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Abstract: N-acetylcysteine (NAC) is a pharmacological alternative with great potential for reducing
the deleterious effects of surgical procedures on patients with steatohepatitis. We evaluated
the effect of NAC on hepatic ischemia/reperfusion (I/R) injury in C57BL/6J mice, 8 weeks-old,
weighing 25–30 g, with steatohepatitis induced by a methionine- and choline-deficient (MCD) diet.
Groups: MCD group (steatohepatitis), MCD-I/R group (steatohepatitis plus 30 min of 70% liver
ischemia and 24 h of reperfusion), MCD-I/R+NAC group (same as MCD-I/R group plus 150 mg/kg
NAC 15 min before ischemia), and control group (normal AIN-93M diet). Liver enzymes and
histopathology; nitrite and TBARS (thiobarbituric acid reactive substances) levels; pro-inflammatory
cytokines; antioxidants enzymes; Nrf2 (nuclear factor erythroid-2-related factor 2) expression;
and apoptosis were evaluated. In the group treated with NAC, reductions in inflammatory infiltration;
AST (aspartate aminotransferase), nitrite, and TBARS levels; GPx (gutathione peroxidase) activity;
cytokines synthesis; and number of apoptotic cells were observed while the GR (glutathione reductase)
activity was increased. No differences were observed in Nfr2 expression or in SOD (superoxide
dismutase), CAT (catalase), and GST (glutathione S-transferase) activities. Thus, it may be concluded
that NAC exerts beneficial effects on mice livers with steatohepatitis submitted to I/R by reducing
oxidative stress, inflammatory response, and cell death.

Keywords: liver; mouse; steatohepatitis; cytokines; oxidative stress; antioxidant enzymes;
cell death; acetylcysteine

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent hepatic diseases in the
global population [1,2], affecting 4 to 46% of individuals [3,4], and 90% of cases occur in morbidly obese
individuals [1]. NAFLD is characterized by the presence of macroscopic steatosis in more than 5–10%
of hepatocytes in the absence of other etiologies of hepatic diseases [1,5], such as excessive alcohol
consumption, autoimmune or drug-induced diseases, or viral hepatitis [6]. The histological spectrum
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of NAFLD may range from simple steatosis to nonalcoholic steatohepatitis (NASH), with progression
to liver fibrosis and cirrhosis [5–7].

NAFLD can increase liver susceptibility to hepatic ischemia/reperfusion (I/R) injury and has
become the most important clinical risk factor for this type of liver injury [8–10], increasing the risk
of postoperative morbidity and mortality, including cases of transplantation [11,12]. NAFLD is also
strongly associated with primary graft dysfunction and low survival among transplant recipients as
well as poor outcomes in procedures that require transient ischemia [13–15].

The mechanisms by which NAFLD and I/R cause damage in the liver are complex and
involve several cellular components, factors, and mediators present during oxidative stress and
inflammation, such as reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant
enzymes, transcription factors, cytokines, and neutrophil infiltration, amongst others. The oxidative
stress is a result of the imbalance between free radicals production and the antioxidant mechanism.
In NAFLD/NASH and I/R, free radicals, ROS, RNS, and others, produced mainly by Kupffer cells,
act on hepatic cells causing lipid peroxidation in the cellular membrane, mitochondrial dysfunction,
DNA damage, and may activate the cell death signaling pathway by necrosis and apoptosis.
Then, cells of the immune system are recruited to the place of injury; resident innate immune
cells and liver cells, through a nuclear factor κ-light-chain enhancer-activated B cells (NF-κB)-mediated
mechanism, release pro-inflammatory cytokines that intensify the hepatic damage by increasing the
production of ROS/RNS and activate the pro-apoptotic signal via a caspase cascade. Moreover, Kupffer
cells amplify the inflammatory response through attraction and adhesion of neutrophils and mast
cells, the clumping together of platelets, and obstruction of local microcirculation, all leading to
decrease sinusoidal blood flow (ischemia) [16]. Cytokines derived from Kupffer cells, such as TGF-β,
TNF-α, and IL-1, also may induce the hepatic stellate cells (HSC), previously activated by ROS, RSN,
and malondialdehyde (MDA), to proliferate and transform into myofibroblasts, promoting increased
production of collagen and hence causing fibrosis in the liver [17].

Endogenous antioxidants, such as glutathione (GSH), superoxide dismutase, catalase, and reduced
glutathione-related enzymes, play a vital role in the maintenance of the oxidative/antioxidant balance
by their capability to scavenge free radicals, contributing to a reduction in tissue damage [18]. Nrf2 is
an important transcription factor that regulates this antioxidant defense system by maintaining cellular
redox homeostasis, which allows adaptation and cell survival, and by mediating the gene expression
that encodes detoxification and antioxidant enzymes. The inactivation of Nrf2 occurs through the
bonding of regulator Kelch-like ECH-associated protein 1 (Keap1) that directs Nrf2 to its degradation
by ubiquitination. However, the increase of ROS concentration during oxidative stress promotes the
change of the Keap1 conformational state through the modification of the sulfhydride groups of the
cysteine residues, and causes the dissociation of Nrf2 from this regulator. After, Nrf2 is translocated to
the nucleus, where it bonds to a specific DNA sequence known as the antioxidant response element
(ARE) and promotes the activation of genes associated with antioxidant and detoxifying responses,
such as, glutathione S-transferase (GST) and NAD(P)H quinone oxidoreductase-1 (NQO1) [19,20].

One of the most important avenues of research in regard to treatment of hepatic diseases is
into the attenuation of oxidative and inflammatory liver damage. To decrease oxidative stress and
inflammation that leads to cell death in the liver, pharmacological therapy involving administration of
exogenous antioxidants has recently been evaluated in animal models [21]. Among these antioxidants,
N-acetylcysteine has great potential for reducing the deleterious effects of oxidative stress and
inflammatory response in different types of diseases by acting on detoxification of ROS, inhibition the
synthesis of NO, upregulation of antioxidant enzymes, immunomodulatory activity, and regulation
of apoptosis [22]. In our laboratory, the effects of N-acetylcysteine (NAC) have been studied in
various experimental models of I/R [23–28]. In a hemorrhagic shock model, NAC protected pulmonary
tissue [23,24]. In a model of I/R after hemorrhagic shock [25], NAC preserved hepatic tissue. In a
model of hepatic I/R associated with hepatectomy, enzymatic and morphological protective effects
were observed in the liver after NAC treatment [26,27]. In a study in which NAC was compared to
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and associated with ischemic preconditioning, no synergistic or antagonistic effects were observed in
hepatic or pulmonary tissue after hepatic I/R, indicating that the protective effects were similar [28].

In a study with rats fed a high fat diet (HFD) to induce NASH, it was observed that
NAC (500 mg/kg/day) reduced the levels of total GSH and hepatic MDA to normal levels [29].
NAC (2 g/kg/day) also prevented many aspects of NASH progression by decreasing development of
oxidative stress, but it was unable to block development of steatosis [30].

Although the use of NAC has been evaluated in several studies, which have demonstrated its
beneficial effects in ameliorating the damages caused by oxidative stress and inflammation derived
from NAFLD/NASH or I/R, there have been few studies on the effects of exogenous antioxidants in
hepatic I/R models associated with steatohepatitis. Therefore, we decided to evaluate the performance
of NAC in the treatment of inflammation, oxidative stress, and hepatic cell death in mice with inducible
steatohepatitis submitted to hepatic I/R.

2. Results

2.1. Hepatic Enzymes

Aspartate aminotransferase (AST) levels were higher in methionine- and choline-deficient
(MCD)-I/R and MCD-I/R+NAC groups than when compared to that of control and MCD groups.
AST levels were lower in the MCD-I/R+NAC group compared to that of the MCD-I/R group (Figure 1A).
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Figure 1. Levels of hepatic enzymes in the liver of normal mice and of animals submitted to
ischemia/reperfusion (I/R) in the methionine- and choline-deficient (MCD) diet treated or not with
N-acetylcysteine (NAC). The figure shows the levels of (A) aspartate aminotransferase (AST) and
(B) alanine aminotransferase (ALT) (* p < 0.05, ** p < 0.01, and *** p < 0.001; N = 5–6; Bonferroni
one-way ANOVA).

Alanine aminotransferase (ALT) levels were higher in the MCD group compared to that of the
other groups. While the levels of both transaminases were reduced in the MCD-I/R+NAC group
compared to that of the MCD-I/R group, only for AST was it significant (Figure 1A,B).

2.2. Oxidative Stress

Oxidative stress from steatohepatitis and I/R was evidenced by the presence of lipid peroxidation
and nitrite in hepatic tissue. The animals of the MCD-I/R group showed higher thiobarbituric acid
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reactive substances (TBARS) levels compared to that of the control and MCD groups. However, TBARS
levels in the MCD-I/R+NAC group were lower than those in the MCD and MCD-I/R groups (Figure 2A).

The nitrite levels were higher in the MCD-I/R and MCD-I/R+NAC groups compared to that of the
control group. However, as observed for TBARS levels, nitrite levels were lower in the MCD-I/R+NAC
group compared to that of the MCD-I/R group (Figure 2B).
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Figure 2. Concentrations of thiobarbituric acid reactive substances (TBARS) and nitrite in the liver of
normal mice and of animals submitted to I/R in the MCD diet treated or not with N-acetylcysteine.
The figure shows the levels of (A) TBARS and (B) nitrite (* p < 0.05, ** p < 0.01, and *** p < 0.001; N = 5–6;
Bonferroni one-way ANOVA).

2.3. Antioxidant Enzyme Activities and Transcription Factor Nrf2

It is possible to observe a non-significant increase in the activity of catalase in the MCD-I/R group
(Figure 3B), suggesting a greater conversion of hydrogen peroxide into water. However, the activities of
superoxide dismutase (Figure 3A) and glutathione S-transferase (Figure 3E) are similar among studied
groups. A significant reduction in the activity of glutathione peroxidase (Figure 3C) was observed in
the MCD-I/R+NAC group when compared to that of the MCD and MCD-I/R groups. It is also possible
to observe an increase in the activity of glutathione reductase (Figure 3D) in the MCD-I/R+NAC group
when compared to that of the MCD-I/R group.

The expression of the transcription factor Nrf2 (Figure 3F) was reduced in animals of the
MCD-I/R+NAC group compared to that of the other groups, although it did not show a significant
difference (p < 0.08 vs. MCD-I/R).
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Figure 3. Activities of antioxidant enzymes and transcription factor Nrf2 in the liver of normal mice
and of animals submitted to I/R in the MCD diet treated or not with N-acetylcysteine. This figure shows
activity of (A) Superoxide dismutase, (B) catalase, (C) glutathione peroxidase, (D) glutathione reductase,
and (E) glutathione S-transferase (* p < 0.05 vs. MCD-I/R; ** p < 0.01 vs. MCD; N = 5–6; Tukey one-way
ANOVA), and (F) analysis of the densitometry of the Western blot evaluation of transcription factor
Nrf2 (p < 0.08 vs. MCD-I/R; N = 4; one-way ANOVA).

2.4. Hepatic Cytokines

The levels of IL-1β and TGF-β1 were higher in the hepatic steatosis groups than those in the
control group. IL-1β was also elevated in the MCD group compared to that of the MCD-I/R+NAC
group. In addition, the MCD-I/R+NAC group showed lower levels of IL-1β and TGF-β1 than the
MCD-I/R group (Figure 4A,B). The levels of IFN-γ in hepatic tissue were similar among the groups
(control group: 276 ± 15 pg/mL, MCD group: 294 ± 26 pg/mL, MCD-I/R group: 223 ± 38 pg/mL,
and MCD-I/R + NAC group: 314 ± 75 pg/mL).
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Figure 4. Concentrations of the pro-inflammatory cytokines in the liver of normal mice and of
animals submitted to I/R in the MCD diet treated or not with N-acetylcysteine. The figure shows
(A) cytokine IL-1β and (B) cytokine TGF-β1 (* p < 0.05, ** p < 0.01, and *** p < 0.001; N = 5–6; Bonferroni
one-way ANOVA).
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2.5. Histology

Compared to the control group, the experimental groups showed the presence of fat vesicles and
inflammatory foci, and differences in the morphological structures of hepatocytes (Table 1). The normal
architecture of hepatic parenchyma was found in the control group (Figure 5A). The MCD group
showed panacinar macrovesicular hepatic steatosis, with level 3 lobular inflammation (Figure 5B).
The MCD-I/R group (Figure 5C), in addition to the characteristics mentioned above, presented level 1
hepatocyte ballooning (Figure 5D). In the MCD-I/R+NAC group, most of the mice presented level 3
periportal macrovesicular hepatic steatosis, and there was also a difference in the extent of the involved
parenchyma but not in the degree of steatosis between MCD-I/R+NAC group mice and that of the
MCD-I/R group mice. In addition, fewer inflammatory foci in hepatic tissue were observed in the
MCD-I/R+NAC group compared to that of the MCD-I/R group, with only level 2 lobular inflammation
and level 1 hepatocyte ballooning (Figure 5E).

Table 1. Liver histological aspects of normal mice and of animals submitted to I/R in the MCD
diet treated or not with N-acetylcysteine (NAC). NAFLD: nonalcoholic fatty liver disease; NASH:
nonalcoholic steatohepatitis.

Histologic Feature
of NAFLD Category

% Responses in the Groups (N = 4–6, per Group)

Control MCD MCD-I/R MCD-I/R+NAC

Steatosis Grade

<5% 25%
5–33% 50%

>33–66% 25% 20% 25%
>66% 80% 100% 75%

Location
Periportal (zone 1) 100% 75%

Panacinar 100% 100% 25%

Microvesicular steatosis Present 100% 100% 100% 100%

Macrovesicular steatosis Present 0% 100% 100% 100%

Lobular inflammation

No foci 25%
<2 foci 25%
2–4 foci 50% 100%
>4 foci 100% 100%

Ballooning degeneration None 100% 80% 66% 75%
Few 0% 20% 34% 25%

NASH Present 0% 100% 100% 100%
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Figure 5. Histological changes in the liver of normal mice and of animals submitted to I/R in the
MCD diet treated or not with N-acetylcysteine. This figure shows the (A) control group, (B) MCD
group, (C,D) MCD-I/R group, and (E) MCD-I/R+NAC group. The black arrows show the presence of
macrovesicular steatosis and the yellow arrows indicate microvesicular steatosis. The areas circled in
yellow indicate the presence of inflammatory infiltration, and the areas circled in black show hepatocyte
ballooning. Hepatic tissue was stained with hematoxylin and eosin (HE). CV = central vein; BD = bile
duct; HA = hepatic artery; PV = portal vein. Magnification: 20× (A) and 40× (B–E).

2.6. Apoptosis

Steatohepatitis and I/R resulted in apoptosis in hepatic tissue, although histopathological
evaluation of the liver did not demonstrate the presence of necrosis. The MCD groups (Figure 6A,C–E)
had more apoptotic cells than the control group (Figure 6B), and more apoptotic cells were observed in
the MCD-I/R group than in the MCD and MCD-I/R+NAC groups (Figure 6C,D). NAC administration
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promoted a reduction in the number of apoptotic cells in the MCD-I/R+NAC group (Figure 6E)
compared to that of the MCD and MCD-I/R groups (Figure 6C,D).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 20 
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Figure 6. Apoptosis in mouse livers with steatohepatitis submitted to I/R and the effect of
N-acetylcysteine on hepatic tissue. In (A), the results of statistical comparisons among the experimental
groups are presented, where * p < 0.05, ** p < 0.01, and *** p < 0.001. The photomicrographs
(magnification of 40×). (B) Control group. (C) MCD group. (D) MCD-I/R group. (E) MCD-I/R+NAC
group. The red arrows indicate apoptotic cells detected by the TUNEL technique, the black arrows
indicate the presence of macrovesicular steatosis, and the yellow arrows indicate microvesicular
steatosis. CV = central vein.

Summarizing the results found in this study, it was possible to observe that NAC showed a
protective effect by increasing glutathione reductase and decreasing lipid peroxidation, the release of
RNS, the number of apoptotic cells, tissue inflammation, and cytokines IL-1β and TGF-β1 (Figure 7).
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Figure 7. This is a schematic representation of all of the effects of N-acetylcysteine (NAC) in mice livers
with MCD diet-induced steatohepatitis submitted to I/R injury. NAC reduced lipid peroxidation, RSN,
IL-1β, TGF-β1, inflammatory foci, and apoptosis and increased glutathione reductase.

3. Discussion

In our study, using a steatohepatitis model in mice submitted to hepatic I/R, NAC was able to
alleviate oxidative stress by reducing lipid peroxidation and nitrite and by increasing glutathione
reductase. In addition, NAC promoted a decrease in the number of apoptotic cells and in inflammation,
according to the assessment of the inflammatory foci and the expression of the cytokines IL-1β
and TGF-β1.

NAFLD is a very common disease in the world, showing a median estimated prevalence of 20%
worldwide, especially in countries where sedentary behavior and high-calorie diets are usual. NAFLD
is considered the hepatic manifestation of metabolic syndrome, being associated with increased obesity,
dyslipidemia, and insulin resistance [31,32]. These conditions can aggravate situations that require
surgery, either elective or emergency surgery. Therefore, the present study was designed to evaluate
the potential of an exogenous antioxidant, NAC, to reduce the deleterious effects of oxidative stress,
inflammation, and cell death associated with NAFLD and I/R, thus improving patient recovery.

In the current work, histopathological analysis of the liver with steatohepatitis submitted to
hepatic I/R showed that NAC exerted beneficial effects on inflammation, since it reduced the presence
of inflammatory foci. Previous studies corroborate this finding; however, the action of NAC in those
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studies was analyzed either in animals with NASH or liver I/R injury, but not in the two associated
conditions [29].

Measuring serum AST and ALT concentrations is one of the most common ways to test for the
presence of liver disease [33]. In our study, I/R injury associated with steatohepatitis promoted an
augmentation in AST levels that was attenuated by NAC. With regard to ALT, significant increases
in the serum level of this transaminase was observed only in mice with steatohepatitis compared to
those of mice that did not suffer hepatic I/R injury. Wang et al. observed reduction in AST and ALT
levels after administration of NAC in livers submitted to I/R [34]. In a model of NAFLD induced by
MCD diet, the authors observed reduced levels of ALT after treatment with NAC in combination with
resveratrol [35]. Nasiri et al. observed such reductions in ALT levels during liver regeneration in mice
submitted to I/R [36]. In this study, the ALT levels increased within three hours of reperfusion and
decreased to less than half within 24 h. After four days, ALT had returned to control levels, showing
that the liver can regenerate rapidly over time. In our model, I/R injury associated with steatohepatitis
decreased ALT levels drastically compared to the steatohepatitis group, and NAC was not able to
show a significant improvement. Maybe hepatic regeneration capacity was compromised by the
steatohepatitis, which implies inflammation and cell death.

NAFLD is a multifactorial disease with a complex pathogenesis. However, it is possible to
highlight the accumulation of lipids in the hepatocytes associated with oxidative stress induced by
I/R injury. This activates the cells of the immune system, inducing inflammation in the hepatic tissue
through the production of inflammatory mediators, such as cytokines [37].

In our results, high concentrations of TBARS and nitrite were observed in the liver of animals
that developed steatohepatitis and underwent I/R. However, administration of NAC promoted a
marked reduction in TBARS and nitrite levels, showing the beneficial antioxidant effect of NAC in
this experimental model with two concurrent injuries. Sun et al. showed that NAC alleviated hepatic
injury caused by oxidative stress of the endoplasmic reticulum after I/R by reducing the concentrations
of TBARS and ROS [38]. Hsieh et al., in turn, stated that NAC reduced TBARS levels and NO activity
in livers submitted to I/R [39]. Baumgardner et al. observed the effect of NAC on the levels of TBARS
in rats that developed NAFLD through total enteral nutrition with high fat levels [30]. In these studies,
the reduction in oxidative stress promoted by NAC was verified in injury related to I/R or NAFLD.
Fusai et al. observed that NAC improved damage in the hepatic tissue of rabbits submitted to warm
liver I/R by reducing the high levels of ROS and RNS [40]. Nakano et al., in turn, showed the role of
NAC in preventing I/R injury in the steatotic liver of rats by increasing the concentration of hepatic
glutathione [41]. These studies corroborate our results regarding the reduction of ROS and RSN.

The use of NAC as an external antioxidant agent has already been demonstrated in other
studies [34,42], in addition to being a substrate for cysteine and a precursor molecule of GSH.
Demir and Inal-Erden demonstrated that NAC might be useful to ameliorate I/R injury in hepatic tissue
by increasing the activities of the reduced glutathione-related enzymes [43]. Glutathione peroxidase
is an enzyme that protect from oxidative stress, however, its level was reduced in the mice with
steatohepatitis submitted to I/R and treated with NAC. This reduction could be explained by the fact that
the NAC had enough time during the reperfusion (24 h) to reduce the free radicals, hence diminishing
the gutathione peroxidase (GPx) synthesis. Yet, the increase in glutathione reductase (GR) activity in
the treated group with NAC, when compared to that of the MCD-I/R group, indicates that there is an
increase in the conversion to GSH, a good sign to show the anti-oxidant activity of NAC.

Some studies have demonstrated that NAC influences Nrf2 decrease in cases of liver damage [44,45].
Here, we demonstrated that Nrf2 expression decreased, but not statistically, and previous studies
indicated that this transcription factor may be activated or not independently from antioxidant
effects [46,47]. Taking into account the referred studies, the NAC action on the oxidative stress and
inflammatory response in mice with steatohepatitis associated with I/R injury may occur regardless of
Nrf2 activation.



Int. J. Mol. Sci. 2020, 21, 4106 11 of 19

Treatment with NAC was capable of ameliorating MCD-I/R, most likely due to the combination
of its antioxidant [48] and anti-inflammatory [49,50] effects. This direct response appears to play a
role in reducing lipid peroxidation, even with reduction in GPx activity, which may be a consequence
of reduced Nrf2r expression. Increase in antioxidant activity has been associated with the NAFLD
experimental condition as a physiological response and, as we showed, NAC treatment exerts protective
effects [49], even considering that the ischemic-induced damage aggravated the chronical modulation
of the oxidative stress, caused by MCD diet, and energetic unbalance. Further studies will be needed
for a better comprehension of the effects of NAC on the mechanisms related to Nfr2 activity in these
two associated conditions.

In our study, the increased expression of the IL-1β and TGF-β1 cytokines in mice with
steatohepatitis associated with or without I/R injury was also attenuated by NAC. This finding
demonstrates the ability of this exogenous antioxidant to reduce inflammation under the conditions
evaluated. The expression of IFN-γ did not differ among the studied groups. Alexandropoulos et al.
showed a beneficial effect of NAC on hepatic and renal injury caused by intestinal I/R in rats,
as evidenced by reductions in the concentrations of IL-1β and other pro-inflammatory cytokines [51].
El-Lakkany et al. showed that combined use of NAC and metformin in livers with NAFLD reduces the
concentrations of TGF-β, TNF-α, and other inflammatory mediators and decreases oxidative stress [52].
The decrease of these cytokines reduces the liver damage and the progression of hepatic fibrosis, since
IL-1β is related to the amplification of the inflammatory process and contributes to the secretion of
profibrogenic cytokine TGF-β, which promotes the activation of hepatic stellate cells. This activation,
in turn, up-regulates the transcription inflammasome components and induces the collagen deposition
that triggers liver fibrosis [37]. In our study, however, NAC alone was able to reduce the concentrations
of both cytokines IL-1β and TGF-β1 in livers affected by these two associated conditions.

There is a resident population of natural killer (NK) and natural killer T (NKT) cells in livers,
which respond to damage quickly. When these cells are active, they produce IFN-γ that can enhance
neutrophil accumulation, tissue necrosis, synthesis of other pro-inflammatory cytokines, and generation
of ROS and endoplasmic reticulum stress proteins in hepatocytes [39]. Lappas et al. [53] and
Olthof et al. [54] demonstrated increased levels of IFN-γ after 72 and 60 min of hepatic ischemia
followed by 2 and 6 h of reperfusion, respectively. Ellet et al., in turn, showed elevated levels of IFN-γ
in steatotic livers submitted to total ischemia (35 min) and reperfusion (1 h) [55]. The longest or total
ischemia times and analysis of liver samples shortly after reperfusion could justify the discrepancy in
our results, in which the association of steatohepatitis with partial ischemia did not change the IFN-γ
concentration in the liver in a significant way.

Oxidative stress and the release of inflammatory mediators in the liver parenchyma lead to cell
death through necrosis or apoptosis [56–58]. In our study, there was an increase in the number
of apoptotic cells in mice with or without steatohepatitis associated with hepatic I/R damage.
However, NAC promoted a significant decrease in the number of apoptotic cells in mice with
steatohepatitis submitted or not to I/R. This result corroborates a previous study, in which Shi et al.
observed decreased apoptosis in the steatotic livers of rats treated with activated charcoal NAC
microcapsules [59]. Wang et al. demonstrated a similar response in mice affected by liver injury I/R
treated with NAC [34]. This protective effect of NAC in regard to cell death was demonstrated in our
study in mice with both the referred conditions: steatohepatitis and I/R.

In summary, NAC ameliorated oxidative stress, inflammatory responses, and apoptosis associated
with hepatic I/R injury in mice with diet-induced steatohepatitis by lowering hepatic lipid peroxidation,
reactive nitrogen species, pro-inflammatory cytokines, inflammatory cells, and number of apoptotic
cells and increasing glutathione reductase. These findings show the beneficial effects of NAC in the
presence of these two associated conditions. However, further studies will be necessary to better clarify
the mechanisms of NAC action on signaling via an endogenous antioxidant.
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4. Materials and Methods

4.1. Animals

This research project was developed with the approval of the Committee on Ethics in Animal Use
(CEUA)—FMUSP under process number 243/13.

C57BL/6J mice aged 8 weeks and weighing between 25 and 30 g were obtained from the Institutional
Center of Animal Care—FMUSP, São Paulo, SP, Brazil. The animals were housed in polypropylene
cages (40 × 30 × 25 cm) in groups of a maximum of three animals and with access to chow and water
ad libitum, and adequate sanitary conditions were maintained. Steatohepatitis was induced by feeding
an MCD diet for 30 days.

The animals were divided into four experimental groups: the control group, which was submitted
only to anesthesia and laparotomy; the MCD group, which was fed an MCD diet and submitted only
to anesthesia and laparotomy; the MCD-I/R group, which was fed an MCD diet and submitted to I/R;
and the MCD-I/R+NAC group, which was fed an MCD diet, submitted to I/R, and treated with NAC
(150 mg/kg, iv; Zambon S.p.A., Vicenza, Italy).

4.2. Surgical Procedures

The animals were treated with atropine (0.04 mg/kg, im; Ariston, São Paulo, SP, Brazil); ten minutes
later, they were anesthetized with xylazine (10 mg/kg, im; Ceva Santé Animale, Paulínia, SP, Brazil)
and cloridrate of dextrocetamine (70 mg/kg, im; Cristália, Itapira, SP, Brazil). In the MCD-I/R and
MCD-I/R+NAC groups, the animals were submitted to 30 min ischemia followed by 24 h of reperfusion.
NAC was administered to the MCD-I/R+NAC group in a single dose 15 min before ischemia. After 24 h
of reperfusion, the animals were again anesthetized for blood collection and surgical removal of
the liver.

4.3. Hepatic Enzymes

Blood was obtained by cardiac puncture and centrifuged at 956 g for 15 min at 4 ◦C, and the serum
was frozen in liquid nitrogen and kept in a −80 ◦C freezer for later analysis of ALT and AST.

4.4. Oxidative Stress

4.4.1. TBARS

For this analysis, liver tissue was homogenized with phosphate buffer (pH 7.2). An aliquot of the
tissue supernatant was used for determination of total proteins by the Bradford method. The samples
were diluted 1:10, mixed with 300 µL of Bradford reagent, and read in a spectrophotometer with
a 595 nm filter. After quantification of total proteins, TBARS were assessed. To the liver samples,
diluted in the same ratio as above, 250 µL of 17.5% trichloroacetic acid (TCA) and 250 µL of 0.6%
thiobarbituric acid (TBA) were added, and the mixtures were incubated for 15 min in a water bath
at 95 ◦C. Then, 250 µL of 70% TCA was added, and the mixtures were incubated for 20 min at 4 ◦C.
The absorbance of the final solution was then measured in a spectrophotometer with a 534 nm filter.

4.4.2. Nitrite

Liver samples were homogenized in phosphate buffer (pH 7.2). The limit of detection for this
method was 1.0 µM nitrite. Fifty microliters of each sample was placed in a 96-well plate along with
serial dilutions for a standard curve. Subsequently, 50 µL of Griess reagent, previously prepared with
equal volumes of component A (N-(1-naphthyl) ethylenediamine dihydrochloride) and component
B (sulfanilic acid), was added to each well containing a sample or a dilution for the standard curve,
and the plate was incubated for one hour at room temperature. A photometric reference sample
was prepared by mixing 50 µL of Griess reagent and 50 µL of deionized water. After incubation,
the absorbance of the final solution was then measured in a spectrophotometer with a 534 nm filter.
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4.4.3. Sample Preparation for Measurement of Antioxidant Enzymes

The samples were weighed, homogenized in phosphate buffer (50 mM; pH 7.0) in the
proportion of 1:10, centrifuged (10,000 rpm, 4 ◦C, 10 min), and the supernatant was separated
for enzymatic measurement.

Determination of SOD Activity

Superoxide dismutase (SOD) activity was determined by the formation of the XTT-formazan
product [60]. The measured reaction occurs between xanthine, xanthine oxidase, and SOD, generating
the superoxide radical anion (O2

•−). This in turn reduces the XTT reagent (Sigma; St. Louis, MO, USA)
to the XTT-formazan product, which absorbs light at 470 nm o-dianisidine (OD). SOD hijacks O2

•−

and reduces the formation of the XTT-formazan product. The result was expressed as SOD units
(USOD)/mg of protein. The SOD unit was defined as the amount of SOD capable of transforming
1 µmol/min of O2.

Determination of CAT Activity

Catalase (CAT) activity was performed after diluting the sample (1:100) in 50 mM phosphate
buffer. The method involves two reactions: (1st) H2O2 (10 nM) undergoes dismutation by tissue
catalase for 10 min at room temperature. This reaction is stopped by the addition of NaN3 (1 mM);
(2nd) the remaining H2O2 is determined by oxidation of the o-dianisidine reagent (OD; 0.167 mg/mL;
Sigma; St. Louis, MO, USA) in a reaction catalyzed by the enzyme peroxidase HRP (horse radish
peroxidase; 0.095 mg/mL; Sigma; St. Louis, MO, USA), at pH 6.0. The speed of the o-dianisidine
oxidation product was monitored by the increase in absorbance at 460 nm (Spectra max Plus 384,
Molecular Devices Inc.; Sunnyvale, CA, USA) for 10 min. In order to inactivate the catalase (reaction
blank), supernatants were incubated at 60 ◦C for 2 h. The catalase activity value was calculated from
the maximum speed per minute of each reaction and extrapolated on the H2O2 curve. The standard
H2O2 curve (8820–11.3 µM) was performed and the results were expressed in catalase units (UCAT)/mg
protein. A catalase unit was defined as the degradation of 1 µmol of H2O2 min−1 at 25 ◦C.

Determination of GPx Activity

GPx activity was determined by indirect measurement of GPx activity, through a reaction
associated with glutathione reductase (GR). Oxidized glutathione (GSSG), produced by reduction via
hydroperoxides by GPx, was recycled to generate its reduced state by GR (Sigma; St. Louis, MO, USA)
and NADPH (Sigma; St. Louis, MO, USA) [61]. The substrate used was tert-butyl hydroperoxide.
The oxidation of NADPH to NADP+ was accompanied by a decrease in absorbance at 340 nm at 37 ◦C.
The samples were analyzed in duplicate and expressed as µmol GSH/min/mg protein.

Determination of GR Activity

This detection was based on a direct measure of GR activity, which used NADPH as a cofactor in
the reduction of GSSG in GSH. The oxidative reaction from NADPH to NADP+ was measured via
absorbance decay under o-dianisidine (OD) equal to 340 nm at 37 ◦C [62]. The samples were analyzed
in duplicate and expressed as µmol NADPH/min/mg protein.

Determination of GST Activity

The GST activity was based on the generation of a complex between GSH and
1-chloro-2,4-dinitrobenzene (CDNB; Sigma; St. Louis, MO, USA), catalyzed by GST. The increase in
absorbance was directly proportional to the GST activity in the sample [63], which was measured
under o-dianisidine (OD) equal to 340 nm for 30 min at a temperature of 25 ◦C. The samples were
analyzed in duplicate and the results were expressed as µmol GSH conjugate/min/mg protein.
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Western Blotting

Samples were prepared and the liver was homogenized in lysis buffer (HEPES 10 mM; MgCl2
1.5 mM; KCl 10 mM; DTT 0.5 mM; PMSF 0.5 mM; leupeptin 2 µg/mL; antipain 2 µg/mL) following the
descriptions of [64]. After centrifugation of the homogenate (11,000 g, 20 min; 4 ◦C) the pellet was
resuspended in 300 µL of extraction buffer (20 mM HEPES; 1.5 mM MgCl2; 300 mM NaCl; 500 mM
EDTA; Glycerol 25%; 2 µg/mL leupeptin; 2 µg/mL antipain; 0.5 mM PMSF; 3 mM orthovonadate;
0.5 mM DTT), stored on ice for 30 min, and centrifuged at 20,000 g for 5 min. The supernatant containing
the nuclear extract was separated for Western blot analysis. The Western blot assay for Nrf2 was
performed according to Munhoz et al. [65].

The nuclear extract (30 µg) was applied to the 10% polyacrylamide gel (acrylamide/bisacrylamide
(5:1)). For electrophoresis, the tris buffer (25 mM Tris; 192 mM Glycine; 1% SDS) was used. The gel
was subjected to electrophoresis for 2 h at 150 V, followed by transfer to a nitrocellulose membrane
(#1620112; BioRad; Hercules, CA, USA) for 1 h 30 min at 35 V. The membranes had non-specific
sites blocked with 3% albumin (Santa Cruz Biotechnology; Santa Cruz, CA, USA) and then were
incubated with the primary anti-Nrf2 antibody (1: 1000; MAB3925; R&D Systems; Minneapolis,
MN, USA) overnight at 18 ◦C. After the incubation period, the membranes were incubated with
secondary antibody conjugated to horseradish peroxidase (HRP; 1: 3000; #1705047; BioRad; Hercules,
CA, USA) for 2 h at room temperature, and the signal was obtained with Luminata Forte Western
HRP (Merck Millipore; Darmstadt, Hessen, Germany) using the ChemiDoc system (Bio-Rad; Hercules,
CA, USA). The relative density of the bands was normalized to the values of β-Actin (1:3000; 8H10D10;
Cell Signaling Technology, Danvers, Massachusetts, USA).

4.5. Hepatic Cytokines

For evaluation of cytokines in hepatic tissue, the samples were homogenized in PHEM buffer
(pH 7.2) and measured by the ELISA method. Plates (96-well) were sensitized with specific capture
antibodies for each cytokine (IL-1β, TGF-β, and IFN-γ), washed with phosphate-buffered saline (PBS)
and 0.05% Tween 20, and then blocked with PBS and 10% fetal bovine serum (FBS).

The plates were incubated with the homogenate supernatants for one hour at room temperature
and then incubated with a biotinylated detection antibody and a streptavidin-peroxidase conjugate.
Finally, the plates were developed with tetramethylbenzidine for 15 to 30 min at room temperature
with protection from light. The reaction was interrupted with a 2 N sulfuric acid solution, and the
absorbance was read in a spectrophotometer with a 450 nm filter.

4.6. Histology

Left lateral hepatic lobe samples were fixed in 10% formol-saline, embedded in paraffin,
and sectioned at a thickness of 4 µm. The sections were stained with hematoxylin and eosin
(HE) and evaluated by a blinded examiner, according to the histological parameters described by
Kleiner et al. (2005) [66]. Briefly, this score is defined as a sum of the scores for steatosis (0–3), lobular
inflammation (0–3), and ballooning (0–2); thus, ranging from 0 to 8.

4.7. Apoptosis

The presence of apoptotic cells was investigated by terminal deoxynucleotidyl transferase (TdT)
dUTP nick-end labeling (TUNEL) assay in 4 µm thick histological sections. An In Situ Cell Death
Detection Kit, POD (Roche Applied Science, Penzberg, Upper Bavaria, Germany) was used. The sections
were dewaxed in xylol and immersed in absolute alcohol and decreasing concentrations of alcohol
(95%, 90%, 80%, 70%, and 50%). Then, the sections were washed in PBS (pH 7.2), incubated in k protein
solution (20 µg/mL), washed in distilled water, and incubated in 3% hydrogen peroxide (H2O2) in
neat methanol v/v. Then, the sections were blocked with 1% bovine serum albumin (BSA) and 20%
FBS in 0.1 M Tris buffer (pH 7.5). The sections were then permeabilized with 0.2% Triton X-100 in
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sodium citrate buffer (pH 6.0), incubated in labeling solution (from the POD kit), washed with PBS,
and incubated with converter solution (from the POD kit). Finally, the sections were visualized with a
DAB/nickel solution, and the results were analyzed by an evaluator who was unaware of the group to
which each section belonged.

4.8. Statistics

The levels of AST, ALT, TBARS, IL-1β, IFN-γ, SOD, CAT, GPx, GR, and GST are expressed as the
mean ± standard deviation. The levels of TGF-β and nitrite and the numbers of apoptotic cells are
expressed as the median (interquartile range). For statistical analysis of the results, one-way ANOVA
and the Bonferroni and Tukey post-hoc tests or ANOVA for nonparametric data (Kruskal–Wallis test)
and the Dunn’s post hoc test were applied. GraphPad Prism 5 software was used for statistical analysis.
In all tests, the significance level was set at 5% (p < 0.05).
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ALT Alanine aminotransferase
ANOVA Analysis of variance
ARE Antioxidant response element
AST Aspartate aminotransferase
BSA Bovine serum albumin
CAT Catalase
CEUA Committee on ethics in animal use
DAB Diaminobenzidine
ELISA Enzyme-linked immunosorbent assay
FBS Fetal bovine serum
FMUSP Faculdade de Medicina da Universidade de São Paulo
GHS Reduced glutathione
GPx Glutathione peroxidase
GR Glutathione reductase
GST Glutathione S-transferase
HE Hematoxylin and eosin
HFD High fat diet
HSC Hepatic stellate cells
ICHC-FMUSP Instituto Central do Hospital das Clínicas-FMUSP
IFN-γ Interferon gamma
IL-1β Interleukin 1 beta
I/R Ischemia/reperfusion
Keap1 Kelch-like ECH-associated protein 1
MCD methionine- and choline-deficient
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MCD-I/R+NAC methionine- and choline-deficient with ischemia/reperfusion plus N-acetylcysteine
MCD-I/R methionine- and choline-deficient with ischemia/reperfusion
NAC N-acetylcysteine
MDA Malondialdehyde
NAFLD Nonalcoholic fatty liver disease
NASH Nonalcoholic steatohepatitis
NF-κB Nuclear factor κ-light-chain enhancer activated B cells
NK Natural killer
Nrf2 Nuclear factor erythroid-2-related factor 2
PBS Phosphate-buffered saline
RNS Reactive nitrogen substances
ROS Reactive oxygen substances
SOD Superoxide dismutase
TBA Thiobarbituric acid
TBARS Thiobarbituric acid reactive substances
TCA Trichloroacetic acid
TGF-β1 Transforming growth factor beta 1
TNF-α Tumor necrosis factor alpha
TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling
USP Universidade de São Paulo

References

1. Nassir, F.; Rector, R.S.; Hammoud, G.M.; Ibdah, J.A. Pathogenesis and Prevention of Hepatic Steatosis.
Gastroenterol. Hepatol. 2015, 11, 167–175.

2. Pham, T.; Dick, T.B.; Charlton, M.R. Nonalcoholic Fatty Liver Disease and Liver Transplantation. Clin. Liver Dis.
2016, 20, 403–417. [CrossRef] [PubMed]

3. Vernon, G.; Baranova, A.; Younossi, Z.M. Systematic review: The epidemiology and natural history of
non-alcoholic fatty liver disease and non-alcoholic steato-hepatitis in adults. Aliment. Pharm. Ther. 2011,
34, 274–285. [CrossRef] [PubMed]

4. Sherif, Z.A.; Saeed, A.; Ghavimi, S.; Nouraie, S.M.; Laiyemo, A.O.; Brim, H.; Ash-ktorab, H. Global
epidemiology of nonalcoholic fatty liver disease and perspectives on US minority populations. Dig. Dis. Sci.
2016, 61, 1214–1225. [CrossRef]

5. Younossi, Z.M.; Koenig, A.B.; Abdellatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of
non-alcoholic fatty liver disease a-analytic assessment of prevalence, incidence and outcomes. Hepatology
2015, 64, 73–84. [CrossRef]

6. Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J.
The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American
Association for the Study of Liver Diseases, American College of Gastroenterology, and the American
Gastroenterological Association. Hepatology 2012, 55, 2005–2023. [CrossRef]

7. Lefere, S.; Van Steenkiste, C.; Verhelst, X.; Van Vlierberghe, H.; Devisscher, L.; Geerts, A. Hypoxia-regulated
mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 2016,
73, 3419–3431. [CrossRef]

8. Ramalho, F.S.; Fernandez-Monteiro, I.; Rosello-Catafau, J.; Peralta, C. Hepatic mi-crocirculatory failure.
Acta Cir. Bras. 2006, 21, 48–53. [CrossRef]

9. DuBray, B.J.; Conzen, K.D.; Upadhya, G.A.; Gunter, K.L.; Jia, J.; Knolhoff, B.L.; Monahakumar, T.;
Chapman, W.C.; Anderson, C.D. BH3-only proteins contribute to steatotic liver ischemia and reperfusion
injury. J. Surg. Res. 2015, 194, 653–658. [CrossRef]

10. Tashiro, H.; Kuroda, S.; Mikuriya, Y.; Ohdan, H. Ischemia–reperfusion injury in patients with fatty liver and
the clinical impact of steatotic liver on hepatic surgery. Surg. Today 2013, 44, 1611–1625. [CrossRef] [PubMed]

11. McCormack, L.; Petrowsky, H.; Jochum, W.; Furrer, K.; Clavien, P.-A. Hepatic Steatosis Is a Risk Factor for
Postoperative Complications After Major Hepatectomy. Ann. Surg. 2007, 245, 923–930. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.cld.2015.10.014
http://www.ncbi.nlm.nih.gov/pubmed/27063277
http://dx.doi.org/10.1111/j.1365-2036.2011.04724.x
http://www.ncbi.nlm.nih.gov/pubmed/21623852
http://dx.doi.org/10.1007/s10620-016-4143-0
http://dx.doi.org/10.1002/hep.28431
http://dx.doi.org/10.1002/hep.25762
http://dx.doi.org/10.1007/s00018-016-2222-1
http://dx.doi.org/10.1590/S0102-86502006000700012
http://dx.doi.org/10.1016/j.jss.2014.10.024
http://dx.doi.org/10.1007/s00595-013-0736-9
http://www.ncbi.nlm.nih.gov/pubmed/24078000
http://dx.doi.org/10.1097/01.sla.0000251747.80025.b7
http://www.ncbi.nlm.nih.gov/pubmed/17522518


Int. J. Mol. Sci. 2020, 21, 4106 17 of 19

12. Reddy, S.K.; Marsh, J.W.; Varley, P.R.; Mock, B.K.; Chopra, K.B.; Geller, D.A.; Tsung, A. Underlying
steatohepatitis, but not simple hepatic steatosis, increases morbidity after liver resection: A case-control
study. Hepatology 2012, 56, 2221–2230. [CrossRef] [PubMed]

13. Trevisani, F.; Colantoni, A.; Caraceni, P.; Van Thiel, D.H. The use of donor fatty liver for liver transplantation:
A challenge or a quagmire? J. Hepatol. 1996, 24, 114–121. [CrossRef]

14. Marsman, W.A.; Wiesner, R.H.; Rodriguez, I.; Batts, K.P.; Porayko, M.K.; Hay, J.E.; Gores, G.J.; Krom, R.A.
Use of fatty donor liver is associated with diminished early patient and graft survival. Transplantation 1996,
62, 1246–1251. [CrossRef]

15. Lee, L.-Y.; Harberg, C.; Matkowskyj, K.A.; Cook, S.; Roenneburg, D.; Werner, S.; Johnson, D.A.; Johnson, J.A.;
Foley, D.P. Cell-specific over-activation of Nrf2-mediated gene expression in myeloid cells decreases hepatic
ischemia reperfusion injury. Liver Transpl. 2016, 22, 1115–1128. [CrossRef]

16. Jiménez-Castro, M.B.; Cornide-Petronio, M.E.; Gracia-Sancho, J.; Peralta, C. Inflammasome-mediated
inflammation in liver ischemia-reperfusion injury. Cells 2019, 8, 1131. [CrossRef]

17. Cohen-Naftaly, M.; Friedman, S.L. Currentstatus of novel antifibrotic therapies in patients with chronic liver
disease. Ther. Adv. Gastroenterol. 2011, 4, 391–417. [CrossRef]

18. Jiang, Y.; Tang, J.J.; Wu, B.Q.; Yuan, B.; Qu, Z. The protective effects of different-time-ischemic preconditioning
on the reperfusion injury in fatty livers in rats. PLoS ONE 2013, 8, e58086. [CrossRef]

19. Wu, C.-T.; Deng, J.-S.; Huang, W.-C.; Shieh, P.-C.; Chung, M.-I.; Huang, G.-J. Salvianolic acid C against
acetaminophen-induced acute liver injury by attenuating inflammation, oxidative stress, and apoptosis
through inhibition of the Keap1/Nrf2/HO-1 signaling. Oxidative Med. Cell Longev. 2019, 2019, 9056845.
[CrossRef]

20. Vargas-Mendoza, N.; Morales-González, A.; Madrigal-Santillán, E.O.; Madrigal-Bujaidar, E.;
Álvarez-González, I.; García-Melo, L.F.; Anguiano-Robledo, L.; Fregoso-Aguilar, T.; Morales-Gonzalez, J.A.
Antioxidant and adaptative response mediated by Nrf2 during physical exercise. Antioxidants 2019, 8, 196.
[CrossRef]

21. Winbladh, A.; Björnsson, B.; Trulsson, L.; Bojmar, L.; Sundqvist, T.; Gullstrand, P.; Sandström, P.
N-acetylcysteine improves glycogenesis after segmental liver ischemia and reperfusion injury in pigs.
Scand. J. Gastroenterol. 2012, 47, 225–236. [CrossRef]

22. Seguro, A.C.; De Figueiredo, L.F.P.; Shimizu, M.H.M. N-acetylcysteine (NAC) Protects Against Acute Kidney
Injury (AKI) Following Prolonged Pneumoperitoneum in the Rat. J. Surg. Res. 2012, 175, 312–315. [CrossRef]

23. Saad, K.; Saad, P.F.; Filho, L.D.; De Brito, J.M.; Koike, M.; Zanoni, F.L.; Dolhnikoff, M.; Montero, E.F.D.S.
Pulmonary impact of N-acetylcysteine in a controlled hemorrhagic shock model in rats. J. Surg. Res. 2013,
182, 108–115. [CrossRef]

24. Saad, P.F.; Saad, K.; Filho, L.D.D.O.; Ferreira, S.G.; Koike, M.; Montero, E.F.D.S. Effect of N-acetylcysteine on
pulmonary cell death in a controlled hemorrhagic shock model in rats. Acta Cir. Bras. 2012, 27, 561–565.
[CrossRef] [PubMed]

25. Portella, A.O.V.; Montero, E.F.S.; Figueiredo, L.F.P.; Bueno, A.S.; Thurow, A.A.; Rodrigues, F.G. Effects of
n-acetylcysteine in hepatic ischemia-reperfusion injury during hemorrhagic shock. Transplant. Proc. 2004,
36, 846–848. [CrossRef] [PubMed]

26. Lee, E.J.; Silva, S.M.; Simões, M.D.J.; Montero, E.F. Effect of n-acetylcysteine in liver ischemia-reperfusion
injury after 30% hepatectomy in mice. Acta. Cir. Bras. 2012, 27, 346–349. [CrossRef]

27. Silva, S.M.; Carbonel, A.A.F.; Taha, M.O.; Simões, M.J.; Montero, E.F.S. Proliferative activity in
ischemia/reperfusion injury in hepatectomized mice: Effect of N-acetylcysteine. Transpl. Proc. 2012, 44, 2321–2325.
[CrossRef] [PubMed]

28. Galhardo, M.A.; Quireze Júnior, C.; Navarro, P.G.R.; Morello, R.J.; Simões, M.J.; Montero, E.F.S. Liver and
lung late alterations following hepatic reperfusion associated to ischemic preconditioning or N-acetylcysteine.
Microsurgery 2007, 27, 295–299. [CrossRef]

29. Samuhasaneeto, S.; Thong-Ngam, D.; Kulaputaba, O.; Patumraj, S.; Klaikeaw, N. Effects of N-acetylcysteine
on oxidative stress in rats with non-alcoholic steatohepatitis. J. Med. Assoc. Thai. 2007, 90, 788–797.

30. Baumgardner, J.N.; Shankar, K.; Hennings, L.; Albano, E.; Badger, T.M.; Ronis, M.J. N-acetylcysteine
attenuates progression of liver pathology in a rat model of non-alcoholic steatohepatitis. J. Nutr. 2008,
138, 1872–1879. [CrossRef]

http://dx.doi.org/10.1002/hep.25935
http://www.ncbi.nlm.nih.gov/pubmed/22767263
http://dx.doi.org/10.1016/S0168-8278(96)80195-4
http://dx.doi.org/10.1097/00007890-199611150-00011
http://dx.doi.org/10.1002/lt.24473
http://dx.doi.org/10.3390/cells8101131
http://dx.doi.org/10.1177/1756283X11413002
http://dx.doi.org/10.1371/journal.pone.0058086
http://dx.doi.org/10.1155/2019/9056845
http://dx.doi.org/10.3390/antiox8060196
http://dx.doi.org/10.3109/00365521.2011.643480
http://dx.doi.org/10.1016/j.jss.2011.05.052
http://dx.doi.org/10.1016/j.jss.2012.07.037
http://dx.doi.org/10.1590/S0102-86502012000800008
http://www.ncbi.nlm.nih.gov/pubmed/22850708
http://dx.doi.org/10.1016/j.transproceed.2004.03.047
http://www.ncbi.nlm.nih.gov/pubmed/15194290
http://dx.doi.org/10.1590/S0102-86502012000400011
http://dx.doi.org/10.1016/j.transproceed.2012.07.009
http://www.ncbi.nlm.nih.gov/pubmed/23026584
http://dx.doi.org/10.1002/micr.20359
http://dx.doi.org/10.1093/jn/138.10.1872


Int. J. Mol. Sci. 2020, 21, 4106 18 of 19

31. Smith, B.W.; Adams, L.A. Non-alcoholic fatty liver disease. Crit. Rev. Clin. Lab. Sci. 2011, 48, 97–113.
[CrossRef]

32. Zhou, Y.; Wei, F.; Fan, Y. High serum uric acid and risk of nonalcoholic fatty liver disease: A systematic
review and meta-analysis. Clin. Biochem. 2016, 49, 636–642. [CrossRef]

33. Amancher, D.E.; Schomaker, S.J.; Aubrecht, J. Development of blood biomarkers for drug-induced liver injury:
An evaluation of their potential for risk assessment and diagnostics. Mol. Diagn. Ther. 2013, 17, 343–354.
[CrossRef]

34. Wang, C.; Chen, K.; Xia, Y.; Dai, W.; Wang, F.; Shen, M.; Cheng, P.; Wang, J.; Lu, J.; Zhang, Y.; et al.
N-acetylcysteine attenuates ischemia-reperfusion-induced apoptosis and autophagy in mouse liver via
regulation of the ROS/JNK/Bcl-2 pathway. PLoS ONE 2014, 9, e108855. [CrossRef]

35. Ali, M.H.; Messiha, B.A.; Abdel-Latif, H.A. Protective effect of ursodeoxycholic acid, resveratrol, and
N-acetylcysteine on nonalcoholic fatty liver disease in rats. Pharm. Biol. 2015, 54, 1198–1208. [CrossRef]

36. Nasiri, M.; Karimi, M.H.; Azarpira, N.; Saadat, I. Gene Expression profile of Toll-like
receptor/adaptor/interferon regulatory factor/cytokine axis during liver regeneration after partial
ischemia-reperfusion injury. Exp. Clin. Transplant. 2020, 18, 215–223. [CrossRef]

37. Del Campo, J.A.; Gallego, P.; Grande, L. Role of inflammatory response in liver diseases: Therapeutic
strategies. World J. Hepatol. 2018, 10, 1–7. [CrossRef]

38. Sun, Y.; Pu, L.Y.; Wang, X.H.; Zhang, F.; Rao, J.H. N-acetylcysteine attenuates
re-active-oxygen-species-mediated endoplasmic reticulum stress during liver ischemia-reperfusion
injury. World J. Gastroenterol. 2014, 20, 15289–15298. [CrossRef]

39. Hsieh, C.C.; Hsieh, S.C.; Chiu, J.H.; Wu, Y.L. Protective Effects of N-acetylcysteine and a Prostaglandin E1
Analog, Alprostadil, Against Hepatic Ischemia: Reperfusion Injury in Rats. J. Tradit. Complement. Med. 2014,
4, 64–71. [CrossRef]

40. Fusai, G.; Glantzouniss, G.K.; Hafez, T.; Yang, W.; Quaglia, A.; Sheth, H.; Kanoria, S.; Parkes, R.; Seifalian, A.;
Davidson, B.R. N-acetycysteine ameliorates the late phase of liver ischaemia/reperfusion injury in rabbit
with hepatic steatosis. Clin. Sci. 2005, 109, 465–473. [CrossRef]

41. Nakano, H.; Nagasaki, H.; Yoshida, K.; Kigawa, G.; Fujiwara, Y.; Kitamura, N.; Takeuchi, S.; Sasaki, J.;
Shimura, H.; Yamaguchi, M.; et al. N-acetylcysteine and anti-ICAM-1 monoclonal antibody reduce
ischemia-reperfusion injury of the steatotic rat liver. Transplant. Proc. 1998, 30, 3763. [CrossRef]

42. Rushworth, G.F.; Megson, I.L. Existing and potential therapeutic uses for N-acetylcysteine: The need
for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther. 2014, 141, 150–159.
[CrossRef]

43. Demir, S.; Inal-Erden, M. Pentoxifylline and N-acetylcysteine in hepatic ischemia/reperfusion injury.
Clin. Chim. Acta 1998, 275, 127–135. [CrossRef]

44. Georgious-Siafis, S.K.; Samiotaki, M.K.; Demopoulos, V.J.; Panayotou, G.; Tsiftsoglou, A.S. Formation of
novel N-acetylcysteine-hemi adducts abrogates hemi-induced cytotoxicity ans suppresses the Nrf2-driven
stress response in human pro-erythroid K562 cells. Eur. J. Pharmacol. 2020, 25, 173077. [CrossRef]

45. Romanque, P.; Cornejo, P.; Valdés, S.; Videla, L.A. Thyroid hormone administration induces rat liver Nrf2
activation: Suppression by N-acetylcysteine pretreatment. Thyroid 2011, 21, 655–662. [CrossRef]

46. Li, J.; Sapper, T.N.; Mah, E.; Rudraiah, S.; Schill, K.E.; Chitchumroonchokchai, C.; Moller, M.V.; McDonald, J.D.;
Rohrer, P.R.; Manautou, J.E.; et al. Green tea extract provides extensive Nrf2-independent protection against
lipid accumulation and NFB proinflammatory responses during nonalcoholic steatohepatitis in mice fed a
high-fat diet. Mol. Nutr. Food Res. 2016, 60, 858–870. [CrossRef]

47. Chambel, S.S.; Santos-Gonçalves, A.; Duarte, T.L. The dual role of Nrf2 in nonalcoholic fatty liver disease:
Regulation of antioxidant defenses and hepatic lipid metabolism. Biomed. Res. Int. 2015, 2015, 597134.
[CrossRef]

48. Charron, M.J.; Williams, L.; Seki, Y.; Du, X.Q.; Chaurasia, B.; Saghatelian, A.; Summers, S.A.; Katz, E.B.;
Vuguin, P.M.; Reznik, S.E. Antioxidant Effects of N-Acetylcysteine Prevent Programmed Metabolic Disease
in Mice. Diabetes. 2020, db191129. [CrossRef]

49. Fan, H.; Le, J.W.; Zhu, J.H. Protective Effect of N-Acetylcysteine Pretreatment on Acute Kidney Injury in
Septic Rats. J. Surg. Res. 2020, 254, 125–134. [CrossRef]

http://dx.doi.org/10.3109/10408363.2011.596521
http://dx.doi.org/10.1016/j.clinbiochem.2015.12.010
http://dx.doi.org/10.1007/s40291-013-0049-0
http://dx.doi.org/10.1371/journal.pone.0108855
http://dx.doi.org/10.3109/13880209.2015.1060247
http://dx.doi.org/10.6002/ect.2017.0120
http://dx.doi.org/10.4254/wjh.v10.i1.1
http://dx.doi.org/10.3748/wjg.v20.i41.15289
http://dx.doi.org/10.4103/2225-4110.124351
http://dx.doi.org/10.1042/CS20050081
http://dx.doi.org/10.1016/S0041-1345(98)01225-1
http://dx.doi.org/10.1016/j.pharmthera.2013.09.006
http://dx.doi.org/10.1016/S0009-8981(98)00078-3
http://dx.doi.org/10.1016/j.ejphar.2020.173077
http://dx.doi.org/10.1089/thy.2010.0322
http://dx.doi.org/10.1002/mnfr.201500814
http://dx.doi.org/10.1155/2015/597134
http://dx.doi.org/10.2337/db19-1129
http://dx.doi.org/10.1016/j.jss.2020.04.017


Int. J. Mol. Sci. 2020, 21, 4106 19 of 19

50. Kretzmann, N.A.; Filippi-Chiela, E.; Matte, U.; Marroni, N.P.; Marroni, C.A. N-acetylcysteine improves
antitumoural response of Interferon alpha by NF-kB downregulation in liver cancer cells. Comp. Hepatol.
2012, 11, 4. [CrossRef]

51. Alexandropoulos, D.; Bazigos, G.V.; Doulamis, I.P.; Tzani, A.; Konstantopoulos, P.; Tragotsalou, N.;
Kondi-Pafiti, A.; Kotsis, T.; Arkadopoulos, N.; Smyrniotis, V.; et al. Protective effects of N -acetylcystein
and atorvastatin against renal and hepatic injury in a rat model of intestinal ischemia-reperfusion.
Biomed. Pharmacother. 2017, 89, 673–680. [CrossRef] [PubMed]

52. El-Lakkany, N.M.; Din, S.H.S.; Sabra, A.-N.A.-L.; Hammam, O.A.; Ebeid, F.A.-L. Co-administration of
metformin and N-acetylcysteine with dietary control improves the biochemical and histological manifestations
in rats with non-alcoholic fatty liver. Res. Pharm. Sci. 2016, 11, 374–382. [CrossRef] [PubMed]

53. Lappas, C.M.; Day, Y.-J.; Marshall, M.A.; Engelhard, V.H.; Linden, J. Adenosine A2A receptor activation
reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J. Cell Boil.
2006, 175, 2639–2648. [CrossRef]

54. Olthof, P.B.; Van Golen, R.F.; Meijer, B.; Van Beek, A.A.; Bennink, R.J.; Verheij, J.; Van Guik, T.M.;
Heger, M. Warm ischemia time.dependent variation in liver damage, inflammation, and function in
hepatic ischemia/reperfusion injury. Biochim. Biophys. Acta 2016, 1863, 375–385. [CrossRef]

55. Ellet, J.D.; Evans, Z.P.; Atkinson, C.; Schmidt, M.G.; Schnellmann, R.G.; Chavin, K. Toll-like receptor 4 is a key
mediator of murine steatotic liver warm ischemia/reperfusion injury. Liver Transplant. 2009, 15, 1101–1109.
[CrossRef]

56. Weigand, K.; Brost, S.; Steinebrunner, N.; Büchler, M.; Schemmer, P.; Müller, M. Ischemia/Reperfusion Injury
in Liver Surgery and Transplantation: Pathophysiology. HPB Surg. 2012, 2012, 1–8. [CrossRef]

57. Chang, W.J.; Toledo-Pereyra, L.H. Toll-like receptor signaling in liver ischemia and reperfusion. J. Invest. Surg.
2012, 25, 271–277. [CrossRef]

58. Wu, M.-Y.; Yiang, G.-T.; Liao, W.-T.; Tsai, A.P.-Y.; Cheng, Y.-L.; Cheng, P.-W.; Li, C.-Y.; Yiang, G.-T. Current
Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell. Physiol. Biochem. 2018, 46, 1650–1667.
[CrossRef]

59. Shi, T.; Yang, X.; Zhou, H.; Xi, J.; Sun, J.; Ke, Y.; Zhang, J.; Shao, Y.; Jiang, X.; Pan, X.; et al. Activated carbon
N-acetylcysteine microcapsule protects against nonalcoholic fatty liver disease in young rats via activating
telomerase and inhibiting apoptosis. PLoS ONE 2018, 13, e0189856. [CrossRef]

60. Ukeda, H.; Maeda, S.; Ishii, T.; Sawamura, M. Spectrophotometric assay for superoxide dismutase based on
tetrazolium salt 3’-1-(phenylamino)-carbonyl-3, 4-tetrazolium]-bis(4-methoxy-6-nitro)benzenesulfonic acid
hydrate reduction by xanthine-xanthine oxidase. Anal. Biochem. 1997, 251, 206–209. [CrossRef]

61. Flohé, L.; Günzler, W.A. Assay of glutathione peroxidase. Methods Enzymol. 1984, 105, 114–121.
62. Carlberg, I.; Mannervik, B. Glutathione reductase. Methods Enzymol. 1985, 113, 484–490.
63. Habig, W.H.; Pabst, M.J.; Fleischener, G.; Gatmaitan, Z.; Arias, I.M.; Jakoby, W.B. The identity of

Glutthione-S-transferase B with ligandin, a major binding protein of liver. Proc. Natl. Acad Sci. USA
1974, 71, 3879–3882. [CrossRef]

64. Rong, Y.; Baudry, M. Seizure activity results in a rapid induction of nuclear factor-kappa B in adult but not
juvenile rat limbic structures. J. Neurochem. 1996, 67, 662–668. [CrossRef]

65. Munhoz, C.D.; Lepsch, L.B.; Kawamoto, E.; Malta, M.B.; Lima, L.D.S.; Avellar, M.C.W.; Sapolsky, R.M.;
Scavone, C. Chronic Unpredictable Stress Exacerbates Lipopolysaccharide-Induced Activation of Nuclear
Factor-κB in the Frontal Cortex and Hippocampus via Glucocorticoid Secretion. J. Neurosci. 2006,
26, 3813–3820. [CrossRef]

66. Kleiner, D.E.; Brunt, E.M.; Van, N.M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrel, L.D.; Liu, Y.C.;
Torbenson, M.S.; Unalp-Arida, A.; et al. Nonalcoholic Steatohepatitis Clinical Research Network. Design and
validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/1476-5926-11-4
http://dx.doi.org/10.1016/j.biopha.2017.02.086
http://www.ncbi.nlm.nih.gov/pubmed/28273631
http://dx.doi.org/10.4103/1735-5362.192487
http://www.ncbi.nlm.nih.gov/pubmed/27920819
http://dx.doi.org/10.1083/JCB1754OIA9
http://dx.doi.org/10.1016/j.bbadis.2016.10.022
http://dx.doi.org/10.1002/lt.21782
http://dx.doi.org/10.1155/2012/176723
http://dx.doi.org/10.3109/08941939.2012.687802
http://dx.doi.org/10.1159/000489241
http://dx.doi.org/10.1371/journal.pone.0189856
http://dx.doi.org/10.1006/abio.1997.2273
http://dx.doi.org/10.1073/pnas.71.10.3879
http://dx.doi.org/10.1046/j.1471-4159.1996.67020662.x
http://dx.doi.org/10.1523/JNEUROSCI.4398-05.2006
http://dx.doi.org/10.1002/hep.20701
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Hepatic Enzymes 
	Oxidative Stress 
	Antioxidant Enzyme Activities and Transcription Factor Nrf2 
	Hepatic Cytokines 
	Histology 
	Apoptosis 

	Discussion 
	Materials and Methods 
	Animals 
	Surgical Procedures 
	Hepatic Enzymes 
	Oxidative Stress 
	TBARS 
	Nitrite 
	Sample Preparation for Measurement of Antioxidant Enzymes 

	Hepatic Cytokines 
	Histology 
	Apoptosis 
	Statistics 

	References

