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Abstract

The novel pandemic A (H1N1) virus was first identified in Mexico in April 2009 and quickly spread worldwide. Like all
influenzas, the H1N1 strain-specific properties of replication, virulence, and pathogenicity are a result of the particular
genomic sequence and concerted expression of multiple genes. Thus, specific mutations may support increased virulence
and may be useful as biomarkers of potential threat to human health. We performed comparative genomic analysis of ten
strains of the 2009 pandemic A (H1N1) influenza viruses to determine whether genotypes associated with clinical
phenotypes, which ranged from mild to severe illness and up to lethal. Virus replication capacity was tested for each strain
in vitro using cultured epithelial cells, while virulence and pathogenicity were investigated in vivo using the BALB/c mouse
model. The results indicated that A/Sichuan/1/2009 strain had significantly higher replication ability and virulence than the
other strains, and five unique non-synonymous mutations were identified in important gene-encoding sequences. These
mutations led to amino acid substitutions in HA (L32I), PA (A343T), PB1 (K353R and T566A), and PB2 (T471M), and may be
critical molecular determinants for replication, virulence, and pathogenicity. Our results suggested that the replication
capacity in vitro and virulence in vivo of the 2009 pandemic A (H1N1) viruses were not associated with the clinical
phenotypes. This study offers new insights into the transmission and evolution of the 2009 pandemic A (H1N1) virus.
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Introduction

The first influenza pandemic of the 21st century was declared

with the emergence of a novel influenza A (H1N1) strain in

Mexico and the United States in April 2009 [1]. Genetic analysis

of this novel virus revealed that it is composed of six gene segments

which were derived from the triple-reassortant swine lineage and

two others from the Eurasian avian-like swine lineage [1]. Thus

far, the A (H1N1) influenza has caused a relatively mild pandemic,

with a clinical spectrum ranging from slight upper respiratory tract

irritation to severe pneumonia leading to acute respiratory distress

syndrome [2]. Sporadic cases have occurred in which infection led

to death, but those individuals most often had impaired immune

status prior to influenza exposure. It is interesting to note that the

Spanish influenza pandemic of 1918 and the Hong Kong

influenza pandemic of 1968 were both characterized by a first

wave of cases which elicited relatively mild illness, followed by a

second wave of cases of fulminant disease [3]. The viral molecular

mechanisms underlying this robust increase in disease severity

have remained elusive; however, it has been hypothesized that

pandemic viruses rely on advantageous genetic mutations to adapt

to the human host upon zoonotic transmission. As a result, the

newly evolved virus will generate a wave of more virulent cases

than the first wave. Such genetic adaptation could also occur via

gene reassortment events between co-circulating influenza A

viruses in the human population.

The virulence, pathogenicity, and host range of influenza

viruses have been intensely studied and many diverse factors have

been implicated in each. In particular, virus-specific determinants

encoded by the viral genome have been defined as principal

components of virus survival and pathogenesis; these include the

external surface glycoproteins hemagglutinin (HA) and neuramin-

idase (NA), which interact with host membrane-bound sialic acids

[4,5,6,7]. In addition, influenza encodes three polymerase

proteins, which have been characterized as important determi-

nants of strains H5N1 and H7N7and necessary for transmission of

the 1918 H1N1 virus [5,6,8,9]. The two nonstructural proteins

PB1-F2 [10,11] and NS1 [12] have also been implicated in the

virulence capacities of H5N1 and 1918 H1N1 viruses. Intriguing-

ly, genome sequence analysis of the 2009 pandemic A (H1N1)

viruses revealed a striking absence of markers associated with high

pathogenicity in avian and mammalian species, including the

multibasic HA cleavage site [13] and the lysine at position 627 in

the PB2 protein [14,15,16,17].
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To better understand the potential consequences of viral genetic

variations on infection characteristics, we investigated the genomic

polymorphisms that occurred among ten strains of the 2009

pandemic A (H1N1) viruses. Virus replication was analyzed in an

in vitro cell culture system, and virulence and pathogenicity were

tested in vivo in a mouse model. The findings from our study

provide insights into the functional contributions of viral genomic

polymorphisms in virus replication, virulence, and pathogenicity,

and implicate molecular evolution as a significant driving force

behind the 2009 pandemic A (H1N1) influenza virus.

Materials and Methods

Viruses
The main background information for all ten virus strains is listed

in Table 1. The naming conventions follow the pattern: Type/

Geographic Location/Strain Number/Year of Isolation. The A/

California/04/2009 and A/California/07/2009 are considered the

prototypic strains of the 2009 pandemic A (H1N1) influenza viruses.

The A/Sichuan/1/2009 strain was isolated from the first reported

case of 2009 pandemic A (H1N1) influenza virus infection in China;

the patient was a Chinese student who had returned from the

United States in May 2009. The patient reported that no illness

symptoms were experienced during the flight from St. Louis to

Beijing, but fever developed on the following day during the flight

from Beijing to Sichuan. The source of infection remains unknown

[18]. A/Sichuan-Wenjiang/SWL456/2009 was collected from a

deceased patient, and A/Guangdong/SWL28/2009 was collected

from a patient with severe clinical symptoms. A/California/04/

2009, A/California/07/2009, A/Sichuan/1/2009, A/Shandong/

1/2009, A/Beijing/3/2009, A/Fujian/1/2009, A/Shanghai/1/

2009, and A/Jiangsu/1/2009 viruses were all collected from

patients with mild symptoms. The passage history of these viruses

is listed in Table 1. All viruses were propagated in Madin–Darby

canine kidney (MDCK) cells. The 50% tissue culture infectious dose

(TCID50) was determined by using serial titration of viruses in

MDCK cells, and the titers were calculated according to the Reed-

Muench method [19].

Cell infection
MDCK cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) (Invitrogen) supplemented with 10% fetal

bovine serum. Viruses (102 TCID50) were added to respective

cell monolayers in 35-mm dishes (Corning). After 60 min

adsorption at 37uC, cells were washed and fed with minimum

essential medium containing tosylsulfonyl phenylalanyl chloro-

methyl ketone (TPCK)-treated trypsin (0.5 mg/ml) (Sigma) and

antibiotics (Sigma). This time point was designated as 0 hour post-

infection (h.p.i.). Viral supernatants (100 ml) were harvested at 12,

24, 36, 48, 56, 72, 96 h.p.i. and separated from cell debris by

centrifugation at 30006g for 10 min.

Mice challenge
Female 5-week-old specific pathogen-free BALB/c mice used in

this study were obtained from the Institute of Laboratory Animal

Sciences, Beijing, China. Mice were anesthetized and inoculated

intranasally with virus (n = 23 per group; 50 ml of 106 TCID50). In

each group 10 mice were chosen at random for daily monitoring

for signs of disease and mortality, up to 14 days post inoculation

(d.p.i.). Ten of the remaining mice in each group were euthanized

at 5 d.p.i. to obtain lung tissue biopsies for use in subsequent

quantification of viral nucleotide material and pathological

investigations. The final 3 mice were sacrificed at 5 d.p.i. and

lungs were collected for viral titer detection. All procedures were

approved by the Institute of Animal Use and Care Committee of

the Institute of Laboratory Animal Science, Peking Union Medical

College (approval number ILAS-PC-2010-002).

Plaque assay
The infectivity of viruses released from infected MDCK cells

into supernatants and in the homogenized lung tissues of

challenged mice were determined by plaque assay and expressed

as log10 plaque-forming units (PFU) per milliliter [20]. Briefly,

confluent MDCK cells were incubated at 37uC for 1 hour with 10-

fold serial dilutions of virus. The cells were then washed and

overlaid with minimum essential medium containing 0.3% bovine

serum albumin (BSA), 0.9% Bacto agar, and 1 mg/ml TPCK-

treated trypsin and antibiotics. Plaques were visualized by neutral

red staining and counted after 48 hours of incubation at 37uC.

Real-time PCR
Total RNA was isolated from homogenized lung tissues by using

the RNeasy Mini Kit (Qiagen), according to the manufacturer’s

instructions. RNA was resuspended in 30 ml nuclease-free water

Table 1. The main background information of the ten 2009 pandemic A (H1N1) influenza viruses investigated in this study.

Strain
Patient clinical
symptom

Collection date
(YYYY/MM/DD) Collection location

Host
(Sex, age in years) Passage#

A/California/04/2009 Mild 2009/04/01 California, USA Male, 10 E4

A/California/07/2009 Mild 2009/04/09 California, USA Male, 54 E4

A/Sichuan/1/2009 Mild 2009/05/09 Sichuan, China Male, 30 E3

A/Shandong/1/2009 Mild 2009/05/10 Shandong, China Male, 19 E4

A/Beijing/3/2009 Mild 2009/05/20 Beijing, China Male, 19 C2

A/Fujian/1/2009 Mild 2009/05/22 Fujian, China Female, 1 E2

A/Shanghai/1/2009 Mild 2009/05/23 Shanghai, China Male, 30 E2

A/Jiangsu/1/2009 Mild 2009/06/15 Jiangsu, China Male, 46 C1

A/Guangdong/SWL28/2009 Severe 2009/08/08 Guangdong, China Male, 17 C1

A/Sichuan-Wenjiang/SWL456/2009 Dead 2009/11/06 Sichuan, China Male, 53 C2

#: E, propagated in in the allantoic cavities of chicken embryonated eggs; C, propagated in MDCK cells.
doi:10.1371/journal.pone.0020698.t001
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and stored at 280uC. First-strand cDNA was synthesized from

RNA (8 ml) by random primers in a SuperScript II reverse

transcriptase (200 U) reaction mixture (20 ml) (Invitrogen). SYBR

Green real-time quantitative PCR was performed with a StepOne

PCR system (ABI) using cDNA (2 ml) and a reaction mixture

(20 ml) containing 26 SYBR Green PCR Master Mix (10 ml)

(ABI), 10 mM forward and reverse primers (1 ml each: SW-HA

F786, 59-AATAACATTAGAAGCAACTGG-39; SW-HA R920,

59-AGGCTGGTGTTTATRGCACC-39), and nuclease-free wa-

ter. The following thermal cycling conditions were used: 94uC for

3 min, followed by 35 cycles of 94uC for 30 s, 58uC for 30 s, and

72uC for 30 s.

Pathological analysis
Immediately following euthanasia, mouse lungs were removed,

inflated, and fixed with 10% neutral buffered formalin overnight

at 4uC. Subsequently, the formalin-preserved lung samples were

embedded in paraffin and sectioned. Serial 4-mm sections were

stained with Hematoxylin and Eosin (H&E) and examined for

pathological changes that corresponded to infection. Images were

obtained on an Olympus BX-50 light microscope at 406
magnification.

Receptor-binding assay
Synthetic SA-a-2,3-lactose(39SL-PAA)-Biotin, 39SL-DI-PAA-

Biotin, SA-a-2,6-N-acetyl lactosamine(69SLN-PAA)-Biotin,

69SLN-DI-PAA-Biotin were provided by The Scripps Research

Institute (La Jolla, CA, USA). The receptor binding procedure was

carried out as described elsewhere, with some modifications [21].

Briefly, 96-well flat–bottom polystyrene plates were coated with

serial dilutions of sialyglycopolymers, and 32 HAU of live virus

were added per well. Rabbit antisera against the A/California/

07/2009 strain were diluted in phosphate buffered saline

containing 1% bovine serum albumin and then added to each

well. Bound antibody was detected by sequential additions of

HRP-conjugated anti-rabbit IgG antibody and tetramethylbenzi-

dine substrate solution and reading the spectrophotometric

absorbance at 450 nm. Each sample was determined in triplicate.

DNA sequencing and analysis
All gene segments for each of the ten viruses were amplified by

high fidelity PCR (KOD-Plus DNA polymerase; Toyobo, Japan).

The PCR products were purified and sequenced (Invitrogen).

Sequences of each gene of A/Guangdong/SWL28/2009 and A/

Sichuan-Wenjiang/SWL456/2009 viruses were deposited in

GenBank. Sequences of all viruses were analyzed and aligned

using ClustalW software (version 1.83).

Statistical analysis
Statistical analysis of the viral load and titer were performed

using SPSS 11.5 software. The Duncan and least significant

differences methods were used for comparisons among multiple

groups by one-way ANOVA. The Kaplan-Meier method was used

to estimate the probability of survival of infected mice. A

probability value of 0.05 was considered as statistically significant.

Results

In vitro comparison of virus replication in cells
Analysis of virus replication kinetics in MDCK cells revealed

that all ten viruses reached their peak titers at 36 to 48 h.p.i, and

the titers of A/Sichuan/1/2009 were significantly higher (P,0.05)

than those obtained with other strains after 12 h.p.i (Fig. 1).

In vivo comparison of virulence in the mice model
To compare the virulence of the ten pandemic A (H1N1)

influenza viruses in vivo, we intranasally challenged BALB/c mice

with each virus and evaluated mortality, mean survival days, total

body weight loss, viral RNA loads and titers in lung tissues. The

percentages of mice that survived the infections are shown in

Figure 2A. Eighty percent of mice inoculated with the A/Sichuan/

1/2009 virus died by 14 d.p.i. Mice infected with the A/

California/04/2009 and A/California/07/2009 had survival

ratios of 60% and 70%, respectively. Furthermore, the A/

Fujian/1/2009, A/Shanghai/1/2009, and A/Guangdong/

SWL28/2009 viruses were associated with survival ratios ranging

from 50–70%. Challenge with A/Shandong/1/2009, A/Beijing/

3/2009, A/Jiangsu/1/2009, or A/Sichuan-Wenjiang/SWL456/

2009 was associated with 100% survival. The mean survival days

[22] of each mice group are shown in Figure 2B. The A/Sichuan/

1/2009 virus challenged mice survived only 6.8 days, and

represented the shortest survival time of all groups. Meanwhile,

challenge with A/Sichuan/1/2009 led to nearly 40% body weight

loss by 7–9 d.p.i, after which the mice began to steadily regain the

lost weight over the course of the remaining observation period.

The body weight losses of mice which were challenged with A/

California/04/2009, A/California/07/2009, A/Fujian/1/2009,

A/Shanghai/1/2009, or A/Guangdong/SWL28/2009 ranged

from 20% to 30%, whereas those inoculated with A/Beijing/3/

2009, A/Shandong/1/2009, A/Jiangsu/1/2009, or A/Sichuan-

Wenjiang/SWL456/2009 were less than 20% (Fig. 2C).

To further investigate the differences in pathogenicity of each

virus, we determined the degree of virus replication occurring in

lung tissues of challenged mice. The mean viral RNA loads (copy

numbers per mg 6 standard deviation (SD); Fig. 2D) and viral

titers (log10 PFU per mg; Fig. 2E) were determined at day 5 post-

infection, when virus shedding is known to reach its peak

according to our previous studies [23,24]. Mice inoculated with

the A/Sichuan/1/2009 virus presented with the highest RNA

copy numbers of virus in the lungs and significantly higher

(P,0.05) viral RNA load than the other nine viruses. Consistent

with the viral RNA load result, lung tissues of mice challenged

with A/Sichuan/1/2009 exhibited the highest viral titer.

In order to examine the differential pathological changes that

may take place in the lungs of mice challenged with the different

strains of virus, lung tissues were isolated day 5 post-infection. All

viruses were found to have replicated efficiently in the lung tissues.

In addition, all lung tissue samples exhibited characteristic

pathology of influenza infection, including inflammatory hyper-

aemia, hemorrhage, edema, and exudative pathological changes.

Mice lungs harboring A/Sichuan/1/2009 virus exhibited the most

robust pathophysiology, with lesions occurring in 100% of the lung

tissue sections examined. Mice inoculated with A/California/04/

2009, A/California/07/2009, A/Shanghai/1/2009, and A/Fu-

jian/1/2009 viruses exhibited pathological changes in .85% of

the lung tissue sections. Infection with A/Shandong/1/2009, A/

Beijing/3/2009, A/Jiangsu/1/2009, A/Guangdong/SWL28/

2009, and A/Sichuan-Wenjiang/SWL456/2009 viruses were

associated with lesion occurrence in 60–85% of lung tissues

(Fig. 3A&B).

Sequence alignment of A (H1N1) viral genomes
The full-length sequences of all ten viral genomes were obtained

by high fidelity PCR and sequenced as described in the Methods

section. The sequences of the HA, NA, M2&M1, NEP&NS1, NP,

PA, PB1, and PB2 genes in A/Guangdong/SWL28/2009 and A/

Sichuan-Wenjiang/SWL456/2009 viruses were deposited in

GenBank under accession numbers HM051340 to HM051347,

Polymorphism of H1N1 Affect Replication/Virulence
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and HM051348 to HM051355, respectively. Genomic polymor-

phisms found in each of the ten viruses are listed in Table 2. In

particular, unique non-synonymous mutations were found in some

of the virulence genes of A/Sichuan/1/2009: a Leu-to-Ile

variation at position 32 in the HA coding sequence and another

four substitutions in the polymerases: Ala-to-Thr at position 343 in

PA, Lys-to-Arg at position 353 and Thr-to-Ala at position 566 in

PB1, and Thr-to-Met at position 471 in PB2.

Effect of HA Leu32Ile substitution on receptor binding
ability

Previous studies have suggested that HA mutations may act to

increase virus virulence by affecting the affinity of HA binding to

host sialyl receptors. We examined three representative strains (A/

California/04/2009, A/Sichuan/1/2009, A/Beijing/3/2009) and

measured their HA receptor binding abilities to synthetic sialic

substrates. No significant difference was observed in the affinities

of the three HAs for binding to human-type 69SLN or 69DI-SLN

and avian-type 39SL or 39DI-SL receptors (P.0.05) (Fig. 4). This

finding demonstrated that the HA Leu32Ile mutation in A/

Sichuan/1/2009 contributed minimally, or not at all, to the

uniquely high virulence phenotype.

Discussion

Influenza viruses cause epidemics and pandemics through

antigenic drift or antigenic shift [25]. The 2009 pandemic A

(H1N1) virus has generally been associated with mild disease and a

relatively low mortality rate; however, sporadic severe or fatal

cases have been reported. Certainly, discrepancies in individual

immunity may support such diverse virulence of the 2009

pandemic A (H1N1) viruses, but it is as likely that some yet

undefined viral molecular mechanisms are at play [3,26].

Mutations in specific regions of a given viral genome are known

to result in increased virulence, and may lead to a more severe

pandemic. In this study, we investigated the molecular basis of the

2009 pandemic A (H1N1) virus that mediates its uniquely robust

characteristics of replication, virulence, and pathogenicity.

We first examined the viral replication kinetics of all ten viruses

by using an in vitro infection model of MDCK cells. The A/

Sichuan/1/2009 strain had an obvious enhanced replication

ability, which led to increased peak titers of roughly 3–4 orders of

magnitude higher than the other viruses, with the exception of A/

California/04/2009 and A/California/07/2009 strains. These

two viruses exhibited 2–3 orders of magnitude lower viral titers, as

compared with A/Sichuan/1/2009 after 12 h.p.i. We also

performed in vivo analysis using the BALB/c mouse model.

Pronounced virulence and pathogenicity of the A/Sichuan/1/

2009 virus were both observed; mice infected with this virus had

the lowest survival ratio, shortest mean survival days, most

extensive body weight loss, highest virus RNA copy numbers

and titers in lung tissues, most severe pathological changes, and

largest lesion areas in lung tissues. Taken together, these in vitro

and in vivo results indicated that the A/Sichuan/1/2009 virus has

the strongest replication ability in MDCK cells and virulence in

the BALB/c mouse model.

Sequence alignment among the ten A (H1N1) viruses revealed

that the A/Sichuan/1/2009 virus genome harbors five unique

mutations: L32I in HA; A343T in PA; K353R and T566A in PB1;

and T471M in PB2. Receptor binding assay showed that despite

having a non-synonymous mutation in the HA gene, the A/

Sichuan/1/2009 virus did not have increased binding affinity for

synthetic sialyl receptors, including the human type 69SLN and the

avian type 39SL. Thus, it is unlikely that the HA Leu32Ile

mutation acts as a key molecular determinant for the increased

virulence of A/Sichuan/1/2009. While previous studies have

associated another mutation in the HA receptor binding domain,

Asp222Gly, with enhanced virulence [24,27,28,29,30,31], it

remains to be confirmed whether HA affinity for sialyl receptors

is directly responsible for the enhanced virulence of the 2009

pandemic A (H1N1) influenza viruses. However, Glinsky and

Melidou et al. presented findings to suggest that the HA

Gln293His amino acid change may be associated with increased

disease severity [32,33].

The polymerase genes of influenza viruses are considered to be

extremely important for virulence. Codon position 515 in the PA

Figure 1. Replication kinetics of the ten 2009 pandemic A (H1N1) influenza viruses in MDCK cells. Each data point represents the mean
viral yield (log10 PFU/ml) from three individually infected wells 6 SD. *P,0.05 compared to the values of other viruses (one-way ANOVA).
doi:10.1371/journal.pone.0020698.g001
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protein, for example, is significantly related to pathogenicity of an

H5N1 virus in ducks [34]. A reverse genetics study demonstrated

that mutations in the PB2 protein, Glu627Lys and Asp701Asn,

were responsible for virulence in mammalian species [8]. The

amino acid at position 701 in PB2 has been characterized as

crucial to replication and lethality of duck-originated H5N1

viruses in mice [35]. The same PB2 amino acid residue was shown

to contribute to increased lethality of an H7N1 avian influenza

virus in a mouse model [36]. However, Jagger et al. reported that

influenza viruses containing mutations at residues 627 and 701 in

the context of the pandemic A (H1N1) virus polymerase complex

have attenuated virulence both in cell culture and the mouse

Figure 3. Pathological analysis of the lung tissues of challenged BALB/c mice. Ten mice from each group were euthanized at 5 d.p.i. to
obtain lung tissue biopsies, and for each lung three 4-mm sections were stained with H&E for pathological investigations. (A) Representative sections
of H&E stained lung tissues from 106 TCID50 intranasally challenged mice. (B) Percentage of lesion area in lung tissues.
doi:10.1371/journal.pone.0020698.g003

Figure 2. Virulence comparison of the ten 2009 pandemic A (H1N1) influenza viruses in BALB/c mice. Mice were anesthetized and
inoculated intranasally with virus (n = 23 per group; 50 ml of 106 TCID50). Ten randomly selected mice were monitored daily for signs of disease and
mortality, up to 14 d.p.i. for (A), (B), and (C) research, whereas ten of the remaining mice from each group were euthanized at 5 d.p.i. to obtain lung
tissue biopsies for use in (D). The final three mice were also sacrificed at 5 d.p.i. and their lungs were collected for (E) detection. (A) Survival
percentage of mice. (B) Mean survival days for each challenged group. (C) Body weight changes of infected mice. Mean body weight and SD were
calculated as percentage of body weight and compared to those at 0 d.p.i. (D) Viral RNA loads in lung tissues at 5 d.p.i. Data are presented as mean
viral loads per microgram 6 SD. (E) Viral titers in lung tissues at 5 d.p.i. Data are presented as mean log10 PFU/mg. * P,0.05 compared to the values
of other viruses (one-way ANOVA).
doi:10.1371/journal.pone.0020698.g002
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model system [17]. Recently, the PB2 mutation Thr271Ala was

found to enhance polymerase activity and viral growth in human

cells [37]. PB2 residue 158 has been described as a pathogenic

determinant of the pandemic H1N1 and H5 influenza A viruses in

mice [38]. Moreover, PB1-F2, a short viral protein of approx-

imately 90 amino acids expressed from a +1 reading frame in the

PB1 gene segment, was also reported as another virulence

determinant; the serine at position 66 in PB1-F2 was associated

with increased disease pathology in a mouse model [11,39,40].

Interestingly, the 2009 pandemic A (H1N1) influenza viruses do

not encode a PB1-F2 protein, due to the presence of three stop

codons in the gene sequence. However, Wanitchang et al. and Hai

et al. reported that reinstatement of PB1-F2 elicited a minimal

effect on virulence of the pandemic A (H1N1) virus in various

mammalian models [41,42].

All the above data suggest that the polymerase complex

mediates virulence of influenza viruses. Indeed, the four residues

mutated within the polymerase complex of A/Sichuan/1/2009

virus may indicate key virulence determinants of the 2009

pandemic A (H1N1) viruses. However, it is still uncertain whether

the increased virulence is caused by any single substitution or some

combinations of the four. Further investigations using reverse

genetics are likely to provide insights into this question.

Epidemiologic analysis showed that the ten viruses examined in

this study could be divided into three groups based on time and

region of prevalence. Group I contained the A/California/04/

2009 and A/California/07/2009 viruses, which represented the

very first 2009 pandemic A (H1N1) influenza patients reported.

Group II contained the A/Sichuan/1/2009 strain, which was

isolated from the first reported case in China. As these Group II

strains were isolated during the earliest phase of the Chinese

pandemic, this group also represented the period of H1N1 global

dissemination [43]. Group III contained the other seven strains,

which were representative of domestic infections and were all

collected in China. The same HA sequence polymorphism found

in A/Sichuan/1/2009 existed in other 2009 pandemic A (H1N1)

strains which were collected across the globe from April to June of

2009. Most of these other strains represented the first waves of

H1N1 in their respective countries, including Canada, Mexico,

Nicaragua, France, Finland, and the United States. Interestingly,

PA mutation in A/Sichuan/1/2009 has never been reported

before. In contrast, sequence polymorphisms in PB1 and PB2 have

been identified in strains collected from the first waves in Canada,

Nicaragua, and some cities of the United States, but little

information is available about the virulence and pathogenicity of

those particular strains.

Belser et al. also used a mouse model to evaluate the virulence of a

collection of 2009 A (H1N1) viruses. Their studies ultimately

demonstrated that the viruses exhibited mild to moderate virulence

in mice. They also performed sequence analysis of their isolates, and

identified similar polymorphisms to those reported here; molecular

features which are frequently found among viruses of high

pathogenicity in mammalian models were not detected in either

their or our studies [44]. Although it was reported that

Figure 4. Direct binding assay with synthetic sialylglycopolymers. (A) Affinity to synthetic 39SL or 39DI-SL. (B) Affinity to synthetic 69SLN or
69DI-SLN.
doi:10.1371/journal.pone.0020698.g004
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hypercytokinemia is not a general feature of infection with the 2009

pandemic A (H1N1) viruses, including those isolated from fatal

cases [44], however, it is likely that some, at least subtle, affects from

the cytokine storm exist to the virulence [45,46,47,48,49,50]. Since

none of the genetic changes identified in A/Sichuan/1/2009

involve critical domain/motifs in HA or in the polymerase complex

[8,51,52,53], further study addressing the potential for host-based

differences in immunologic response is warranted.

Our results also suggested that the virulence of the 2009

pandemic A (H1N1) viruses were not associated with the clinical

phenotypes of the corresponding patients; A/Sichuan-Wenjiang/

SWL456/2009 and A/Guangdong/SWL28/2009, viruses col-

lected from a deceased and severely ill patient respectively, showed

much lower replication ability, virulence, and pathogenicity than

A/Sichuan/1/2009, a virus from a patient with mild symptoms.

Previous investigations into a series of severe and fatal cases of the

pandemic H1N1 influenza revealed that pregnancy, obesity,

diabetes, and other co-morbid conditions were associated with

severe disease [54,55]. Therefore, it is reasonable to hypothesize

that the two patients with A/Sichuan-Wenjiang/SWL456/2009

or A/Guangdong/SWL28/2009 virus infection were suffering

from concomitant complicating diseases. Unfortunately, time and

anonymity concerns have made it impossible to now trace the

clinical features and anamnesis of these two patients. It is

interesting to note, here, that Belser et al. deduced the same

conclusion, citing that 2009 H1N1 viruses isolated from fatal cases

did not demonstrate enhanced virulence in a mouse model as

compared with isolates from mild human cases [44].

In summary, we found that the genomic polymorphisms that

characterize each of the 2009 pandemic A (H1N1) influenza

viruses contribute to virus replication ability, virulence, and

pathogenicity. Non-synonymous polymorphisms associated with

amino acid substitutions in PA (A343T), PB1 (K353R and

T566A), and PB2 (T471M) were identified as potential key

virulence determinants. Meanwhile, the replication ability in vitro

and virulence in vivo of the 2009 pandemic A (H1N1) viruses were

not associated with the clinical phenotypes exhibited by the

corresponding patients. These preliminary observations contribute

to our understanding of the genetic process of transmission and

evolution of the 2009 pandemic A (H1N1) influenza viruses.

Because of the functional importance of the polymerase complex

in replication, virulence, and pathogenicity, the mutations

described here deserve further investigation and may lead to

discoveries of new vaccines and therapeutic drugs against this

globally important virus.
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