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Hematopoietic stem cell microtransplantation: 
current situation and challenges
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Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) stands as a cornerstone in the 
treatment of hematological malignancies, recognized for its remarkable efficacy. However, the 
persistent challenge of graft-versus-host disease (GVHD) continues to represent a significant 
barrier, often being the leading cause of nonrelapse mortality after allo-HSCT. To address 
this limitation, hematopoietic stem cell microtransplantation (MST) has emerged as a novel 
therapeutic strategy that synergistically combines chemotherapy, allo-HSCT, and cellular 
immunotherapy. This innovative approach is designed to retain the patient’s immune function, 
promote the establishment of microchimerism, and achieve a potent graft-versus-tumor (GVT) 
response, all while significantly minimizing the risk of GVHD. MST has primarily been applied in 
the treatment of hematological malignancies, where it has demonstrated promising outcomes, 
including marked improvements in complete remission rates, overall survival rates, and 
progression-free survival rates. Moreover, MST facilitates hematopoietic recovery, decreases 
the likelihood of infections, and reduces the incidence of GVHD, thus contributing to an improved 
quality of life for patients. A deeper and more comprehensive understanding of MST’s mechanisms 
could enhance its clinical utility and integration into standard treatment protocols. This review 
aims to explore the underlying mechanisms, current clinical applications, and challenges of MST, 
shedding light on its potential role in advancing the management of hematological malignancies.
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Introduction
In recent years, the incidence of hematological 
malignancies has risen significantly, particularly 
within the elderly population. This trend under-
scores the growing burden these diseases pose on 
healthcare systems globally.1–5 Hematological 
malignancies include leukemia, myelodysplastic 
syndrome (MDS), multiple myeloma (MM), and 
lymphoma. Among these, acute myeloid leuke-
mia (AML) presents particularly poor outcomes 
in older adults: the 5-year overall survival (OS) 
rate is under 25% for patients aged 60–65 and 
drops to below 10% for those over 70.6 Moreover, 
the 5-year OS rate for patients with MDS stands 
at approximately 31%, with around 80% of these 
cases occurring in individuals over the age of 6.7 
Elderly patients often experience a poor progno-
sis, influenced by a combination of factors such as 
driver mutations, diminished performance status, 
resistance to treatment, and adverse cytogenetic 
characteristics.8

Hematopoietic stem cell transplantation (HSCT), 
cellular immunotherapy, and targeted therapy are 
among the primary treatment options for hemato-
logical malignancies. However, conventional 
chemotherapy often yields suboptimal outcomes 
in elderly patients, with poor prognosis and low 
remission rates.9,10 Allogeneic hematopoietic 
stem cell transplantation (allo-HSCT) is cur-
rently considered a potential curative approach. 
However, its broader application is limited by sig-
nificant complications, including severe graft-ver-
sus-host disease (GVHD), infections or bleeding, 
all of which contribute to nonrelapse mortality 
(NRM).11–14 Consequently, there is an urgent 
need for innovative therapeutic strategies to 
improve outcomes for these patients.

MST was initially introduced by Ai et al. in China 
in 2011. This strategy integrates cellular immu-
notherapy, allo-HSCT, and conventional chemo-
therapy to achieve a graft-versus-tumor (GVT) 
effect, while substantially reducing the incidence 
of GVHD.15 In recent years, MST has shown 
marked improvements in complete remission 
(CR), OS, and progression-free survival (PFS) 

rates among patients with elderly acute myeloid 
leukemia (EAML).16–20 Clinical trials and case 
reports have explored the application of MST, an 
innovative immunotherapeutic approach, across 
various hematological malignancies, with particu-
lar focus on AML and, to a lesser extent, MDS.21–24 
Initially, Ai’s group has focused on AML across 
all age groups.15,16 Furthermore, Ai expands the 
application of MST to include other hematologi-
cal cancers, such as acute lymphoblastic leukemia 
(ALL) and MDS.22,25 Wang’s team has applied 
MST to hemophagocytic lymphohistiocytosis 
(HLH) since 2016.26 In the same year, Chen 
et al. have initiated a clinical trial regarding the 
application of MST for MM27 (Figure 1). Guo 
and her colleagues have initially conducted inter-
national multicenter research on the application 
of MST in EAML patients.17 Moreover, the 
advantages of unrelated donors and the immuno-
logic mechanisms of MST are first proposed by 
Anthony D. Sung et al. in 2020.28 An expert con-
sensus on MST for EAML is established by the 
International Microtransplant Interest Group 
12 years after the birth of this technique.29 This 
review aims to deliver an in-depth analysis of the 
current landscape and challenges surrounding 
MST, highlighting its evolving role and potential 
in treating hematological malignancies.

Overview of the MST
MST is an advanced immunotherapeutic 
approach that combines conventional chemo-
therapy or targeted therapies with the infusion of 
granulocyte colony-stimulating factor (G-CSF)-
mobilized, human leukocyte antigen (HLA)-
mismatched peripheral blood stem cells 
(GPBSCs). This method promotes donor cell 
engraftment, leading to microchimerism and 
inducing a potent GVT effect, while effectively 
reducing the incidence of GVHD.21,30 
Additionally, MST has demonstrated substan-
tial benefits in facilitating the recovery of both 
the hematopoietic and immune systems, sup-
porting improved patient resilience and post-
treatment outcomes.15,31,32 Clinical trials have 
explored the use of MST across a range of 
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Figure 1. Development history of MST.
MST, microtransplantation.

Table 1. Fundamental principles concerning MST.25,32,33,37–40

Topic Principles

Induction 
chemotherapy

Objective: Maximizes the killing of leukemia or tumor cells and avoids compromising the recipient’s immune function.
Program selection: efficient chemotherapy or targeted therapy.
Avoidance of immunosuppressants: fludarabine, anti-lymphocyte/thymocyte globulin, total body irradiation, etc.

Donor selection HLA-mismatched related donors are preferred, but do not exclude HLA-fully mismatched related or unrelated 
donors as candidates.
Avoiding donors with HLA 8–10/10 matched.

Microchimerism Definition: Transient or persistent donor microchimerism (<1%–5% detectable donor cells).
Effects: Inducing GVL/RVL effect and accelerating hematopoietic and immunologic recovery.

GVHD GVHD prophylaxis is not required.
HLA haplotype homozygous donors are not recommended

Donor cells GPBSCs are a preferential option in MST.
DLI is not recommended.
Dosage: MNC 2.5 × 108/kg (±25%) recipient weight or equivalent to CD3+ cells 1 × 108/kg (±25%) recipient weight.

DLI, donor lymphocyte infusion; GPBSC, granulocyte colony stimulating factor (G-CSF)-mobilized peripheral blood stem cells; GVHD, graft- 
versus-host disease; GVL, graft-versus-leukemia; HLA, human leukocyte antigen; MNC, mononuclear cells; MST, microtransplantation;  
RVL, recipient-versus-leukemia.

malignancies, including acute leukemia, MDS, 
relapsed/refractory (R/R) lymphoma, MM, and 
even certain solid tumors. These studies aim to 
expand therapeutic options and improve out-
comes for cancer patients facing limited treat-
ment alternatives.

The advantages of MST are summarized as fol-
lows (Table 1): (1) MST allows for a broad spec-
trum of potential donors, including healthy 
related or unrelated donors with 0–7 out of 10 
HLA mismatches, while fully matched (8–10/10 
HLA) sibling donors are generally not 

preferred.33,34 (2) MST is associated with a low 
incidence of GVHD, largely due to the induction 
of transient or persistent donor microchimerism 
through repeated infusions of donor peripheral 
blood stem cells (PBSCs),29,35 significantly reduc-
ing the need for GVHD prophylaxis. (3) MST 
also enhances immune function recovery by acti-
vating anti-tumor responses via the infusion of 
HLA-mismatched cells.33,36 (4) The elimination 
of immunosuppressive drugs following cell trans-
fusion facilitates faster hematopoietic recovery, 
which in turn reduces the risk of infections and 
bleeding complications.31,37
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Mechanisms

Anti-leukemia effect
The exact mechanism by which MST prevents 
leukemia relapse is not yet fully understood. 
However, current research indicates that graft-
versus-leukemia (GVL) and the induction of 
recipient-versus-leukemia (RVL) responses may 
play critical roles (Figure 2). The primary mecha-
nism in traditional HSCT is the GVL effect, 
which involves hematopoietic stem cells (HSCs; 
primarily CD34+ MSCs) and immune cells 
(including CD4+ T cells, CD8+ T cells, and NK 
cells) derived from PBSCs activated by 
G-CSF.41,42 In addition to traditional transplan-
tation, NK cells play an independent and crucial 
role in MST due to their recurring GVL effects. 
These cells continuously contribute to anti-
tumor responses, enhancing MST’s therapeutic 
impact.43 When lymphocyte function is impaired, 
CD4+ and CD8+ T cells take on a pivotal role, 
becoming the primary defense against leukemia. 
These T lymphocytes exert anti-leukemia effects 
by directly targeting leukemia cells and releasing 
cytokines, including interleukin (IL)-4 and inter-
feron-gamma (IFN-γ), which enhance the 
immune response.44–46

Current research highlights MST’s dual role in 
leukemia prevention through both GVL and 
RVL effects. In RVL cases, MST may help 
restore the anti-leukemia functions of the recipi-
ent’s immune system via an allogeneic response. 
A retrospective analysis of 45 Philadelphia chro-
mosome-positive acute lymphoblastic leukemia 
(Ph+ ALL) patients has examined circulating  
T cells in patients and/or donors with 
WT1+HLA-A*02:01 and/or  WT1+HLA-A*24:02.30 
Notably, WT1+CD8+ T cell responses persisted 
up to 644 and 580 days post-MST in two pairs 
with patient-only HLA-A*02:01 or HLA-
A*24:02, underscoring the RVL effect. Similarly, 
at 518, 644, and 858 days post-MST, three of 
four pairs with donor-only HLA-A*02:01 or 
HLA-A*24:02 exhibit a strong WT1+CD8+ T 
cell response, indicative of GVL effects.25 
Research into the RVL effects of MST suggests 
that donor CD4+ T cells may play a crucial role 
in reactivating the recipient’s CD8+ T cells, 
thereby enhancing MST’s anti-leukemia benefits. 
In a study by Wang et al.,41 higher IFN-γ levels 
are associated with improved anti-leukemia 
effects; the IFN-γ release in recipients correlates 

positively with CD8+ T cell counts, but not CD4+ 
T cells. This implies that CD4+ T cells signifi-
cantly impact MST outcomes by activating leuke-
mia-specific CD8+ T cells and the recipient’s 
antigen-presenting cells. Additionally, CD4+ T 
cells are essential for sustaining CD8+ T cell 
activity and enabling memory formation within 
MST.41,47,48

Recovery promotion of hematopoietic cells
Hematopoietic recovery is a crucial determinant of 
therapeutic efficacy, as it directly impacts the likeli-
hood of severe infections, life-threatening bleed-
ing, and other treatment-related toxicities. MST is 
widely acknowledged for its ability to accelerate 
hematopoietic restoration, thereby reducing the 
risks of bleeding and infection, factors essential for 
improving overall treatment outcomes.15,21

Infusing GPBSCs, which are rich in hematopoi-
etic stem and progenitor cells, has been shown to 
significantly enhance hematopoietic recovery. 
Studies indicate that GPBSCs not only improve 
the pace of hematologic restoration but also stim-
ulate cytokine production. Patients receiving 
MST experience faster hematologic recovery, 
allowing for a more adaptable and flexible treat-
ment approach that mitigates damage to the 
hematological system. Research further suggests 
that hematologic recovery time is shorter in MST 
recipients compared to those undergoing HLA-
matched sibling donor transplantation, with MST 
patients benefiting from a less intense condition-
ing regimen.49

Microchimerism
Microchimerism refers to the presence of a small 
number of cells or DNA from a genetically dis-
tinct individual within a host, arising through 
both natural and artificial mechanisms. MST is 
desired to create short- or long-term donor micro-
chimerism (donor cells <1%–5%) in recipients, 
but complete donor chimerism and mixed chi-
merism similar to classical transplantation are 
discouraged or even avoided after MST as a way 
to achieve an effective GVL effect while avoiding 
GVHD.50 The duration of microchimerism 
exhibited a wide range, from a few days to 
34 months. Donor microchimerism is observed 
on day 2 post-transplantation, reaching its peak 
on days 7–14 post-transplantation, with a 
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Figure 2. An overview of the progression and anti-leukemia effects of MST. Following induction therapy, GPBSCs are infused into  
the recipient, containing hematopoietic stem cells (such as CD34+ MSCs) and immune cells, including NK cells, CD4+ T cells, and 
CD8+ T cells. CD34+ MSCs contribute to the GVL effect by interacting within the reconstructed bone marrow microenvironment. 
Among immune cells, NK cells participate in GVL through direct cytotoxic actions and the release of cytokines like IL-12, IL-15, and 
IL-18. Both CD4+ and CD8+ T cells engage in anti-leukemia responses via GVL and RVL mechanisms; CD4+ T cells release cytokines, 
such as TNF-α, and activate CD8+ T cells, which then differentiate into CTLs that secrete IFN-γ to enhance the anti-leukemia 
response.
CTL, cytotoxic T lymphocytes; G-CSF, granulocyte colony-stimulating factor; GPBSC, granulocyte colony-stimulating factor (G-CSF)-mobilized 
peripheral blood stem cells; GVL, graft-versus-leukemia; IFN-γ, Interferon-gamma; IL, interleukin; MSC, mesenchymal stem cell; MST, 
microtransplantation; NK cells, natural killer cells; TNF-α, tumor necrosis factor-alpha.

maximum duration of 1020 days.16 It is as yet 
unclear whether microchimerism is capable of 
exerting sufficient GVL effects or whether they 
are a necessary component of the treatment of 
MST.

Current clinical applications of MST

Acute myeloid leukemia
Elderly acute myeloid leukemia. AML stands as 
the most common and aggressive hematological 
malignancy. While intensive chemotherapy and 
allo-HSCT have improved cure rates for adult 
AML patients under 60, the outlook for EAML 
patients remains grim. Studies show that the aver-
age survival time for EAML patients is only 
8–12 months.30 This subgroup faces significant 
challenges, including high-risk genetic mutations 
and low CR and overall response rates 

(ORR).31,51,52 Given these challenges, there is an 
urgent need for safer and more effective treat-
ments tailored to the EAML population.

Experts have reached a consensus regarding MST 
induction therapy for EAML patients (Table 2). 
Generally, the infusion of donor GPBSCs is 
administered 24–72 h after the final dose of cyto-
toxic medications, though in specific cases, this 
interval can be extended up to 96 h or more if 
needed.29

Yao et al.53 have reported an impressive 1-year 
OS rate of 89.8% among elderly patients receiv-
ing MST (Table 3). In a study by Hu et al.,30 
involving 111 AML patients aged 70–88, 80 
opted for MST, 15 for conventional chemother-
apy, and 16 for supportive treatment. Relapse 
rates (RRs) differ significantly among these 
groups, with the MST group showing a reduced 
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Table 2. Principles concerning MST induction therapy for EAML.29

Patient types Principles

“Fit”: patients 1.  Standard induction chemotherapy: daunorubicin 60 mg/m2, or idarubicin 12 mg/m2, 
or mitoxantrone 12 mg/m2 IV d1-3; cytarabine 100–200 mg/m2 IV d1-7.

2.  Venetoclax + HMA: venetoclax 100 mg dL, 200 mg d2, and 400 mg d3-28 PO; 
azacitidine 75 mg/m2 IV d1-7 or decitabine 20 mg/m2 d1-5.

3.  CPX-351 100 U/m2 (daunorubicin 44 mg/cytarabine 100 mg) IV d1, 3, 5.

“Unfit” patients 1.  Venetoclax + HMA: venetoclax 100 mg d1, 200 mg d2, and 400 mg d3-28 PO; 
azacitidine 75 mg/m2 IV d1-7 (alternatively d1-5) or decitabine 20 mg/m2 d1-5.

2.  Reduced intensive chemotherapy: daunorubicin 45–60 mg/m2, or idarubicin 8–12 mg/
m2, or mitoxantrone 8–12 mg/m2 IV d1-3; cytarabine 75–100 mg/m2 IV d1-7.

“Frail” patients Clinical trials (venetoclax, decitabine, or azacitidine) or best supportive care.

EAML, elderly acute myeloid leukemia; HMA, hypomethylating agents; MST, microtransplantation; PO, Peros.

severe infection rate of approximately 16%, com-
pared to 46.7% in the chemotherapy group 
(Table 3). Rapid neutrophil recovery considera-
bly decreases the prevalence of infections in the 
granulocytosis phase,54 further demonstrating the 
security of MST, according to Tao et al. In a pilot 
study of 23 newly diagnosed AML patients over 
60, impressive outcomes have been observed: 
complete response is achieved in 90.9% of 
patients with normal cytogenetics and in 80.8% 
of those with unfavorable cytogenetics after just 
one or two treatment cycles55 (Table 3). Similarly, 
a pilot study with 17 EAML patients has further 
supported the efficacy of MST, particularly in 
patients with high-risk cytogenetics28 (Table 3).

Young and middle-aged AML. Allo-HSCT is cur-
rently the only method with curative potential for 
young and middle-aged individuals diagnosed 
with AML. However, approximately 40% of 
AML patients are expected to experience relapse 
following allografts, with rates escalating to as 
high as 70% in high-risk AML patients.56–59 Guo 
et al. have reported on a cohort of 156 AML 
patients, with 57 undergoing nonmyeloablative 
stem cell transplantation (NST) while 99 receiv-
ing MST. The MST group demonstrates supe-
rior 10-year OS and leukemia-free survival (LFS) 
rates compared to the NST group, with rates of 
70.7% versus 61.4% and 59.6% versus 57.9%, 
respectively.60 The MST group also exhibits sig-
nificantly lower NRM at 6.3% compared to 
19.3% in the NST group (Table 3). Guo’s team 
has conducted a study with 101 AML-CR1 
patients aged 9–65 in an MST trial.16 The 6-year 

LFS rates are 84.4% for the low-risk group and 
59.2% for the intermediate-risk group, indicating 
improved outcomes compared to prior treatment 
regimens61 (Table 3). Allogeneic blood or mar-
row transplantation is typically not pursued for 
relapsed or R/R AML patients due to their gener-
ally poor prognosis.62 However, Sidharthan et al. 
have reported cases involving three patients with 
R/R AML who have received MST as a bridge to 
allo-HSCT.63 All patients have achieved CR after 
receiving MST without serious adverse effects, 
notably, one patient with the first relapse of AML 
has maintained CR after 506 days post-MST. In 
summary, MST offers superior overall therapeu-
tic outcomes in AML compared to chemother-
apy alone (Table 3).

Acute lymphocytic leukemia
Over recent decades, significant advancements in 
treatment approaches have greatly improved the 
prognosis for children with ALL. However, treat-
ment-related mortality remains concerningly 
high, ranging from 11% to 25%, and RRs persist 
at 15% to 41%.64–66

The hyper-fractionated cyclophosphamide, vin-
cristine, doxorubicin, and dexamethasone (hyper-
CVAD) based MST protocol is the most widely 
adopted treatment approach, with mismatched 
GPBSCs infused 24 h after each cytarabine 
cycle.25,67 In 2015, Qian and Shen have first 
applied MST to a patient with R/R ALL.68 
Despite infusing a larger number of NK cells, the 
patient exhibited poor anti-leukemic effects and 
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ultimately died from gastrointestinal hemorrhage 
2 months later. Nevertheless, MST has demon-
strated improved outcomes in terms of LFS and 
OS in subsequent clinical studies on ALL (Table 
4). Cai et al.25 have examined 45 patients with 
Ph+ ALL into three groups: 11 receiving MST 
with tyrosine kinase inhibitors, 17 undergoing 
allo-HSCT, and 17 receiving chemotherapy with 
TKIs. The OS rates for MST, allo-HSCT, and 
chemotherapy are 91%, 39%, and 80%, respec-
tively. Statistically, the 4-year OS rate for MST 
(91%) is significantly higher than that of SCT 
(31%, p = 0.005) and chemotherapy (36%, 
p = 0.013; Table 4). In another study, Cai et al.67 
have studied 48 patients receiving hyper-CVAD-
based MST. Among these patients, 26 (54%) 
patients di ed due to disease progression, with no 
NRM reported. There are no reports of early 
mortality or acute GVHD, and adults show better 
outcomes than adolescent and young adult (AYA) 
patients (62% vs. 26%, p = 0.058; Table 3). This 
trial indicates that hyper-CVAD-based MST is a 
promising treatment for adult ALL patients due 
to its low toxicity. While MST demonstrates 
strong efficacy in the patients with ALL, further 
clinical trials are needed to assess its benefits 
thoroughly.

Myelodysplastic syndrome
Patients with MDS face heightened risks of bone 
marrow failure and progression to AML, result-
ing in low OS rates, especially among those at 
intermediate to high risk.69

Currently, decitabine (DAC) is a key component of 
induction therapy, although the optimal timing for 
GPBSC infusion remains uncertain.18,22,37 The 
effectiveness of MST was first demonstrated in a 
study by Ai’s team, which included 72 MDS 
patients divided into three groups: 28 patients 
receiving MST, 27 receiving standard-dose DAC, 
and 17 receiving low-dose DAC. The results show 
notable differences in ORR and CR rates, with 
ORRs of 82.14%, 51.85%, and 35.29%, and CR 
rates of 42.86%, 14.81%, and 29.41%, respec-
tively, highlighting MST’s beneficial impact on 
response outcomes22 (Table 5). The TP53 muta-
tion is the only known molecular marker linked to 
poor survival and high RRs, and MDS patients 
with TP53 mutations generally have a poor prog-
nosis even when receiving optimal allo-HSCT.70 
However, in a study by Song et al.,71 an MDS 

patient with a TP53 mutation who has undergone 
MST shows clinical improvement without severe 
complications, suggesting MST’s potential as a 
viable alternative in high-risk MDS cases (Table 5).

The safety profile of MST in treating MDS is 
promising. Cytokine release syndrome is a com-
mon side effect observed in MDS patients under-
going MST. In a study involving patients with de 
novo and R/R AML/MDS, all 25 recipients 
exhibit symptoms of haploimmunostorm follow-
ing MST infusion. However, only nine patients 
(13%) have required specific intervention with 
corticosteroids or anti-IL-6 therapy, and the 
28-day post-infusion mortality rate is relatively 
low at 7% (Table 5).72 These results align with 
findings from Munoz et al., who have studied 12 
AML/MDS patients undergoing MST,73 further 
supporting its favorable safety profile (Table 5). 
In summary, existing data suggest that combining 
MST with chemotherapy can improve treatment 
response in MDS while potentially reducing side 
effects, indicating MST’s potential as a safe and 
effective therapeutic option.

Lymphoma
Chemotherapy regimens such as hyper-CVAD, 
dose-augmented methotrexate, and cyclophos-
phamide are frequently administered before 
MST, although the ideal timing for MST infu-
sion remains unclear.74–78 In a study by Zhao 
et al., MST’s effectiveness in reducing the clinical 
impact of lymphoma is examined in 10 patients 
with R/R malignant lymphoma. Notably, six 
patients who achieved CR maintained PFS until 
the study’s conclusion. Among three patients 
with T-cell lymphoblastic lymphoma, favorable 
PFS durations of 41, 31, and 28 months are 
observed. The 1-year OS and PFS rates are both 
60%. Additionally, a case study on Burkitt lym-
phoma has shown promising outcomes, with one 
patient sustaining CR and PFS for 40 months 
after three MST treatments.75 These findings 
underscore MST’s potential as an innovative 
approach to improve clinical outcomes and sur-
vival rates in patients who have relapsed or are 
resistant to conventional treatments.

Multiple myeloma
Clinical trials exploring MST’s application in 
MM are limited. In one study focusing on MST 
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for MM patients with end-stage renal disease, 
seven patients are enrolled; after 12 years of fol-
low-up, five survived, with four achieving CR.79 
Additionally, a case study by David et al. has doc-
umented an 80-year-old MM patient with renal 
failure who attained CR through MST, which 
persisted for 8 years.80 In 2016, Chen’s team has 
launched a clinical trial27 to compare the efficacy, 
safety, and 2-year PFS and OS outcomes of MST 
versus autologous transplantation in MM patients 
who have achieved partial remission or better. 
Reports on MST treatments for MM remain 
sparse, underscoring the need for further research 
in this area.

Hemophagocytic lymphohistiocytosis
HLH is a life-threatening condition marked by 
the unchecked activation of CTLs, NK cells, and 
macrophages, resulting in severe organ damage 
due to immune dysfunction. Among the types of 
secondary HLH, Epstein–Barr virus-associated 
HLH (EBV-HLH) is particularly prevalent and is 
linked to a poor prognosis. Standard treatments 
for this critical condition include dexamethasone 
and etoposide; however, the clinical outcomes 
remain bleak due to high mortality and RRs.81,82

To date, only a single clinical study has been 
reported on EBV-HLH. Song et al.26 have ana-
lyzed 37 cases of EBV-HLH, with 18 patients 
receiving MST (GPBSC group) and the remain-
ing 19 undergoing salvage therapy alone. The 
chemotherapy regimens include the DEP proto-
col (liposomal doxorubicin, etoposide, and meth-
ylprednisolone) and the liposomal doxorubicin, 
etoposide, and methylprednisolone (L-DEP) pro-
tocol (which adds polyethylene glycolated native 
Escherichia coli-derived L-asparaginase (PEG-
asparaginase)). Results show significant improve-
ments in several laboratory markers in the GPBSC 
group 2 weeks after MST, including ferritin, 
fibrinogen (Fbg), and white blood cell counts. 
The ORR in the GPBSC group was 66.7%, with 
a CR rate of 22.2% and a partial response rate of 
44.4%.

In cases of EBV-associated HLH, EBV-DNA lev-
els significantly decrease following MST treat-
ment—dropping to 5.0 × 10³ [<5.0 × 102, 
5.7 × 105] after 2 weeks and to 4.1 × 10³ [0, 
4.4 × 104] after 4 weeks. However, survival out-
comes 3 months post-therapy show no significant 

difference between the GPBSC group (72.2% 
mortality) and the control group (78.9% mortal-
ity). Among the GPBSC-treated patients, seven 
(38.9%) developed acute GVHD; of these, six 
recovered with symptomatic treatment, while one 
patient succumbed to GVHD despite interven-
tion. These findings suggest that while GPBSC 
treatment significantly reduces EBV-DNA viral 
load compared to standard chemotherapy, it does 
not markedly improve hematological recovery. 
This implies that MST’s viral load reduction is 
closely tied to the GVL effect, with CD8+ T cells 
playing a key role in GPBSC infusion. Clearance 
of the EB virus primarily relies on the activation 
of CD8+ T cells, underscoring their essential role 
in this therapeutic approach.83,84 HLA-
mismatched donor GPBSCs have shown poten-
tial benefits in treating EBV-HLH, despite the 
differing treatment objectives for leukemia and 
HLH in the context of MST. Further clinical 
studies are needed to determine whether GPBSC 
treatment could act as an effective bridging ther-
apy to allo-HSCT for EBV-HLH patients who do 
not have HLA-matched donors.

Other diseases
Clinical trials have also explored MST’s applica-
tion in rare hematological conditions and solid 
tumors. In a study by Zhang et al., two patients 
with myeloid sarcoma (MS) have received chem-
otherapy combined with MST. The first patient, 
a woman with primary MS, undergoes induction 
chemotherapy with a DA regimen (daunorubicin 
45 mg/m2 on days 1–3; cytarabine 100 mg/m2 on 
days 1–7), followed by MST 24 h after her third 
DA cycle. During MST treatment, neither 
GVHD nor transformation to AML occurs, 
though her MS has eventually relapsed. Despite 
this, she achieves a PFS of 66 months. The sec-
ond patient, diagnosed with MS and central nerv-
ous system leukemia, has received one cycle of 
the IDA regimen (idarubicin 10 mg on days 1–3; 
cytarabine 150 mg on days 1–7) in conjunction 
with MST, resulting in sustained CR and a PFS 
of 55 months. Both cases demonstrate minimal 
adverse effects, allowing ample time to seek HLA-
matched donors and other therapeutic options. 
These findings suggest MST as a promising treat-
ment for MS, though randomized clinical trials 
are needed to confirm its efficacy.23 Qiyun et al. 
presented a case series of 17 patients with malig-
nant solid tumors who underwent MST 
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treatment. The cases included patients with a 
variety of malignant solid tumors, including 
breast cancer, lung cancer, gastric cancer, pancre-
atic cancer, seminoma of the mediastinum, colo-
rectal cancer, thyroid carcinoma, ovarian 
carcinoma, small renal cell carcinoma, prostate 
carcinoma, smooth muscle sarcoma, endometrial 
carcinoma, and cervical carcinoma. The 2-year 
PFS and OS rates are 25% and 31.5%, respec-
tively.85 The preliminary results of MST in the 
treatment of malignant solid tumors are encour-
aging, but the sample size is limited and larger 
cohort studies are required to validate these 
findings.

Current challenges in HSC MST

How to reduce the recurrence?
Although MST techniques have made significant 
strides in treating hematological malignancies, 
clinical studies indicate that their anti-tumor effi-
cacy may fall short of that achieved with allo-
HSCT. This limitation has resulted in higher RRs 
for MST compared to traditional bone marrow 
transplantation.26,28,49,60,67,68 Relapse remains the 
leading cause of treatment failure and mortality in 
MST-treated patients.49,86 For EAML patients 
treated with MST, the median time to relapse is 
approximately 8.5 months, with 1-year cumula-
tive RRs between 23.2% and 69.0%, and 2-year 
rates ranging from 39.7% to 79.3%.30 Similarly, 
the 2-year RR for MDS patients following MST 
is as high as 45.5%.18 Although MST reduces the 
risk of GVHD, managing the high RR remains a 
significant challenge in advancing MST therapy.

Combination with more effective targeted 
drugs. Drugs play a critical role in influencing 
therapeutic outcomes and RRs in patients under-
going MST. For example, certain immunomodu-
latory agents, such as lenalidomide, have proven 
both safe and effective in treating advanced 
AML.87 In a small cohort trial, Fathi et al.88 have 
explored lenalidomide’s potential to enhance 
anti-leukemia effects, yielding promising results 
that call for further large-scale studies. Addition-
ally, the selection and combination of drugs are 
essential in screening both donors and recipients; 
immunosuppressive agents like fludarabine are 
pivotal in assessing the recipient’s immune func-
tion.30 Overall, optimizing drug combinations is 
crucial for improving recipient selection and 

therapeutic outcomes, ultimately reducing recur-
rence risk.

HSC infusion optimization. Accurate HSC infu-
sion is essential for minimizing RRs, requiring 
both the timely administration of G-PBSCs and 
an optimal cell ratio within the infusion. Extended 
intervals between induction therapy and infusion 
may adversely affect treatment outcomes, whereas 
a more strategic infusion approach can strengthen 
MST’s anti-leukemia effects. Ai et al. have devel-
oped specific criteria for cell infusion.15,16 How-
ever, further guidelines are needed to refine HSC 
infusion practices across different patient popula-
tions, ensuring tailored approaches that maximize 
therapeutic efficacy.

Appropriate receptor selection. MST is generally 
more appropriate for patients with compromised 
baseline health, those intolerant to myeloablative 
conditioning, and individuals lacking HLA-
matched donors. For patients with diminished 
autologous hematopoietic function and high-risk 
leukemia, conventional bone marrow transplanta-
tion remains the preferred choice. A study on 
MST in EAML patients has reinforced this per-
spective, showing limited therapeutic efficacy in 
those with high-risk profiles.30 Importantly, not 
all groups are ideal candidates for MST. Cai et al. 
have reported that adult patients with ALL have a 
lower 4-year RR compared to AYA patients (38% 
vs 74%), indicating that hyper-CVAD-based 
MST may be more suitable for adults than for 
younger individuals.67

Conclusion
MST, an innovative cellular immunotherapy, has 
demonstrated promising efficacy in treating 
hematological malignancies, particularly in 
EAML patients. This review provides an in-depth 
overview of MST’s current global application and 
the clinical challenges it faces. MST leverages 
GVL and RVL effects by inducing microchimer-
ism, significantly reducing the risk of GVHD, 
enhancing immune recovery, and lowering infec-
tion rates. However, a major obstacle to MST’s 
advancement lies in refining the technology to 
reduce RRs. Additionally, the exact mechanisms 
by which MST exerts its anti-tumor effects, sup-
ports hematopoiesis, and enhances immune 
recovery remain unclear and warrant further 
investigation.

https://journals.sagepub.com/home/tah


Volume 16

12 journals.sagepub.com/home/tah

TherapeuTic advances in 
hematology

Large-scale clinical trials are essential to deepen 
understanding of MST’s potential in treating 
various hematological malignancies, including 
lymphoma and MM, as well as solid tumors, 
expanding its therapeutic scope. Unlike com-
mercial CAR-T cells, MST is not as widely avail-
able, limiting its adoption across hospitals 
nationwide. Developing unified technical stand-
ards for HSC processing and guidelines for MST 
could support its broader commercialization. 
Ultimately, MST is positioned to become a safe 
and effective treatment strategy for hematological 
malignancies, solid tumors, and potentially even 
nonmalignant disorders.
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