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Summary

What is known on this topic?

Obesity is a primary risk factor for cardiovascular disease (CVD) and cardi-
ometabolic disease (CMD). Many studies have assessed the ability of an-
thropometric indices, including body mass index (BMI), waist circumfer-
ence (WC), and waist-to-hip ratio (WHR), to predict CVD and CMD.

What is added by this report?

We conducted a systematic review and meta-analysis to determine the ef-
fectiveness of these 3 indices to accurately predict CVD risk in adults and
found that WC and WHR better predicted CVD risk than did BMI.

What are the implications for public health practice?

Anthropometric indices can be used as a suitable screening tool for early
detection of CVD and to reduce its associated costs.

Abstract

Introduction
Obesity is one of the main risk factors for cardiovascular disease
(CVD) and cardiometabolic disease (CMD). Many studies have
developed cutoff points of anthropometric indices for predicting
these diseases. The aim of this systematic review was to differenti-
ate the screening potential of body mass index (BMI), waist cir-
cumference (WC), and waist-to-hip ratio (WHR) for adult CVD
risk.

 

Methods
We used relevant key words to search electronic databases to
identify studies published up to 2019 that used receiver operating
characteristic (ROC) curves for assessing the cut-off points of an-
thropometric indices. We used a random-effects model to pool
study results and assessed between-study heterogeneity by using
the I2 statistic and Cochran’s Q test.

Results
This meta-analysis included 38 cross-sectional and 2 cohort stud-
ies with 105 to 137,256 participants aged 18 or older. The pooled
area under the ROC curve (AUC) value for BMI was 0.66 (95%
CI, 0.63–0.69) in both men and women. The pooled AUC values
for WC were 0.69 (95% CI, 0.67–0.70) in men and 0.69 (95% CI,
0.64–0.74) in women, and the pooled AUC values for WHR were
0.69 (95% CI, 0.66–0.73) in men and 0.71 (95% CI, 0.68–0.73) in
women.

Conclusion
Our findings indicated a slight difference between AUC values of
these anthropometric indices. However, indices of abdominal
obesity, especially WHR, can better predict CVD occurrence.

Introduction
Although many factors for cardiovascular disease (CVD) have
been identified, the number of deaths from CVD worldwide rose
from 12.6 million to 17.6 million between 1990 and 2016 (1,2).
CVD is the most common cause of death in both developed and
developing countries; the CVD mortality rate was more than
900,000 in the United States in 2016 (2,3).

Obesity, especially abdominal obesity, is a modifiable CVD risk
factor that is increasingly prevalent worldwide (4). Abdominal
obesity refers to the accumulation of fat in the central area of the
body, which can lead to adverse effects such as hypertension, in-
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sulin resistance, and hyperlipidemia (5,6). The most common an-
thropometric indices used to screen for obesity and overweight are
body mass index (BMI, weight in kg/height in m2), waist circum-
ference (WC), and waist-to-hip ratio (WHR) (2,7,8). BMI is a
simple indicator associated with an increased risk of CVD, al-
though it may not reflect variations in body fat distribution (9).
Because of its simplicity, usability, and availability, BMI is the
most common method of obesity assessment (10). WC and WHR
are also good indicators of abdominal obesity and, similar to BMI,
can predict cardiometabolic disorders (9,11).

The World Health Organization (WHO) recommends a BMI cut-
off point of 25.0 for overweight and 30.0 for obesity and a WC of
102 cm (40 inches) in men and 88 cm (35 inches) in women as
cut-off points for abdominal obesity (12). Because of the increas-
ing prevalence of obesity worldwide, many studies have aimed to
determine optimal cut-off points of anthropometric indices
(7,13,14). Furthermore, because of racial/ethnic differences in
body composition, WHO encourages researchers to conduct stud-
ies to determine the cut-off points of anthropometric indices in dif-
ferent populations (15). However, these racial/ethnic differences
and differences in study design have led to variations in findings
as to which indices better predict these diseases (16).

Despite the many studies that have assessed optimal cut-off points
of anthropometric indices for predicting CVD, there is no study
that summarizes these findings. Moreover, no comprehensive in-
formation is available on which index — BMI, WC, or WHR —
better predicts CVD. Therefore, we conducted a systematic re-
view and meta-analysis of the studies that analyzed these 3 in-
dices to assess their effectiveness in predicting CVD.

Methods
We used the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) as the basis of our systematic re-
view and meta-analysis (17). The study protocol was registered in
the database of the International Prospective Register of Systemat-
ic  Reviews  (PROSPERO) in  June  2019 (registration  no.
CRD42019121324).

Search strategy

We searched international databases including Web of Science,
Medline via PubMed, Scopus, Cochrane Library, ProQuest, and
Google Scholar in July 2019. We also searched national databases
in Iran, including Magiran and SID (Science Information Data-
base). We did not limit our search to a specific timeframe. Addi-
tional studies were identified from manual reference checks of se-
lected studies. We used a sensitive search strategy to retrieve more
relevant studies.

We used Boolean operators (ie, AND, OR, and NOT) to perform
the search. We used AND to search both common terms, OR to
find information that included either search term, and NOT for
terms that we did not want to retrieve. We used parentheses to
combine the search terms by outcome, exposure, and population
categories. We used quotation marks to search for exact terms or
expressions.

This was the search strategy for PubMed: (“body mass index” OR
“waist hip ratio” OR “waist circumference” OR “body composi-
tion” OR “anthropometry”) AND (“cardiovascular diseases” OR
“cardiometabolic”) AND (“ROC curve”) AND (“predict”) AND
(“cut point”) AND (“area under curve” OR “AUC”) AND
(“adult”) NOT (“children”).

Eligibility criteria and data extraction

In accordance with the PECO (Population, Exposure, Comparator,
and Outcomes) framework, we included all original articles from
cross-sectional and prospective cohort studies that examined the
optimal cut-off points of BMI, WC, and WHR for predicting
CVD, regardless of limitations in age, sex, language, race/ethni-
city, and publication year. The study population included healthy
adults (aged ≥18 y). Studies were included regardless of differ-
ences in measurement methods. Studies on children, adolescents,
or a subgroup of patients (eg, cancer, HIV, pregnancy) were ex-
cluded. Two reviewers appraised the studies independently on the
basis of inclusion criteria.

Data for the included articles were summarized as first author;
year of publication; participants’ age, sex, and nationality; sample
size; study design; cut-off points (BMI, WC, and WHR); area un-
der the receiver operating characteristic (ROC) curve (AUC) (95%
CI); and sensitivity and specificity in prespecified data extraction
form in Excel (Microsoft Corporation).

Outcomes

The outcomes of interest were CVD and cardiometabolic disease
(CMD). CVD was defined as conditions that involve narrowed or
blocked blood vessels that can lead to ischemic heart disease,
chest pain (angina), myocardial infarction, and stroke. CMD was
defined as a condition in which there is a high possibility of devel-
oping atherosclerotic CVD and diabetes mellitus (18).

Quality assessment

A 6-item tool for appraising quality of included studies was used
by 2 independent investigators (M.D. and S.M.). Disagreements
between reviewers were resolved by the decision of a third inde-
pendent reviewer (Y.S.). Reliability based on the kappa statistic
was 82%. The quality assessment tool contained 7 items: 1) a
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question about appropriate design; 2) sampling method and ad-
equate sample size; 3) place and date of the research; 4) expres-
sion of study type; 5) a question about acceptable response rate; 6)
full description of inclusion and exclusion criteria and demograph-
ic characteristics; and 7) method of measuring the health outcome
(19).

Each item was scored as fully met (score = 2), partially met or
cannot tell (score = 1), and unmet (score = 0). Studies were classi-
fied as high quality (score, ≥10), intermediate quality (score, 7–9),
and low-quality (score, ≤6).

Exposure cut-off point selection

The search of the included studies indicated that reporting of ex-
posure cut-off points was based on different methods by the re-
searchers: 1) optimal cut-off points, or those that were chosen to
maximize sensitivity and specificity of the indices; and 2) studies
that reported the AUC and associated 95% CIs. The AUC is com-
monly used for assessing the discriminative ability of predictive
and prognostic models to discriminate between individuals who
will or will not develop the disease. The AUC is used to compare
the accuracy of a test, where a greater area indicates that the test is
more accurate (20,21). An AUC of less than 0.60 was considered
to have poor diagnostic performance (22).

Statistical analysis

The heterogeneity of the studies was assessed by using the Co-
chran Q test (with significance of P < .10 because of the low
power of the test) and the I2 statistic (22). We used a random-
effects model with the inverse-variance method and developed
forest plots to describe the results and calculate the point estima-
tions and 95% CIs. Forest plots are used to depict the included
studies, demonstrate the differences between studies, and provide
estimates of overall results (23). We used subgroup analysis to ex-
plore potential sources of heterogeneity, and we used Begg’s and
Egger’s tests to investigate potential publication bias. We used
Stata software version 14.2 (Stata Corp LLC). Significance was
set at P < .05.

Results
Study selection

Our search yielded 2,457 records; after duplicate articles were
eliminated, 1,588 records remained. We then excluded 1,356 re-
cords because the articles were deemed irrelevant on the basis of
their titles or abstracts, leaving 232 studies remaining for full-text
analysis. In this step, 194 studies were excluded for the following
reasons: no relevant outcome measure or data available (n = 146);
studies were conducted on a subpopulation (n = 9); full-text art-

icle not available in English (n = 10); article was a systematic re-
view or meta-analysis (n = 5); article did not report optimal cut-off
points, AUC, or sensitivity and specificity (n = 19); article was a
conference abstract (n = 2); or analysis not conducted in adults (n
= 3). In total, we identified 38 qualifying studies that were in-
cluded in the meta-analysis (Figure 1).

Figure 1. PRISMA flowchart of the study selection process. Abbreviations: AUC,
area under the receiver operating characteristic curve; PRISMA, Preferred
Reporting Items for Systematic Reviews and Meta-Analyses.

Study characteristics

Of the 38 articles, 36 were cross-sectional studies and 2 were co-
hort studies (Table). Studies were conducted from 1996 to 2016 in
16 different countries. The age limit for inclusion in each of the in-
dividual studies ranged from 18 to 90 years. The study population
size ranged from 105 to 137,256 participants.

Results of the meta-analysis

We created forest plots of AUC scores based on BMI, WC, and
WHR for CVD and CMD risk in men and women. Based on the
random-effects model, the pooled AUC value for BMI was 0.66
(95% CI, 0.63–0.69) both in men and women (Figure 2), and the
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pooled AUC value for WC in men was 0.69 (95% CI, 0.67–0.70)
and for women was 0.69 (95% CI, 0.64–0.74) (Figure 3). The
pooled AUC value for WHR was 0.69 (95% CI, 0.66–0.73) in men
and 0.71 (95% CI, 0.68–0.73) in women (Figure 4).

Figure 2. Random-effects pooled area under the ROC curve (AUC) and test of
heterogeneity  for  body  mass  index  with  cardiovascular  disease or
cardiometabolic disease for men and women. The dashed lines indicate the
null model. Weighted percentages determined by using random effects
analysis. Abbreviation: ROC, receiver operating characteristic.

Figure 3. Random-effects pooled area under the ROC curves (AUC) and test of
heterogeneity for waist circumference with cardiovascular disease or
cardiometabolic disease for men and women. The dashed lines indicate the
null model. Weighted percentages determined by using random effects
analysis. Abbreviation: ROC, receiver operating characteristic.

Figure 4. Random-effects pooled area under the ROC curves (AUC) and test of
heterogeneity  for  waist-to-hip  ratio  with  cardiovascular  disease or
cardiometabolic disease for men and women. The dashed lines indicate the
null model. Weighted percentages determined by using random effects
analysis. Abbreviation: ROC, receiver operating characteristic.

The pooled sensitivity value for BMI with CVD or CMD was 0.62
(95% CI, 0.58–0.65) in men and 0.62 (95% CI, 0.58–0.66) in wo-
men, and the pooled sensitivity value for WC in men was 0.68
(95% CI, 0.66–0.70) and in women was 0.67 (95% CI, 0.64–0.69).
The pooled sensitivity value for WHR was 0.66 (95% CI,
0.64–0.69) in men and 0.66 (95% CI, 0.62–0.69) in women.

The pooled specificity  value for  BMI was 0.60 (95% CI,
0.55–0.65) in men and 0.63 (95% CI, 0.59–0.66) in women, and
the pooled specificity value for WC was 0.61 (95% CI, 0.59–0.64)
in men and 0.64 (95% CI, 0.62–0.67) in women. The pooled spe-
cificity value for WHR was 0.63 (95% CI, 0.58–0.69) in men and
0.65 (95% CI, 0.62–0.69) in women.

Quality assessment, heterogeneity, and publication
bias

Based on our results, 25 studies were of good quality and 13 of
fair quality. Results of χ2 tests and the I2 index indicated consider-
able between-study heterogeneity. In studies whose results were
based on AUC, heterogeneity was considerable for BMI (χ2 =
1,399.58; P < .001; I2 = 98.9% [15]), for WC (χ2 = 376.01; P <
.001; I2 = 94.4% [21]), and for WHR (χ2 = 123.84; P < .001; I2 =
91.9% [10]). In studies whose results were based on sensitivity,
heterogeneity was also considerable for BMI (χ2 = 3,284.18; P <
.001; I2 = 99.5% [17]), for WC (χ2 = 1,926.60; P < .001; I2 =
98.7% [24]), and for WHR (χ2 = 140.88; P < .001; I2 = 93.6% [9]).
In studies whose results were based on specificity, heterogeneity
was also considerable for BMI (χ2 = 5,527.57; P < .001; I2 =
99.7% [17]), for WC (χ2 = 2,494.48; P < .001; I2 = 99.0% [24]),
and for WHR (χ2 = 366.20; P < .001; I2 = 97.5% [9]).

Some studies reported optimal cut-off points based on AUC and
some based on sensitivity and specificity, so heterogeneous res-
ults for BMI, WC, and WHR in men and women based on AUC
were between 49.0 and 99.7. Heterogeneous results for BMI, WC,
and WHR in men and women based on sensitivity and specificity
were between 71.8 and 99.2.

We conducted 4 subgroup analyses to address the effect of the sex,
study location, year of publication, and quality of included studies
as potential sources of the observed heterogeneity. We found that
sex was one source. Heterogeneity was still appreciable for all
subgroups, but the AUC, sensitivity, and specificity differences in
values between subgroups were not significant. The results of
Begg’s test for CVD based on BMI, WC, and WHR was not signi-
ficant, so we determined that there was no evidence of publication
bias.
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Meta-regression

The results of the random-effects meta-regression analysis indic-
ated that year of study (coefficient = −0.03; P = .34), location of
study (coefficient = 0.03; P = .16), and year of publication (coeffi-
cient = −0.03; P = .34) were not significant moderators of the ob-
served heterogeneity. However, we found that type of study was a
potential a source of heterogeneity (coefficient = −0.14, P = .04).

Discussion
Our study is the first to summarize findings on the ability of an-
thropometric indices’ cut-off points to predict CVD, using 38
cross-sectional and prospective studies with 105 to 137,256 parti-
cipants. Our findings showed that all examined anthropometric in-
dices have moderate power in CVD and CMD screening, for
which the AUC values were significantly greater than 0.6.
However, WC and WHR better predicted CVD than did BMI.

Obesity is a risk factor for CVD development. Traditionally, BMI
is the most commonly used index for assessing overweight and
obesity (9), but BMI is a predictor of overall obesity without con-
sideration of sex (25). Because it is known that type of fat distribu-
tion (android or gynoid) has an effect on CVD pathogenesis, BMI
cannot accurately represent central adiposity (25,26). Furthermore,
many people who present with abdominal obesity also have a low
BMI (24).

Increased WC is associated with increased adipocytes in this area.
In obesity, adipocytes grow, enlarge, and secrete inflammatory cy-
tokines, such as tumor necrosis factor α, interleukin-6, and high-
sensitivity C-reactive protein (27). Excess adipose tissue as an in-
flammatory tissue can lead to chronic inflammation in the body,
which has an adverse effect on the pathophysiology of atheroscler-
osis and CVDs (27,28). Furthermore, high body fat causes leptin
res i s tance  and  inhib i t s  l ipo lys is  by  producing  mat r ix
metalloproteinase-2 (29,30). Therefore, the ability of WC and
WHR to better predict CVD can be explained by their assessment
of abdominal fat, with its role in secreting inflammatory cytokines
and inducing leptin resistance.

Many of the studies we reviewed showed that indices of abdomin-
al  obes i ty  can  bet ter  predic t  CVDs  (31–39)  and  CMD
(7,16,40,41). The studies by Zabetian et al (39), Pitanga and Lessa
(42), Hadaegh et al (33), Haun et al (35), and Ko et al (16) ob-
served that WHR is a better predictor for CVDs and CMD than are
other evaluated indices. Results from a meta-analysis in 2011 on
82,864 British participants from 9 cohort studies showed that in-
dices of abdominal obesity, including WC and WHR, were re-
lated to CVD mortality and that BMI had no relation to CVD mor-
tality (43). Another meta-analysis on more than 88,000 parti-

cipants in 2008 by Lee et al supported the conclusion that indices
of abdominal obesity are better predictors of CVD risk factors
compared with BMI (44). Also, a meta-analysis in 2012 by van
Dijk et al on 20 articles with 45,757 participants found that in-
dices of abdominal obesity, especially WC, are more strongly pre-
dictive of CVD risk factors (45). Evidence from a meta-analysis
and systematic review by Cao et al on 26 case-control and trial
studies determined that WHR can predict the occurrence of
myocardial infarction in both sexes (46).

Growing evidence shows that higher energy intake results in
stored fat in the central area of the body (47), and excessive fat ac-
cumulation is linked with ectopic fat deposition in the liver, pan-
creas, and skeletal muscle. This ectopic fat accumulation can in-
crease risk of developing features of diabetes, dyslipidemia, meta-
bolic syndrome, CVDs, and overall CMDs (48–50). Increased hip
circumference indicates an increase in fat accumulation in the glu-
teal muscles and lower limbs, which is associated with decreased
physical activity, and this may be a potential risk factor for CMDs
(46,47).

A strength of this review was the large number of included stud-
ies. The study had limitations. Most studies were conducted in
Asian countries, with few studies on other continents. Another
limitation was that some studies reported results based on AUC
and some with sensitivity and specificity; it was not possible to
combine these 2 values, so we had to divide the articles into 2
groups and analyze them separately.

In conclusion, this systematic review attempted to summarize the
evidence on anthropometric indices cut-off points for predicting
CVDs, and which indices better predict these diseases. On the
basis of our findings, all 3 indicators are good screening tools for
predicting CVD. However, indices of abdominal obesity, espe-
cially WHR, can better predict CVD occurrence. Future studies
should include children and adolescents in the study population.
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Table

Table. Characteristics of Studies Included in a Systematic Review and Meta-Analysis of the Discriminatory Capacity of Anthropometric Indices for Determining Risk
for Cardiovascular Disease, 2020

Author Year Country Age, y Sex
Sample Size
(Men/Women)

Study
Design

BMI Cut-Point,
kg/m2 WC Cut-Point, cm WHR Cut-Point

Men Women Men Women Men Women

Cheong KC, et al (31) 2013 Malaysia 18–70 M,F 14,980/17,723 CS  —  — 82.9 79.8  —  —

Li SS, et al (9) 2014 China 35–89 M,F 2,700/2,895 CS  —  —  —  — 0.92 0.89

Zeng Q, et al (51) 2014 China 20–70 M,F 137,256/84,014 CS 24.2 22.9 84.8 75.8  —

Kim SH, et al (14) 2016 Korea 20–79 M,F 9,204/12,195 CS 22.7 23.3 83.2 79.7  —

Zabetian A, et al (39) 2009 Iran ≥40 M,F 1,614/2,006 CO 26.95 29.84 94.4 90.5 0.95 0.89

Han TS, et al (34) 1996 The Netherlands 20–59 M,F 2,183/2,698 CS  —  — 92.0 80.6  —  —

Foucan L, et al (32) 2002 Guadeloupe 18–74 F 5,149 CS  — 27  — 86  —  —

Lin WY, et al (52) 2002 Taiwan 25–50 M,F 26,359/29,204 CS 23.6 22.1 80.5 71.5 0.85 0.76

Ho SY, et al (53) 2003 China 25–74 M,F 1,412/1,483 CS 23.35 23.36 78.1 74.6 0.85 0.8

Mirmiran P, et al (54) 2004 Iran 35–54 M,F 4,449/6,073 CS 27 29 92.0 92.0 0.94 0.86

Pua YH, et al (55) 2004 Singapore 18–68 F 566 CS  — 23.6  — 77.8  — 0.80

Wildman RP, et al (56) 2004 China 35–74 M,F 7,368/7,870 CS 24 24 80 80  —  —

Pitanga G, et al (42) 2005 Brazil 30–74 M,F 391/577 CS 24 26 88 83 0.92 1.18

Mozumdar A, et al (57) 2006 India 25–60 M 105 CS  —  — 90  —  —  —

Al-Lawati JA, et al (58) 2008 Oman ≥20 M,F 680/704 CS 24.4 25.1 84 90 0.93 0.93

Narisawa S, et al (59) 2008 Japan 21–88 M,F 7,761/4,963 CS  —  — 87 83  —  —

de Almeida RT, et al (60) 2009 Brazil 30–69 F 270 CS  —  —  — 86  — 0.87

Hadaegh F, et al (33) 2009 Iran ≥40 M,F 1,614/2,006 CS 26.95 29.19 94.5 94.5 0.95 0.90

Haun DR, et al (35) 2009 Brazil 30–74 M,F 391/577 CS 24 26 88 83 0.92 0.83

Yoshida D, et al (61) 2009 Japan 50–74 M,F 3,758/4,517 CS  —  — 85 85  —  —

Lee JS, et al (62) 2010 Japan 30–80 M,F 1,146/1,330 CS  —  — 80 78  —  —

Satoh H, et al (63) 2010 Japan 40–60 M,F 4,344/1,452 CS 24.7 23.4  —  —  —  —

Katulanda P, et al (64) 2011 Sri Lanka ≥18 M,F 1,767/2,707 CS 20.7 22 76.5 76.3 0.89 0.85

Suka M, et al (65) 2011 Japan 25–65 M,F 37,792/19,349 CS  —  — 85 81  —  —

Samsen M, et al (36) 2012 Thailand 45–80 M,F 6,608/13,013 CS 23 24 80 78  —  —

Siren R, et al (37) 2012 Finland 40–55 M 194 CS  —  — 94  —  —  —

Talaei M, et al (38) 2012 Iran ≥35 M,F 3,068/3,255 CO  —  — 93 97  —  —

Wakabayashi I, et al (66) 2012 Japan 35–70 M,F 3,7697/19,891 CS 24 23 84 81  —  —

Ouyang X, et al (7) 2015 China 23–79 M,F 1,590/1,013 CS 24.6 22.6 85.5 77.5 0.89 0.83

Weng X, et al (67) 2006 China 20–64 M,F 258/271 CS 23 23  —  —  —  —

Lu Q, et al (40) 2009 China 25–90 M,F 1,170/1,356 CS  —  — 93 89  —  —

Mason C, et al (41) 2010 United States 20–66 M,F 208/312 CS  —  — 97 87  —  —

Matsushita Y, et al (68) 2010 Japan 20–70 M,F 969/171 CS 22.6 21.6 83.6 81.1  —  —

Abbreviations: — , not applicable; BMI, body mass index; CO, cohort; CS, cross-sectional; F, female; M, male; WC, waist circumference; WHR, waist-to-hip ratio.
(continued on next page)
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(continued)

Table. Characteristics of Studies Included in a Systematic Review and Meta-Analysis of the Discriminatory Capacity of Anthropometric Indices for Determining Risk
for Cardiovascular Disease, 2020

Author Year Country Age, y Sex
Sample Size
(Men/Women)

Study
Design

BMI Cut-Point,
kg/m2 WC Cut-Point, cm WHR Cut-Point

Men Women Men Women Men Women

Ko KP, et al (16) 2012 Korea 40–69 M,F 1,925/1,932 CS 24 24 80 78 0.89 0.85

Zandieh A, et al (69) 2012 Iran 26–64 M,F 1,481/1,590 CS 25.2 27.3  —  —  —  —

Staiano AE, et al (11) 2013 US 18–64 M,F 1,944/2,087 CS  —  — 82.1 72.1  —  —

Aekplakorn W, et al (70) 2006 Thailand 35–75 M,F 2,093/ 3,212 CS 23 25 84 84 0.91 0.87

Yu J, et al (71) 2016 China 18–79 M,F 7,697/9,069 CS 24.48 24.16 84.9 79.8 0.88 0.85

Abbreviations: — , not applicable; BMI, body mass index; CO, cohort; CS, cross-sectional; F, female; M, male; WC, waist circumference; WHR, waist-to-hip ratio.
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