, resulting in high
triglyceride content [74]. In animals with a normal serum
lipid level but with overexpression of SREBP-1, the renal tri-
glyceride level was elevated and mesangial matrix expansion
was increased with proteinuria and glomerulosclerosis [3,
74]. High CD36 expression is associated with an increased
FFA uptake by podocytes, together with decreased f3-oxida-
tion and the accumulation of intracellular lipids. Accumu-
lated FFAs become trapped in the mitochondrial matrix,
resulting in mitochondrial reactive oxygen species (ROS)
production, lipid peroxidation, and mitochondrial damage
and dysfunction [75]. The unbalanced transport and oxida-
tion of FFAs, with an impaired antioxidant response, impair
podocyte structure, finally resulting in glomerulopathy [20].
In conclusion, increased triglyceride synthesis and FA uptake
by mesangial cells induce diabetic glomerulopathy [3, 74, 76].

4.2. Lipid Accumulation and Renal Tubular Injury. Large
lipid droplets accumulate in proximal tubular cells during
the nephrotic syndrome called “lipid nephropathy.” Tubular
NEFA uptake, as well as glomerular proteinuria, and plasma
NEFA concentrations all increased in obesity. Excess NEFAs
in albuminuria lead to tubulointerstitial injury [77, 78]. Tri-
glyceride accumulation per se in proximal tubules also stim-
ulates renal gluconeogenesis and increases tubular atrophy
and interstitial fibrosis [32]. Toxic lipid metabolites alter
the redox environment of cells to a more oxidized state,
which then reduces their ability to oxidize NEFAs, resulting
in further fat accumulation and insulin resistance [32]. Renal
proximal tubule cells are the most energy-demanding cells in
the body and oxidize fatty acids to produce ATP; therefore,
renal tubular epithelial cells (TECs) critically depend on
FAO as their energy source. The extraction of fatty acids
from the human kidney is linearly related to the concentra-
tion of plasma fatty acids [79]. It has been found that when
the expression of key enzymes and regulators of FAO is
low, intracellular lipid deposition is high in tubulointerstitial
fibrosis [80]. Inhibition of FAO in TECs causes ATP deple-
tion, contributing to apoptosis, dedifferentiation, and intra-
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cellular lipid deposition, which induce fibrosis (see Figure 2
for details) [80]. In addition, excessive FAs might affect epi-
thelial cells independently from FAO. Lipotoxicity exists
and contributes to epithelial injury by directly activating apo-
ptotic signaling or by indirectly promoting the infiltration of
inflammatory cells, which is the main factor for fibrosis [81].
Increasing amounts of NEFAs bound to albumin impair
mitochondrial respiration and peroxide-mediated apoptosis
of tubular cells [82]. Purified and endotoxin-free albumin
bound to palmitate and nonpurified albumin products had
a similar influence on cultured tubule epithelial cells (TECs).
It has been reported that albumin-bound FAs activate PPAR-
8 and then raise tubular inflammation via proinflammatory
metabolites in vivo [83]. Harris et al. confirmed these conclu-
sions and demonstrated that an excess of palmitic acid
induces endoplasmic reticulum (ER) stress in the kidney
peritubular capillary (PTC) model [84]. Apoptosis and oxi-
dative and ER stress form a proinflammatory environment
around the renal PTC [85]. Overall, free long-chain nones-
terified saturated fatty acids are toxic when added to cultured
cells [4].

5. Therapy

5.1. Diet Therapy and Medication. Several studies have
highlighted the effectiveness of dietary and lifestyle interven-
tions and pharmacological strategies in kidney dysfunction
[6, 7, 86-89]. Significant improvements in renal function
through weight loss have suggested the reversibility upon
early intervention, playing a role similar to early diabetic
nephropathy [70]. Except for increased physical activity, the
reduction of caloric intake is strongly recommended for
overweight DKD patients [90, 91]. The negative impact of
ox-LDL inducing apoptosis in human cultured podocytes
can be effectively suppressed by statins in vitro [92]. Satu-
rated FFAs in the pathogenesis of T2DM are thought to
induce podocyte endoplasmic reticulum stress and apoptosis
[93, 94]. Podocytes loss is a hallmark of DKD, and these cells
are vulnerable to damage from saturated rather than mono-
unsaturated FFAs [94]. Endoplasmic reticulum stress and
podocyte cell death could be improved by inducing
stearoyl-CoA desaturase [95], which converts saturated FFAs
to monounsaturated FFAs and is upgraded in podocytes in
biopsy specimens from patients with DKD [19]. Hence,
monounsaturated fatty acids were beneficial to DKD. Several
studies have demonstrated that circulating polyunsaturated
fatty acids have beneficial effects on protecting renal function
[96]. Long-chain polyunsaturated omega-3 fatty acids (n-3
PUFAs) (eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA)), which are obtained mainly from cold water
fish, have diverse beneficial effects [97]. It has also been con-
firmed that renal function improved when individuals were
given EPA+DHA at doses equal to two portions of fish per
week [96]. N-3 and n-6 PUFAs were found to have a posi-
tive influence on DKD outcomes via the attenuation of
endothelial dysfunction and inflammation as well as the
improved control of dyslipidemia and hypertension [98].
High consumption of n-3 PUFAs and n-6 PUFAs was asso-
ciated with a decrease and increase risk of CKD, respectively
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oxidation; ROS: reactive oxygen species; ATP: adenosine triphosphate.

[15]. N-3 PUFAs may have therapeutic potential in amelio-
rating proteinuria in CKD and decreasing triglycerides and
inflammation in dialysis patients. As part of a plant-based
diet with low content of SFA, increasing consumption of
oil-rich fish may benefit patients with CKD or that have
the risk of developing CKD [99]. Furthermore, high n-6
PUFA or low SFA intake has been associated with an
increased survival rate in dialysis patients [77, 78]. It has
been proposed that improving the quality of dietary fat
can ameliorate the clinical rick and outcome of CKD [79].
Of note, the ratio of n-3:n-6 is more important than the
PUFA intake and the low n-3:n-6 ratio is detrimental for
the health of human beings [80, 81]. The unbalanced n-
6/n-3 PUFAs ratio, reaching up to 20:1 in some cases, can
affect the onset of many underlying diseases, including
CKD [82-84].

5.2. Targeted Therapy. The blocking of CD36-governed cellu-
lar processes is a promising strategy for treating obesity-
related nephropathy. Several studies have demonstrated that
metabolic dysfunction, fibrosis pathways, and proteinuria
can be impeded by deficiency or blockade of CD36 [33, 82,
100, 101]. Blocking CD36 on podocytes in vitro resulted in
cell function with reduced apoptosis and oxidative stress
[37, 102-106]. Therefore, blocking the CD36-dependent
pathway is expected to be a therapeutic strategy for a variety

of kidney diseases, and novel CD36-targeting peptides have
the ability of slowing the progression of CKD [107]. Consid-
ering the universal expression and cell-specific effects of
CD36, future efforts should include the development of
new peptides that target specific sites on the receptor and/or
select cell populations to limit the potential for off-target
effects and increase the efficacy of targeting CD36 in a variety
of renal diseases [107]. Inhibition of the Renin-Angiotensin-
Aldosterone System (RAAS) is the basis of the therapy for
albuminuria and glomerular filtration. Up until now, very
limited clinical trials have been carried out on RAAS inhibi-
tors that primarily target the obese population; however, it is
worth noting that the antiproteinuria as well as renoprotec-
tive effects of angiotensin-converting enzyme (ACE) inhibi-
tion were greater in obese than in nonobese patients [108].
Ox-LDL accumulation in the glomeruli stimulates down-
stream RAS-mitogen activated protein kinase (MAP kinase)
signaling cascade leading to mesangial cell proliferation
[109]. RAAS activation mediates fatty acid-induced endo-
plasmic reticulum stress in cultured human proximal tubule
cells (HK2) and in mice fed with a high-fat diet [110]. Treat-
ment with the angiotensin II type 1 receptor blocker valsar-
tan, or renin inhibitor aliskiren, significantly suppressed ER
stress both in vitro and in vivo [110, 111].

Peroxisome proliferator-activated receptor-alpha (PPAR-
«) is a transcription factor predominantly expressed in



metabolically active tissues, such as renal PT'C, and regulates
FAO. Lipid accumulation due to FAO inhibition indirectly
contributes to fibrogenesis by accelerating inflammation.
Researchers using animal and cell models have revealed that
agonists of PPAR-a showed benefits in reversing defects in
FAO and ameliorating CKD progression [112]. The PPAR-
a/PPAR-y coactivator-la (PPARGCI1A) ensemble plays a
dominating role in the regulation of FAO, which is an avail-
able therapeutic target in the future. Fenofibrate (a PPAR-«
agonist) could enhance FAO in the kidneys and has shown
a positive effect in mouse models of CKD [113]. Fenofibrate
could reduce renal oxidative stress, systemic triglyceride
levels, proteinuria, and glomerulosclerosis, thereby compre-
hensively improving renal function in mice fed HFD [114].
Cholesterol efflux through the PPAR-liver X receptor
alpha-ABCA1 pathway is damaged in IL-1f-treated mesan-
gial cells; however, such a phenomenon can be reversed by
PPAR-w agonists by the activation of the “ABCA1 cholesterol
efflux” pathway, producing mesangial cells free of IL-1/3-gov-
erned intracellular lipid accumulation [113]. The overexpres-
sion of proximal tubular epithelial cell-specific PPAR-« in
mice sufficiently maintained FAO and conferred protection
against ischemia/reperfusion injury (IRI) [115]. Multiple
clinical trials have also demonstrated the reduction in albu-
minuria in patients with diabetes when given fenofibrate
treatment [4, 116]. For therapeutic purposes, agonists of
PPAR-a were widely applied to impede cisplatin-induced
acute kidney injury (AKI), ischemia/reperfusion injury
(IRI), and FFA accumulation [117-119]. These observations
validated the potential therapeutic uses of PPAR-« agonists
[3]. It has been reported that PPAR-y agonists might also
protect against renal injury via their antifibrotic and anti-
inflammatory effects [120-122].

The farnesoid X receptor (FXR) is another potent thera-
peutic target that is highly expressed in the kidney [123]. In
mice fed HFD and in age-related kidney disease models,
increased renal expression of SREBP-1 plays a key role in kid-
ney lipid accumulation and increases the activity of proin-
flammatory cytokines [106]. Mice treated with an FXR-
activating ligand had lower accumulation of triglycerides by
regulating fatty acid synthesis and oxidation, which is related
to reduced proteinuria and prevents the loss of podocytes
[124, 125]. Studies have shown that in HFD-induced obese
mice, an FXR agonist protects the kidneys by downregulating
the expression level of SREBP-1 [126]. The treatment of
obese mice with the semisynthetic FXR agonist obeticholic
acid (OCA) reduced the degree of glomerular sclerosis and
tubulointerstitial injury by improving mitochondrial func-
tion and promoting FA oxidation, which, in turn, reduced
mitochondrial stress and ER stress [126]. In another study,
administration of OCA to mice prevented early-stage renal
damage and protected the kidney from CKD in the long term
[123]. In addition, a recent study on nonalcoholic fatty liver
disease has shown that the anti-inflammatory effect of FXR
activation was the result of a switch in arachidonic acid
metabolism [126]. Pharmacological activation of FXR
appears to be safe and represents a valid treatment option
for the continuously increasing number of overweight
patients with CKD [117, 123].
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Similar results were observed for doxercalciferol, which is
a typical vitamin D agonist [127]. Pioglitazone also has ben-
eficial effects on albuminuria diabetic and obese patients [68].

6. A Vicious Circle of Lipid Disorders and
Kidney Disease

Dyslipidemia accelerates the progression of CKD and subse-
quently causes secondary abnormalities, in particular, in lipid
metabolism [3]. As an example, diabetes-induced hypertri-
glyceridemia results from multiple processes, including
enhanced triglyceride generation, faster de novo synthesis
stimulated by hyperinsulinemia in type 2 diabetes mellitus
(T2DM), and the defective removal of plasma triglyceride
[128]. These lipid abnormalities are closely correlated with
the preserved kidney function prevailingly in diabetic
patients. Notably, nondiabetic patients with CKD have simi-
lar symptoms of dyslipidemia [129, 130]. CKD also leads to a
decrease in FAO, which might be another mechanism result-
ing in lipid accumulation. The defective utilization of fatty
acids leads to energy consumption causing apoptosis and
dedifferentiation, eventually contributing to renal fibrosis
and CKD progression [4].

7. Summary

The aim of this paper was to review recent progress in the
understanding and uncovering of the micromechanisms of
CKD and lipid abnormalities. The key hypothesis we believe
is that lipid abnormalities directly cause CKD and thus
constitute a vicious cycle. Such a seemingly abnormal rela-
tionship was theoretically and experimentally validated by
elaborately elucidating lipid intake and accumulation as well
as their influence on CKD. For all the phenomena consid-
ered, it has hopefully been clearly demonstrated that feasible
treatment options and great efforts will contribute to
advances in the technological and scientific knowledge
required to more efficiently prevent and treat CKD.
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