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Abstract: (1) Background: The main source of transmission of Listeria monocytogenes is contaminated
food, e.g., fish and meat products and raw fruit and vegetables. The bacteria can remain for 13 years
on machines in food processing plants, including fish plants. (2) Methods: A total of 720 swabs were
collected from a salmon filleting line. The research material consisted of 62 (8.6%) L. monocytogenes
isolates. Pulsed Field Gel Electrophoresis (PFGE) allowed detecting a pool of persistent strains. All
persistent strains (n = 6) and a parallel group of strains collected sporadically (n = 6) were charac-
terized by their ability to invade HT-29 cells, biofilm formation ability, and minimum bactericidal
concentrations (MBC) of selected disinfectants. (3) Results: Among the obtained isolates, 38 genet-
ically different strains were found, including 6 (15.8%) persistent strains. The serogroup 1/2a-3a
represented 28 strains (73.7%), including the persistent ones. There were no significant differences
in invasiveness between the persistent and sporadic strains. The persistent strains tolerated higher
concentrations of the tested disinfectants, except for iodine-based compounds. The persistent strains
initiated the biofilm formation process faster and formed it more intensively. (4) Conclusions: The
presence of persistent strains in the food processing environment is a great challenge for producers to
ensure consumer safety. This study attempts to elucidate the phenotypic characteristics of persistent
L. monocytogenes strains.

Keywords: Listeria monocytogenes; persistent strains; sporadic strains; fish processing; resistance to
disinfectants; biofilm; foodborne microorganism

1. Introduction

Listeria monocytogenes is a rod-shaped, Gram-positive, and widespread in the envi-
ronment bacterium. L. monocytogenes adapts to unfavorable conditions in food processing
plants. This pathogen is vulnerable to nutrient deficiency, heat shock, high osmolarity, and
low pH [1–4]. The most common sources of L. monocytogenes are ready-to-eat (RTE) food
and fish products, meat, poultry, raw milk, soft raw milk cheese, fresh and frozen vegeta-
bles, and packed salads. Fish is a common source of L. monocytogenes. The contamination
of finished products may occur during the production process, during such activities as
filleting, rinsing, and salting [2,5–9]. L. monocytogenes is the etiologic factor of a severe
food-borne disease—listeriosis. Pregnant women, immunocompromised individuals, and
the elderly are very sensitive groups to Listeria infections [1,10]. Despite its low incidence,
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the high fatality rate (15–20%) makes listeriosis a serious food-borne disease [11]. A re-
cent listeriosis outbreak, with 200 deaths, was noted in Africa (2017–2018) and was due
to RTE product consumption [12]. The presence of L. monocytogenes in food may be the
effect of the contamination of raw materials or processed products at different stages of
the production chain [13,14]. Point 22 of EU Regulation 2073/2005 aims at food safety
assurance by testing samples from the food environment [15]. One serious problem is the
emergence of persistent strains, despite the undertaken hygiene interventions. There is
no unified, clear definition of the persistent strains and they are determined subjectively
for individual research. So, if the subset of the bacterial population can survive exposure
to a higher than usually used bactericidal drug concentration, it may be referred to as
persistence, according to the definition given by Balaban et al. [16]. Presumably, the same
strain recurrently detected over a specific period confirms the emergence of persistent
strains [1]. The extreme period was noted by Fagerlund et al. [17] and lasted for 13 years.
Stable strains of L. monocytogenes are indistinguishable pulsotypes (bacteria separated by
pulsed field gel electrophoresis, PFGE), but their characteristics, both in terms of PFGE
metric and serogroup, remain the same over time and maintain their properties, including
a resistance to certain biocides [18]. In different studies, the persistence time varied from
months to 12 years [3,19,20] and bacteria remained to be dangerous for potential consumers.
For instance, a L. monocytogenes strain considered persistent was sampled from an Estonian
company’s premises, which produced cold smoked salmon and trout sold in countries
of the European Union. The outbreak caused by the presence of this persistent strain of
L. monocytogenes (sequence type (ST) 1247) in food included 22 cases of listeriosis in five
EU countries [21].

Several concepts have been suggested to describe the strains’ persistence. Resistance to
stress factors is the most important, followed by biofilm formation and increased tolerance
to disinfectants [4]. The most important factor influencing the persistence of bacteria is
the high resistance to stress factors, such as pH, temperature, specificity and limitation of
nutrient sources, and competition with other microorganisms. The pH of the fish is usually
alkaline, and salt is also used as a preservative in the food industry [22–24]. The capability
to grow at a low temperature and high salt concentrations promotes L. monocytogenes
survival in the production environment.

The relevant source of the pathogen in the food processing environment is the reintro-
duction of persistent strains from external habitats [3]. L. monocytogenes has many adaptive
mechanisms enabling its survival in adverse environmental conditions, including food
processing [25]. Some studies suggest a higher adherence of persistent bacteria to food
contact surfaces than the nonpersistent strains [26].

Researchers have documented higher biofilm formation ability among persistent,
compared to nonpersistent, strains [27]. Biofilms are considered a source of persistent
pathogenic microorganisms [10]. Moreover, the increased persistence of pathogenic bacteria
can be the effect of co-existence with other, non-pathogenic microorganisms in multispecies
biofilms [3]. L. monocytogenes in the biofilm revealed increased resistance to disinfecting
agents compared to planktonic form. Adaptation and resistance to disinfectants, developed
after L. monocytogenes exposition to their sublethal concentrations, can also affect the
prolonged survival of the bacteria in the food processing environment [8,24,28].

The research aims to evaluate the differences in selected phenotypic properties between
the persistent and sporadic strains of L. monocytogenes collected along the entirety of the
fish processing line.

2. Materials and Methods
2.1. Sampling Procedure

From April to September 2019, 720 swabs (120 per month) were collected from ma-
chines and surfaces used for fish fillet production at one plant located in East-Central
Europe, the north Poland. Samples were collected between work shifts, after cleaning
procedures, when machines were not working.
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To collect bacteria, the wet swab method was used. A sterile, flexible template limiting
the tested area to 100 cm2 was used. Samples were taken from the box pallets in the raw
material warehouse (60 swabs), fish head remover machine (60 swabs), filleting machine
(conveyor—60 swabs; knives—60 swabs), trim conveyor (conveyor rollers—60 swabs;
worktops—60 swabs), pin bone remover (conveyor—60 swabs; trommel—60 swabs), fish
skin remover machine (60 swabs), fillet washer (60 swabs) and portion machine (conveyor—
60 swabs; knives—60 swabs). A sterile 50 cm2 cellulose sponge (Enviroscreen, Technical
Service Consultants Ltd., Lancashire, UK) soaked in 10 mL of a sterile 0.9% NaCl packed in
a reinforced zip-bag was used for sampling.

2.2. Sampling and Identification of L. monocytogenes Isolates

The analysis of the samples was based on ISO 11290-1 procedures [29]. The swabs
taken from the surface of machines were immersed in 100 mL of half-Fraser broth (Merck,
Darmstadt, Germany) and incubated at 30 ◦C for 24 h. Secondary selective enrichment was
performed for 48 h at 37 ◦C after transferring 0.1 mL of the culture into 9.9 mL of Fraser
broth (Merck). Next (both after incubation in half-Fraser broth and Fraser broth), bacteria
were plated on the selective agar medium according to Ottaviani and Agosti (ChromoCult®

Listeria Selective Agar, ALOA®, Merck) and incubated for 24 h at 37 ◦C. Selected colonies,
initially identified according to the manufacturer’s recommendations as Listeria spp., were
transferred to Columbia Agar with 5% sheep blood (bioMérieux, Marcy-l’Étoile, France).

Finally, the MALDI-TOF MS (Matrix-Assisted Laser Desorption and Ionization—Time
of Flight Mass Spectrometry) technique was used to confirm if presumptive colonies
belonged to the L. monocytogenes species. The acquisition and analysis of mass spectra were
performed by a Microflex LT/SH mass spectrometer (Bruker, Billerica, MA, USA) using
the MALDI Biotyper software package (version 4.1) with the Bruker Taxonomy reference
database (Bruker). The ethanol–formic acid extraction procedure was applied for samples
preparation. The bacterial test standard (BTS; Bruker) was used for validation according to
the manufacturer’s instructions.

The identified L. monocytogenes isolates were frozen in a brain–heart infusion broth
(BHI, Merck) with 15% glycerol (Avantor, Gliwice, Poland) and stored at −80 ◦C.

2.3. Assessment of the Genetic Similarity of the Collected Isolates

The genetic similarity analysis of the confirmed L. monocytogenes strains was per-
formed with the pulsed-field gel electrophoresis (PFGE), which is the golden standard to
identify putative routes of contamination and persistent strains according to Dalmasso
and Jordan [30]. The procedure for genotyping was performed following the Standard
Operating Procedure for PulseNet PFGE of Listeria monocytogenes (PNL04, last updated
April 2014) [31]. The ApaI enzyme was used in the study. The electrophoretic separation
was performed with the following parameters: initial and final pulse duration: 4–40 s;
voltage: 6 V/cm; pulse angle: 120◦; temperature 14 ◦C; program duration: 17 h. The degree
of genetic similarity between the analyzed L. monocytogenes isolates was evaluated using
a phylogenetic dendrogram drawn in the CLIQS 1D Pro program (TotalLab, Newcastle
upon Tyne, UK). Clustering analysis was performed using hierarchical clustering with the
UPGMA technique and Dice’s coefficient. The cut-off value to define the PFGE patterns was
set at 80% similarity. The isolates were considered as genetically identical when identical
pulsotypes were demonstrated for them by the PFGE method.

2.4. Isolation of Genomic DNA

Isolation of genomic DNA was performed using the Genomic Mini AX Bacteria Spin
Kit (A&A Biotechnology, Gdańsk, Poland), according to the manufacturer’s procedure, and
the DNA was stored at −20 ◦C for further analyses.
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2.5. Determination of Serological Groups

Multiplex PCR for the identification of the main L. monocytogenes serogroups (1/2a-
3a, 1/2b-3b, 1/2c-3c, 4b-4d-4e) was performed as described by Doumith et al. [32]. The
PCR was performed on a cycler Mastercycler® pro (Eppendorf, Hamburg, Germany)
using: 1.5× PCR buffer (Promega, Madison, WI, USA), 2 mM MgCl2 (Promega), 1.25 mM
dNTPs (Promega), 0.5 µM of each primer (Oligo.pl, Warszawa, Poland), 1 U GoTaq DNA
polymerase (Promega), ultrapure water (Sigma Aldrich, Saint Louis, MO, USA), and the
previously isolated genomic DNA. The amplicons were electrophoretically separated in
1.5% agarose gel (Sigma Aldrich) stained with Midori Green (NIPPON Genetics EUROPE
GmbH, Düren, Germany) in 1 × TBE buffer (BioRad, Hercules, CA, USA), in the presence
of a DNA size standard (GeneRulerTM1000 bp DNA Ladder) (Fermentas, Waltham, MA,
USA) (90 V, 1 h).

For each PCR reaction, the four selected L. monocytogenes strains examined by Wałecka-
Zacharska et al. [33] were used as positive control strains for serogroup identification. The
negative control in each reaction was a sample without DNA.

2.6. Assessment of Drug Susceptibility of the Tested L. monocytogenes Strains

The selected antibiotics were among those frequently used in the first-line treatment
of L. monocytogenes infections in humans and those also used in the veterinary treatment of
farm animals. This is important as Poland is one of the largest producers and exporters of
meat and dairy products in the European Union [34]. The evaluation of drug susceptibility
was performed for genetically different isolates (62) using the disk diffusion method
on the Mueller–Hinton agar with 5% defibrinated Horse Blood and 20 mg/L β-NAD
(MH-F, bioMérieux). Disks with penicillin (1 IU), ampicillin (2 µg), meropenem (10 µg),
erythromycin (15 µg), and cotrimoxazole (1.25–23.75 µg) were used. Antibiograms were
incubated in an atmosphere enriched in 5% CO2 at 35 ◦C for 18 h. The results were
interpreted, according to the recommendations of EUCAST (European Committee on
Antimicrobial Susceptibility Testing) v. 12.0. [35].

2.7. Comparison of the Selected Properties of Sporadic and Persistent L. monocytogenes Strains

At this stage of the study, 6 persistent strains (LMO-P1, LMO-P2, LMO-P3, LMO-P4,
LMO-P5, and LMO-P6) and 6 sporadic strains (LMO 4, LMO 23, LMO 46, LMO 52, LMO 53,
and LMO 61) were selected. The following tests were repeated in triplicate for each isolate.
Each repetition consisted in the independent preparation of a new bacterial suspension for
a given strain and the performance of all tests described in the methodology.

2.7.1. Assessment of Invasiveness against HT-29 Eukaryotic Cells

Tested strains were plated on Columbia Agar with 5% sheep blood (bioMérieux) and
incubated for 24 h at 37 ◦C. Single colonies were transferred into 5 mL brain–heart infusion
broth (BHI, Merck) and incubated in a thermoblock (TDB-100, Biosan, Józefów, Poland) at
37 ◦C (230 rpm, 6 h). Next, 5 µL of the bacterial suspension was transferred into 5 mL of
BHI broth and incubated another 18 h until an OD600 of 2.4–2.6 was obtained (measured
with the DU 8800D spectrophotometer). The bacteria of 5–6 log CFU (Colony Forming
Units) were used to infect the human colon carcinoma HT-29 cell line (CLS, Germany).

HT-29 cells were seeded in 6-well polystyrene culture plates (Genoplast) and incubated
to approx. 90% confluence in Dulbecco’s Modified Eagle Medium (DMEM, Sigma-Aldrich),
containing 10% fetal bovine serum (FBS, Gibco, Park Ridge Ln S Billings, MT, USA), 2 mM
glutamine, and 100 IU/mL penicillin and 100 µg/mL streptomycin (Sigma-Aldrich). Before
the cells’ infection (24 h), the medium was changed to DMEM without antibiotics. The HT-
29 cells were incubated with bacteria for 2 h (37 ◦C, 5% CO2). The wells were then washed
twice with a sterile PBS solution (Sigma-Aldrich) and incubated in DMEM containing
100 µg/mL gentamycin (Sigma-Aldrich) for 1.5 h (37 ◦C, 5% CO2). Next, the wells were
washed twice with PBS and overlaid with a medium containing 10 µg/mL gentamicin and
1.0% low melting point agarose (Prona, Gdańsk, Poland). After 48 h of incubation, the
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number of plaques was determined. Bacterial invasiveness was calculated as the quotient
of the number of plaques (expressing the number of bacteria that entered HT-29 cells)
and the number of bacteria introduced into the wells. Invasiveness was expressed as a
percentage.

2.7.2. Determination of the Minimum Bactericidal Concentration (MBC) of Selected
Disinfectants against Persistent and Sporadic Strains of L. monocytogenes

The evaluation of the minimum bactericidal concentrations (MBC) for the selected dis-
infectants was previously described by Skowron et al. [36]. Table 1 presents the disinfectants
included in the study.

Table 1. Characteristics of the disinfectants used for the evaluation of the minimum bactericidal
concentrations.

Group of Disinfectants Trade Name Active Substances Manufacturer Working Solution
Concentration

Quaternary ammonium
compounds Sansept 0200 Didecyldimethylammonium chloride,

benzyl-C12-16-alkyldimethyl chlorides Sanechem 3 mL/L

Oxidizing agents Peroxat Peracetic acid, hydrogen peroxide Agro-trade 5 mL/L

Chlorine compounds Calcium hypochlorite Hypochlorous acid calcium salt Chem Point 2 g/L

Iodine compounds Rapicid Iodine Pfizer 10 mL/L

The bacterial suspensions (100 µL) and 100 µL of the appropriate concentration of
disinfectant were added to the 96-well polystyrene plate. The final concentrations of the
disinfectants were: 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 5%, 1%, and 0.5%
of the working solution. The negative control consisted of 200 µL of a sterile MHB (Mueller–
Hinton Broth, Becton Dickinson) medium, and the positive control 200 µL of the bacterial
suspension. After 5 min of the agent’s action, 100 µL of each suspension was transferred
into 900 µL of neutralizer (10 g Tween 80 (Sigma Aldrich), 1 g lecithin (Sigma Aldrich),
0.5 g histidine L (Sigma Aldrich), 2.5 g Na2S2O3 (Avantor), 3.5 g C3H3NaO3 (Avantor),
and 1000 mL sterile water)). After 5 min of neutralization, samples were inoculated onto
Columbia Agar with 5% sheep blood (bioMérieux). After 24 h incubation at 37 ◦C, the
bacterial growth and the MBC value were assessed.

After determining the MBC range, the procedure was repeated with solutions at
concentrations varying by 1% from the designated MBC value. This procedure allowed for
the exact determination of the MBC value.

2.7.3. Assessment of the Rate of Initiation of Biofilm Formation

Biofilm formation ability was assessed on stainless steel coupons (1 cm × 2 cm, AISI
304 type). Coupons were washed in a commercial detergent, soaked for 5 min in 70%
ethanol (Avantor), and autoclaved. For each strain, 5 coupons for one experiment were
prepared. The research was carried out in triplicate.

Sterile steel coupons were placed in tubes containing 3 mL of bacterial suspension
(0.5 McF) in BHI (Merck) and incubated in aerobic atmosphere at 37 ◦C for 1, 2, 3, 4 and
5 h, respectively. After incubation, the samples were rinsed with PBS solution and placed
in a tube containing 3 cm3 of this solution. Next, sonication (10 min, 30 kHz, 150 W) was
performed using the Ultrasonic DU-4 (Nickel-Electro Ltd., Oldmixon Cres, Weston-super-
Mare BS24 9BL, UK) sonicator.

After sonication, serial 10-fold dilutions of the obtained suspension in sterile PBS were
prepared, plated on the Columbia Agar medium with 5% Sheep Blood (Becton Dickinson,
Franklin Lakes, NJ, USA), and incubated for 24 h at 37 ◦C. For the group of persistent
and sporadic strains, the mean number of L. monocytogenes recovered from the coupon
surface after a given incubation time was calculated. The results were presented as the log
CFU × cm−2.
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2.7.4. Assessment of the Intensity of Biofilm Formation

Sterile steel coupons were placed in tubes containing 3 mL of suspension of each strain
(0.5 McF) in BHI of selected parameters (pH, salinity, and availability of nutrients), and
were incubated for 72 h (Table 2). During incubation for each strain, except for experimental
condition 1 (low temperature growth), the medium was replaced every 24 h with a fresh
one and the coupons were rinsed with sterile PBS. For the variant 1 (4 ◦C) strain, the
medium was replaced every 4 days and the incubation was extended to 12 days. As a
negative control, steel coupons in a sterile BHI, in variables set up appropriately, were
used. The first CFU’s counting was performed after 1 day of incubation (in the case of low
temperature, after the 4th day of incubation).

Table 2. Experimental conditions regarding the set of temperature, pH, salinity, and nutrient avail-
ability in individual variants of biofilm formation.

Environment
Parameter

Experimental
Conditions Set for
Biofilm Formation

Temperature (◦C) pH Salinity
(% NaCl)

Nutrient
Availability (BHI)

Temperature (◦C)
1 4 7 0 1.0
2 20 7 0 1.0
3 37 7 0 1.0

pH
4 37 4 0 1.0
5 37 7 0 1.0
6 37 9 0 1.0

Salinity (% NaCl)
7 37 7 0 1.0
8 37 7 5 1.0
9 37 7 10 1.0

Nutrient
availability (BHI)

10 37 7 0 0.5 *
11 37 7 0 1.0 *
12 37 7 0 1.5 *

BHI—brain heart infusion broth; * BHI 1.0—medium containing the amount recommended by the manufacturer;
BHI 0.5—medium containing 50% of the amount recommended by the manufacturer; BHI 1.5—medium containing
150% of the amount recommended by the manufacturer. The control variant was marked with bold and the
variable parameters with grey color.

After incubation, the samples were rinsed with a PBS solution and placed in a tube
containing 3 mL of this solution. Next, sonication (10 min, 30 kHz, 150 W) was performed
using the Ultrasonic DU-4 (Nickel-Electro Ltd.) sonicator.

After sonication, serial 10-fold dilutions of the obtained suspension in sterile PBS were
prepared, plated on Columbia Agar medium with 5% Sheep Blood (Becton Dickinson),
and incubated for 24 h at 37 ◦C. For the group of persistent and sporadic strains, the mean
number of L. monocytogenes recovered from the coupon surface under given environmental
conditions was calculated. The results are presented as the log CFU × cm−2.

2.8. Statistical Analysis

The statistical analysis was carried out in the STATISTICA 13.0 PL (TIBCO Software,
Palo Alto, CA, USA) software. With the use of general linear models (GLM) and ANOVA
analysis, the statistical significance of differences was checked at the level of α = 0.05. Based
on one-way ANOVA, the differences in the percentages of all strains tested representing a
given serogroup, resistance to a given antibiotic, and a given drug’s susceptibility profile
were checked. The significance of differences in invasiveness between the persistent and
nonpersistent strains, MBC values for each of the tested disinfectants, and the intensity of
biofilm formation over time were also checked. In turn, based on the multivariate ANOVA,
the differences in the number of bacteria recovered from the biofilm between the persistent
and nonpersistent strains, depending on the conditions of its formation, were checked.
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3. Results

Out of 720 swabs taken from the surface of the fish processing machines, 62 isolates
were identified as L monocytogenes (8.6%) (Table 3). We collected the highest number of
isolates (14, 22.6%) from the filleting machine knives and the least (3, 4.8%) from box pallets
in the raw material warehouse, the filleting machine conveyor, the worktops of the trim
conveyor, the pin bone remover conveyor, the fillet washer, and the portion machine knives
(Table 3). We obtained the highest number of isolates (14, 22.6%) in September and the
lowest number (7, 11.3%) in May (Figure 1).

Figure 1. Number and percentage (%) of the total number of obtained isolates (62–100%) of
L. monocytogenes according to months of sampling.

Table 3. Sources of L. monocytogenes isolates collected during the research.

Element of the Processing Line Number (%) of All Isolates Isolates *

Box pallets in the raw material warehouse 3 (4.8) LMO 36, LMO 39, LMO 62

Head remover machine (cutting element) 7 (11.3)
LMO-P2 (LMO 5, LMO 14, LMO 20,

LMO 45)
LMO 48, LMO 55, LMO 61

Filleting machine Conveyor 3 (4.8) LMO 40, LMO 49, LMO 52

Knives 14 (22.6)

LMO-P3 (LMO 7, LMO 16, LMO 33,
LMO 41, LMO 54),

LMO-P4 (LMO 9, LMO 18, LMO 26,
LMO 43, LMO 60)

LMO 2, LMO 13, LMO 51, LMO 53

Trim conveyor Conveyor rollers 7 (11.3)
LMO-P1 (LMO 3, LMO 24, LMO 35,

LMO 56)
LMO 17, LMO 25, LMO 59

Worktops 3 (4.8) LMO 23, LMO 31, LMO 46

Pin bone remover
Conveyor 3 (4.8) LMO 6, LMO 21, LMO 42

Trommel 4 (6.5) LMO-P6 (LMO 22, LMO 38, LMO 44)
LMO 58
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Table 3. Cont.

Element of the Processing Line Number (%) of All Isolates Isolates *

Box pallets in the raw material warehouse 3 (4.8) LMO 36, LMO 39, LMO 62

Skin remover machine 8 (12.9)
LMO-P5 (LMO 15, LMO 27, LMO 47,

LMO 50)
LMO 8, LMO 32, LMO 34, LMO 57

Fillet washer 3 (4.8) LMO 11, LMO 29, LMO 30

Portion machine
Conveyor 4 (6.5) LMO 1, LMO 10, LMO 19, LMO 28

Knives 3 (4.8) LMO4, LMO 12, LMO 37

* In brackets are isolates clustered as belonging to each persistent strain written in bold letters.

3.1. Assessment of the Genetic Similarity of Isolate Strains Classified as Persistent

The assessment of the genetic similarity of the isolates allowed the selection of the
persistent strains. Persistent strains were defined as strains represented by genetically
identical isolates obtained from a particular part of the processing line at least three times
over six months.

Among the 62 obtained isolates, 38 genetically different strains of L. monocytogenes
were found (Figure 2). The cut-off level equal to 80% allowed to identify 14 strains with a
different number of isolates. Twelve isolates corresponded to single-member clusters. The
existence of 5 pairs of genetically identical isolates collected at the same time of sampling
was demonstrated (Figure 2).

Six persistent strains meet the criterion adopted in the research methodology (Figure 2).
The genetically identical isolates obtained at different times, but belonging to a given
persistent strain, are listed in brackets:

• LMO-P1 (LMO 3 (April 2019), LMO 24 (June 2019), LMO 35 (July 2019), and LMO 56
(September 2019))—isolated from the trim conveyor rollers.

• LMO-P2 (LMO 5 (April 2019), LMO 14 (May 2019), LMO 20 (June 2019), and LMO 45
(August 2019))—isolated from the cutting element of the head remover machine.

• LMO-P3 (LMO 7 (April 2019), LMO 16 (May 2019), LMO 33 (July2019), LMO 41
(August 2019), and LMO 54 (September 2019))—isolated from the knives of the filleting
machine.

• LMO-P4 (LMO 9 (April 2019), LMO 18 (May 2019), LMO 26 (June 2019), LMO 43
(August 2019), and LMO 60 (September 2019))—isolated from the knives of the filleting
machine.

• LMO-P5 (LMO 15 (May 2019), LMO 27 (June 2019), LMO 47 (August 2019), and LMO
50 (September 2019))—isolated from the skin remover machine.

• LMO-P6 (LMO 22 (June 2019), LMO 38 (July 2019), and LMO 44 (August 2019))—
isolated from the trommel of the pin bone remover.
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Figure 2. Genetic similarity dendrogram of each tested isolate with clusters of isolates belonging to
each persistent strain (marked by gray blocks). * isolates genetically indistinguishable.
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Each isolate constituting a given persistent strain was obtained from the same place in
the processing line, but at different sampling times.

In this pool of strains, the LMO-P3 and LMO-P4 strains were genetically similar at
93%, while the LMO-P1 strain was the most genetically distant (Figure 2).

3.2. Molecular Serotyping of L. monocytogenes Strains

The analysis of DNA patterns on agarose gel showed 5 persistent strains belonging
to the 1/2a-3a serogroup represented by 28 (73.7%) of all detected strains, while the 6th
persistent strain (LMO-P6) belonged to 4b-4d-4e serogroup. In turn, only one strain, LMO-1
representing 2.6% of all strains, belonged to the 1/2c-3c serogroup (Figure 2).

3.3. Assessment of Drug Susceptibility of the Tested L. monocytogenes Strains

Among the L. monocytogenes isolates resistant to at least one antibiotic, the greatest
number of isolates (13, 34.2%) were resistant to meropenem. In turn, resistance to penicillin
was the least common (8, 21.1%) (Figure 3).

Figure 3. Resistance of 38 isolates of L. monocytogenes to antibiotics (P—penicillin; AM—ampicillin;
MEM—meropenem; E—erythromycin; SXT—cotrimoxazole; a,b—values marked with different
letters differ in a statistically significant way (p ≤ 0.05). In brackets, the percentage of resistant isolates
is given. The limited number of isolates is a result of the exclusion of genetically identical isolates.

The conducted experiment allowed for the identification of six antibiotic resistance
profiles. The isolates representing profile no. 1 (18 isolates, 47.4%) (Table 4) were susceptible
to all tested antibiotics. The remaining 20 (52.6%) individual isolates and those representing
persistent strains showed resistance to at least one tested antibiotic. Counting isolates
without persistent strains, 39 of all isolates were resistant to at least one antibiotic. Persis-
tent strains belonged to profiles no. 3 (LMO-P1 and LMO-P2—resistant to meropenem,
erythromycin, and cotrimoxazole), no. 4 (LMO-P6—resistant to penicillin and meropenem),
and no. 5 (LMO-P3, LMO-P4, and LMO-P5—resistant to all tested antibiotics) (Table 4).
Part of single isolates represented an identical resistance to antibiotics as persistent strains.
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Table 4. Antibiotic resistance profiles.

Profile Number Antibiotic Resistance Profile Number (%) of Strains Isolates and Strains Representing
the Profile

1 R: —
S: P, AM, MEM, E, SXT 18 (47.4) a

LMO 2, LMO 6, LMO 8, LMO 10,
LMO 11, LMO 19, LMO 21, LMO 25,
LMO 28, LMO 29, LMO 32, LMO 36,
LMO 37, LMO 40, LMO 42, LMO 51,

LMO 57, LMO 62

2 R: AM
S: P, MEM, E, SXT 5 (13.2) b LMO 1, LMO 13, LMO 17, LMO 49,

LMO 55

3 R: MEM, E, SXT
S: P, AM 5 (13.2) b LMO-P1 *, LMO-P2

LMO 23, LMO 46, LMO 61

4 R: P, MEM
S: AM, E, SXT 4 (10.5) b LMO-P6

LMO 4, LMO 52, LMO 58

5 R: P, AM, MEM, E, SXT
S: — 4 (10.5) b LMO-P3, LMO-P4, LMO-P5

LMO 53

6 R: SXT
S: P, AM, MEM, E 2 (5.3) b LMO 48, LMO 59

* bold—persistent strains; P—penicillin; AM—ampicillin; MEM—meropenem; E—erythromycin; SXT—
cotrimoxazole; R—resistant; S—sensitive; a,b—statistical significance with p ≤ 0.05.

3.4. Assessment of Invasiveness against HT-29 Eukaryotic Cells

The invasiveness of the persistent L. monocytogenes strains ranged from 1.07% for
LMO-P6 to 11.21% for LMO-P4. In turn, the invasiveness of sporadic strains ranged from
1.42% for LMO 4 to 7.99% for LMO 61. The mean invasiveness calculated for the persistent
strains was slightly higher than for the sporadic strains (5.50% vs. 4.60%); however, the
difference was not statistically significant (Table 5).

Table 5. Invasiveness of the persistent and sporadic strains of L. monocytogenes against HT-29 cells.

Persistent Strains Sporadic Strains

Strain % Strain %

LMO-P1 3.42 ± 0.70 a,b LMO 4 1.42 ± 0.17 a

LMO-P2 2.05 ± 0.35 a LMO 23 5.59 ± 1.14 b

LMO-P3 9.55 ± 4.37 c LMO 46 4.25 ± 0.93 b

LMO-P4 11.21 ± 3.19 d LMO 52 2.10 ± 0.69 a

LMO-P5 5.71 ± 1.66 b LMO 53 6.22 ± 1.84 b,e

LMO-P6 1.07 ± 0.39 a LMO 61 7.99 ± 1.11 c,e

Mean 5.50 ± 3.71 * Mean 4.60 ± 2.29 *
a,b,c,d,e, values marked with different letters differ statistically (p ≤ 0.05). * values marked with this symbol do
not differ statistically (p ≤ 0.05).

3.5. Minimum Bactericidal Concentrations (MBC) of the Selected Disinfectants against the
Persistent and Sporadic Strains of L. monocytogenes

For all strains, both persistent and sporadic, the effective concentrations of disinfec-
tants were lower than the concentrations of the working solution recommended by the
manufacturer (Table 6). MBC values depended on the properties of a particular strain and
the type of disinfectant.
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Table 6. Minimum bactericidal concentration value of the tested disinfectants against the persistent and sporadic strains of L. monocytogenes.

Disinfectant
PERSISTENT STRAINS SPORADIC STRAINS

LMO-P1 LMO-P2 LMO-P3 LMO-P4 LOM-P5 LMO-P6 MEAN LMO 4 LMO 23 LMO 46 LMO 52 LMO 53 LMO 61 MEAN
Sansept

0200
[mL/L]

0.81 ± 0.11
(27%)

0.81 ± 0.18
(27%)

1.17 ± 0.27
(39%)

1.47 ± 0.31
(49%)

0.93 ± 0.09
(31%)

0.72 ± 0.15
(24%)

0.99 ± 0.28 a

(33%)
0.15 ± 0.04

(5%)
0.21 ± 0.10

(7%)
0.21 ± 0.06

(7%)
0.18 ± 0.07

(6%)
0.27 ± 0.02

(9%)
0.30 ± 0.12

(10%)

0.22 ± 0.06
b

(7%)

Peroxat
[mL/L]

3.50 ± 1.02
(70%)

3.10 ± 0.68
(62%)

4.10 ± 0.91
(82%)

4.60 ± 1.16
(92%)

3.85 ± 0.74
(77%)

3.10 ± 1.00
(62%)

3.71 ± 0.59 a

(74%)
1.75 ± 0.51

(35%)
2.10 ± 0.43

(42%)
2.05 ± 1.40

(41%)
1.85 ± 0.82

(37%)
2.50 ± 0.99

(50%)
2.90 ± 0.38

(58%)

2.19 ± 0.43
b

(44%)
Calcium

hypochlorite
[g/L]

0.68 ± 0.23
(34%)

0.54 ± 0.10
(27%)

0.78 ± 0.31
(39%)

0.90 ± 0.09
(45%)

0.80 ± 0.66
(40%)

0.60 ± 0.17
(30%)

0.72 ± 0.14 a

(36%)
0.30 ± 0.08

(15%)
0.34 ± 0.13

(17%)
0.38 ± 0.20

(19%)
0.34 ± 0.14

(17%)
0.48 ± 0.07

(24%)
0.40 ± 0.23

(20%)

0.37 ± 0.06
b

(19%)

Rapicid
[mL/L]

3.10 ± 0.71
(31%)

3.20 ± 0.52
(32%)

3.80 ± 0.84
(38%)

4.00 ± 1.11
(40%)

3.80 ± 0.95
(38%)

2.70 ± 0.36
(27%)

3.43 ± 0.51 a

(34%)
2.80 ± 0.29

(28%)
3.10 ± 0.41

(31%)
3.10 ± 0.37

(31%)
3.00 ± 0.19

(30%)
3.10 ± 0.28

(31%)
3.60 ± 0.37

(36%)

3.12 ± 0.26
a

(31%)

A percentage of working solution (given in brackets) concentration, which is the MBC value; a,b, values marked with different letters differ statistically with p ≤ 0.05.
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For each strain belonging to the persistent strain group, the MBC values were higher
than for strains from the sporadic strain group. For the persistent strains, the values
ranged from 33% (0.99 mL/L) of the working solution concentration for Sansept 0200 to
74% (3.71 mL/L) of the working solution concentration for Peroxat (Table 6). In turn, for
sporadic strains, the MBC values ranged from 7% (0.22 mL/L) of the working solution
concentration for Sansept 0200 to 44% (2.19 mL/L) of the working solution concentration
for Peroxat (Table 6). For each tested disinfectant, except Rapicid, statistically significant
differences were found between the MBC values established for persistent and sporadic
strains (Table 6). In the pool of persistent strains, the LMO-P4 strain turned out to be the
most resistant, and the most susceptible one was LMO-P6 (Table 6). In turn, among sporadic
strains, the most resistant was LMO 61 and the most sensitive was LMO 4 (Table 6).

Sansept 0200 turned out to be the most effective disinfectant for strains from both
groups, and Peroxat the least effective (Table 6).

3.6. Assessment of the Rate of Initiation of Biofilm Formation

Persistent L. monocytogenes strains formed biofilm faster than sporadic strains (Figure 4).
The number of L. monocytogenes recovered from the biofilm after 1, 2, 3, and 4 h was
statistically significantly higher for persistent than for sporadic strains. No statistically
significant differences were found at the 5th h of biofilm formation, although the number
of rods recovered remained higher for persistent strains (Figure 4). We noticed the largest
difference in the number of recovered L. monocytogenes between persistent and sporadic
strains, amounting to 1.66 log CFU at the 2nd h of biofilm formation (Figure 4).

Figure 4. Assessment of the rate of initiation of biofilm formation for the persistent and nonpersistent
L. monocytogenes strains. The horizontal shift of points relative to the timeline is only used to maintain
the chart’s readability. The starting density at the 0 h timepoint was 0.5 McF for each strain. *—values
assigned to the same time point, marked with an asterisk, differ statistically significantly (p ≤ 0.05).

3.7. Assessment of the Intensity of Biofilm Formation

The effect of environmental conditions on biofilm formation by both persistent and
sporadic L. monocytogenes strains was shown (Figure 5). We observed statistically significant
differences in the number of L. monocytogenes recovered from biofilm between the persistent
and sporadic strains (6.85 vs. 6.09 log CFU × cm−2) under the control conditions (37◦C,
pH 7, 0% NaCl, 1 BHI) (Figure 5).
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Figure 5. Assessment of the intensity of biofilm formation for the persistent and nonpersistent
L. monocytogenes strains according to single variable changes being given along X-ordinate. Control
parameters were 37 ◦C, pH 7, 0% NaCl, 1 BHI. a–j: values marked with different letters differ
statistically (p ≤ 0.05).

Analyzing the effect of temperature, we found that the strains from both groups
showed a weaker biofilm-forming capacity at 4◦C and performed best at 37 ◦C. The number
of bacteria recovered from the biofilm under all temperature conditions was statistically
significantly higher for the persistent strains (Figure 5).

Both persistent and sporadic strains formed a weak biofilm at pH 4 and a one stronger
at pH 9 compared to the biofilm formation in the control conditions (Figure 5). At the
tested pH values, the number of L. monocytogenes obtained from biofilms was statistically
significantly higher in the case of persistent strains than sporadic ones (Figure 5).

All strains formed biofilms less intensely in increased salinity (5% and 10% NaCl)
compared to what was formed in the control conditions (Figure 5). The bacteria performed
better at creating biofilm at 5% NaCl than 10% NaCl (Figure 5). Regardless of salinity, the
number of L. monocytogenes recovered from biofilm was higher for persistent strains, with a
statistically significant difference only shown for 10% NaCl salinity (Figure 5).

The reduced availability of nutrients (0.5 BHI) increased the intensity of biofilm
formation in both strain groups (Figure 5). In turn, the increased availability of nutrients
(1.5 BHI) lowered the biofilm formation intensity (Figure 5). The persistent strains formed
a biofilm slightly better at both 0.5 BHI and 1.5 BHI, but the observed differences were not
statistically significant (Figure 5).

Collectively, strains from both groups formed the weakest biofilm at 4 ◦C, pH 7, 0%
NaCl, and 1 BHI, and the strongest at 37 ◦C, pH 7, 0% NaCl, and 0.5 BHI (Figure 5).

4. Discussion

There is a growing demand among consumers for fresh and low-processed foods.
The contamination of the fish processing environment with L. monocytogenes increases the
epidemiological risk linked to fish product consumption. The ability of L. monocytogenes
to survive in extreme conditions and to form biofilms on various surfaces is a significant
challenge for food safety [9]. One of the factors affecting the distribution of pathogens
in the facility is the type and quality of the equipment used for material processing. In
our study, among the 62 L. monocytogenes isolates (8.6%) obtained from processing devices
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used for fish fillet production, the highest number (14, 22.6%) originated from the filleting
machine knives, which directionally contacts with the fish flesh and thus being a probable
source of bacteria. A study by Kurpas et al. [8] confirmed food of animal origin as a source
of pathogenic L. monocytogenes for humans. The presence of persistent strains within the
food processing environment entails the contamination of finished products, increasing the
risk for future consumers, especially when the product is raw and ready-to-eat fish. Part
of the devices included in the processing line have a continuous contact with processed
fish. The pin bone remover or knives in the filleting machines can directly contaminate the
food, frequently consumed raw or cold-smoked. Salmonidae fish are a popular species con-
sumed without any heat treatment. That is why L. monocytogenes infections are enormously
dangerous for consumers and should be monitored to prevent outbreaks of listeriosis.
Similarly, the studies of Di Ciccio et al. [37] confirmed an overall L. monocytogenes preva-
lence rate of 16% in a cold-smoked salmon processing environment. The samples from
working tables (43%) and slicing machines (37%) were the most contaminated [37]. Leong
et al. [38] reported a lower L. monocytogenes prevalence in the seafood industry compared
to the dairy, meat, and vegetable industries. The installation of new equipment increased
L. monocytogenes occurrence in food production facilities (from 5 to 23% during a year) [38].

The fish processing environment, due to the amount of equipment used during the
processing of the raw materials, increases the risk of the finished products being contami-
nated with L. monocytogenes. Despite the procedures used, cleaning and disinfection are
becoming insufficient and not effective if we consider the fact of the frequent presence
of L. monocytogenes persistent strains along the food processing lines. This is one of the
most problematic properties of this bacteria, which easily adapts to a wide spectrum of
unfavorable factors. They easily adapt to stress factors, form biofilms, and are resistant to
disinfectants. In our study, we found six persistent strains of L. monocytogenes. Miettinen
and Wirtanen [39], analyzing 81 isolates from 15 fish farms and fish processing plants,
found 30 L. monocytogenes pulsotypes. Scientists observed the repetitive isolation of at least
one pulsotype from the same facility, suggesting the presence of persistent L. monocytogenes
strains in the processing environment. In Ramires et al. [40] research, two of the total four
L. monocytogenes pulsotypes from salmon sushi were persistent. Aalto-Araneda et al. [41]
sampled the same L. monocytogenes pulsotypes on separate sampling occasions in three of
seven fish processing plants. Three of eight RAPD types of L. monocytogenes, found in raw
fish and their products from Polish fish processing plants, were collected continually over
8–10 months [42]. Cruz and Fletcher [43] identified persistent L. monocytogenes strains in
the mussel processing environment (in raw mussels and finished products). One of the
persistent pulsotypes was linked to non-perinatal listeriosis cases.

The mechanism of bacterial persistence is poorly understood. Some authors suggest
that biofilm-forming ability is an essential factor for its prolonged survival in the food
production environment [40]. Our research showed a higher rate of biofilm formation initi-
ation for persistent L. monocytogenes strains. Their number, recovered from the biofilm, was
statistically significantly higher than for sporadic strains after 1, 2, 3, and 4 h, but not after
5 h of the process. Lundén et al. [26] reported that the persistent L. monocytogenes strains
revealed higher adherence than the nonpersistent strains after 1 and 2 h of contact time.
However, after 72 h, the adherence ability was comparable for persistent and nonpersistent
strains [26]. Contrary to Lundén et al., Costa et al. [19] observed the significantly higher
attachment abilities of nonpersistent L. monocytogenes isolates. In our study, the number of
L. monocytogenes recovered from biofilms, formed in the control conditions (37 ◦C, pH 7,
0% NaCl, 1 BHI), for persistent strains was statistically significantly higher (6.85 log CFU
× cm−2) compared with sporadic strains (6.09 log CFU × cm−2). The biofilm formation
was the most intense at 37 ◦C, pH 9, 5% NaCl salinity, and a reduced nutrient availability
(0.5 BHI), which confirms our previous studies [44]. Regardless of the thermal conditions
and environmental pH, the number of bacteria recovered from the biofilm was statistically
significantly higher for the persistent strains. We did not observe statistically significant
differences between biofilms formed in environments with various levels of nutrient avail-
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ability and at 5% NaCl salinity. The tolerance of L. monocytogenes to environmental stress
factors contributes to a better ability to survive in food products and processing environ-
ments. Researchers have suggested that the adaptation of L. monocytogenes to stress factors
is one of the main theories of the formation of persistent strains. Jensen et al. [45] have
reported the enhanced adhesion of L. monocytogenes strains to a plastic surface at 37 ◦C after
NaCl addition to the growth medium. Taylor and Stasiewicz [46] documented the growth
of persistent and sporadic strains of planktonic L. monocytogenes cells at 5% and 10% salt
concentration, as well as acidic (pH 5.2) and alkaline (pH 9.2) conditions. Nowak et al. [47]
reported increased biofilm formation in such conditions. In turn, Assisi et al. [48] found
that the persistence of L. monocytogenes in the environment is probably a matter of the poor
sanitation of the facility and not the ability of isolates to form a biofilm and tolerance to
disinfectants.

Microbial tolerance towards sanitizing agents may lead to the higher persistence of
pathogens in the production environment [20]. The results of our study show that the
applied disinfectants were effective against persistent and sporadic L. monocytogenes strains
in concentrations lower than those recommended by the manufacturer. Their high efficacy
could be because pathogen cells were in planktonic form. Moreover, no potentially protect-
ing organic substances were present in the environment. Magalhães et al. [23] noted the
reduction in persistent and nonpersistent L. monocytogenes isolates by commonly used dis-
infectants applied in concentrations lower than those recommended by the manufacturers.
They found no relation between pathogen persistence and increased resistance to sanitizers.
Costa et al. [19] also noticed no significant differences between persistent and nonpersistent
L. monocytogenes isolates in their sensitivity to disinfectant treatments, suggesting no link
between persistence and disinfectant susceptibility. In our study, we observed significant
differences in susceptibility to Sansept 0200 (Didecyldimethylammonium chloride, benzyl-
C12-16-alkyldimethyl chlorides), Peroxat (Peracetic acid, hydrogen peroxide), and Calcium
hypochlorite between persistent and sporadic L. monocytogenes strains. According to the
calculated MBC values, Sansept was the most effective disinfectant and Peroxat the least
effective. However, the obtained results do not support that resistance to disinfectants is
one of the hypotheses for the formation of persistent strains. Wang et al. [49] found no
significant difference in disinfectant tolerance between the persistent and transient strains.

The study also assessed the belonging to serogroups and antimicrobial resistance.
The highest number of collected L. monocytogenes isolates (28, 73.7%) was classified as
1/2a-3a serogroup. Additionally, Gambarin et al. [50] have shown a high percentage of
strains related to serotype 1/2a (73.33%) in RTE seafood. In turn, Ramires et al. [40] have
noted that all L. monocytogenes isolates from sushi establishments belonged to serotype 4b.
Serotype 4b-4d-4e was the second numerous group (15.8% of L. monocytogenes isolates) in
the present study and included the persistent LMO-P6 strain. The other persistent strains
belonged to the 1/2a-3a serogroup. In our study, 18 (47.4%) isolates of L. monocytogenes
strains were susceptible to all antibiotics tested. The highest number of strains (34.2%)
was resistant to meropenem. Three of the six persistent strains were resistant to all tested
antibiotics. Skowron et al. [51] have found the highest resistance to erythromycin (47.1%)
and cotrimoxazole (47.1%) among L. monocytogenes strains isolated from the fish and fish
processing plant.

The ability of L. monocytogenes to adhere, invade, and grow in intestinal cells is directly
associated with the pathogen’s virulence [33,52,53]. The invasiveness of L. monocytogenes
isolates against HT-29 cells amounted to 7.99% for sporadic strain LMO 61 and 11.21% for
persistent strain LMO-P4. We did not observe statistically significant differences between
the mean invasiveness values for the persistent and sporadic strains. Moroni et al. [54]
have reported an invasion ability of L. monocytogenes LSD348 against HT-29 cells of 45.49%.
Jensen et al. [45] have observed low invasiveness of the four RAPD type 9 persistent strains
(N53-1, H13-1, La111, and M103-1) against Caco-2 cells compared to the remaining strains.
Wałecka-Zacharska et al. [33] have noted that L. monocytogenes strains of 1/2a serotype
revealed a lower ability to invade epithelial cells than those of the 4b and 1/2b serotypes.
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There are many controversies about the persistence mechanism of strains frequently
and repetitively isolated from the production environment. Research results concerning the
relationship between resistance to disinfectants, adherence ability, biofilm formation, and
the long-term survival of Listeria spp. in food industry plants are contradictory [3,23,55].
According to the hypotheses of Carpentier and Cerf [1], the key factor of a strain’s persis-
tence is the specificity of harborage sites inhabited by the bacteria. The bacteria living in
these areas, protected from environmental stresses, can survive for a longer time [19,46].

5. Conclusions

The presence of persistent strains of L. monocytogenes increases the risk of food cross-
contamination. Our study aimed to characterize strains collected from fish processing
plants and the different phenotypic responses of persistent and sporadic strains. The results
indicate that the persistent strains of L. monocytogenes can form a stronger biofilm (also in
unfavorable environmental conditions) and have a lower disinfectant susceptibility than
sporadic strains. We think that future research should explore the genetic variation between
persistent and sporadic strains to explain the molecular basis of persistence.
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