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ABSTRACT

Oxidative stress is thought to play a role in the
pathogenesis of Alzheimer’s disease (AD) and
increased oxidative DNA damage has been
observed in brain tissue from AD patients. Base
excision repair (BER) is the primary DNA repair
pathway for small base modifications such as
alkylation, deamination and oxidation. In this
study, we have investigated alterations in the BER
capacity in brains of AD patients. We employed a set
of functional assays to measure BER activities in
brain tissue from short post-mortem interval autop-
sies of 10 sporadic AD patients and 10 age-matched
controls. BER activities were also measured in brain
samples from 9 amnestic mild cognitive impairment
(MCI) subjects. We found significant BER deficien-
cies in brains of AD patients due to limited DNA base
damage processing by DNA glycosylases and
reduced DNA synthesis capacity by DNA polymer-
ase b. The BER impairment was not restricted to
damaged brain regions and was also detected in the
brains of amnestic MCI patients, where it correlated
with the abundance of neurofibrillary tangles. These
findings suggest that BER dysfunction is a general
feature of AD brains which could occur at the
earliest stages of the disease. The results support
the hypothesis that defective BER may play an
important role in the progression of AD.

INTRODUCTION

Alzheimer’s disease (AD) is a progressive age-dependent
neurodegenerative disease that leads to cognitive and

behavioral impairment. Recent studies show that tissue
samples from AD patients have elevated levels of
oxidative DNA damage (1–5). A high level of DNA
damage can be particularly deleterious in post-mitotic
cells because they do not self-renew through cell pro-
liferation. Therefore, oxidative base modifications in
nuclear and mitochondrial DNA could lead to selective
loss of damaged neurons and may play a significant role in
aging and neurodegeneration in mammals (6–8).
At present, it is unclear how and why oxidative DNA
damage increases in tissues of AD patients; it is also not
known whether DNA repair and/or the response to DNA
damage play significant roles in the pathogenesis of AD.
Base excision repair (BER) is the primary DNA repair

pathway for small base modifications such as alkylation,
deamination and oxidation, and is thought to play a
critical role during development and maintenance of the
central nervous system (CNS) (9). The first step of BER is
the removal of the damaged base by a substrate-specific
DNA glycosylase, generating an abasic (AP) site, which is
cleaved by an AP lyase or AP endonuclease (i.e. APE1 in
human cells). In the most common BER sub-pathway,
known as short patch BER, the resulting one base gap is
filled in by a DNA polymerase and ligated by a DNA
ligase. If the 50 terminal contains blocking groups, the
DNA polymerase can add between 2 and 8 nt, with
consequent strand displacement, flap processing and
finally ligation. This pathway is known as long-patch
BER. In humans, DNA polymerase beta is the major
DNA polymerase in both sub-pathways (10).
Previous studies of BER in AD patients suggested

possible changes in expression of BER enzymes. For
example, expression of the mitochondrial b-8-oxoG DNA
glycosylase (b-OGG1) was reduced in neuronal cytoplasm
of affected AD tissue, and was associated with neurofi-
brillary tangles (NFT), dystrophic neuritis and reactive
astrocytes (11). Reduced expression of DNA polymerase b
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(pol b) was reported in midtemporal cortex samples from
AD patients (12); in contrast, expression of APE1 was
higher in affected brain tissue (13) and in extracts of brain
cells from AD patients (14). The significance of these
observations is not yet known.
This study examines BER capacity in brain tissue from

sporadic AD patients and normal age-matched controls.
BER activities were also assessed in brain tissue from
patients with amnestic mild cognitive impairment (MCI),
a syndrome associated with a high risk for the develop-
ment of dementia and AD (15). The results indicate that
AD is associated with a significant impairment of BER
function. The BER impairment was not restricted to
damaged brain regions and was also detected in the brains
of amnestic MCI patients, where it correlated with NFT
pathology, a hallmark of AD and related disorders (16).

MATERIALS AND METHODS

Diagnosis of human cases

All patients and controls in this study were longitudinally
followed with annual neuropsychological testing and
physical and neurological examinations. Some late stage
AD patients were not testable in the final phase of their

disease. All controls had neuropsychological test scores in
the normal range prior to death. The clinical diagnosis of
amnestic MCI was made by consensus conference and
followed the criteria of Petersen and Morris (17). The
clinical diagnosis of AD followed the standard accepted
criteria (18). All AD patients met the National Institute on
Aging—Reagan Institute high likelihood guidelines for
the neuropathological diagnosis of Alzheimer’s disease
(19) after histological and immunohistochemical evalua-
tion of 30 different brain regions.

Preparation of brain tissue lysates

Brain specimens used in this study were obtained from
short post-mortem interval (PMI) autopsies of 10 AD (six
males, four females), 9 amnestic MCI (two males, seven
females) and 10 age-matched normal control subjects (six
males, four female). Subject demographic data are shown
in Table 1. We compared BER activities in affected and
unaffected brain regions of AD and control subjects by
examination of inferior parietal lobule (IPL) (affected) and
cerebellum (CE) (least affected) regions of individual
brains. Specimens of IPL and CE were flash frozen in
liquid nitrogen at the time of autopsy. Immediately
adjacent sections were fixed in 4% formaldehyde for
routine histological and immunohistochemical studies.

Table 1. Subjects demographic data

Subjects Age Gender PMI (h) Neuritic plaques Braak stage Cause of death

Control
1 85 Male 2 5.6 3 Unknown
2 86 Female 2.25 7.6 2 Unknown
3 91 Female 4 10.4 1 Unknown
4 86 Female 3.75 7.8 1 Cardiovascular disease
5 81 Male 2 13.4 2 Pulmonary embolism
6 87 Male 2.4 0.2 2 Prostate cancer
7 82 Male 2.1 1.2 1 Congestive heart failure, pneumonia
8 74 Male 4 0 1 Congestive heart failure
9 76 Female 2 0 1 Chronic obstructive pulmonary disease
10 79 Male 1.75 16.2 2 Bladder cancer
Mean�S.D. 82.7� 5.3 2.6� 0.9 6.2� 5.9

Alzheimer’s
1 83 Male 4 24.6 6 Aspiration pneumonia
2 86 Female 4.25 23.4 6 Bowel obstruction
3 78 Male 3.75 34.2 6 Unknown
4 90 Female 2.6 30.4 6 Unknown
5 75 Female 2.33 19 6 Congestive heart failure
6 81 Male 3 17.4 6 Unknown
7 86 Female 3.25 19.4 6 Respiratory infection
8 74 Male 3 27.2 6 Fall
9 84 Male 4.5 34.8 6 Unknown
10 84 Male 2.75 31.4 6 Aspiration pneumonia
Mean�S.D. 82.1� 4.8 3.3� 0.7 26.2� 6.4

Amnestic MCI
1 92 Female 3 4 2 Aspiration pneumonia
2 97 Female 2.75 10 3 Heart disease
3 91 Female 5 14.2 3 Heart disease
4 93 Female 2.75 11.4 3 Colon cancer
5 87 Male 3.5 22 4 Cardio-pulmonary arrest
6 87 Male 2.25 5 3 Congestive heart failure
7 88 Female 2.25 21.6 5 MI-coronary artery disease
8 82 Female 3 16.2 3 Pulmonary embolism
9 99 Female 2 4 5 Congestive heart failure
Mean�S.D 90.7� 5.31 2.9� 0.9 12.0� 7.03
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Human brain specimens were suspended in buffer
(0.3 g/ml) containing 20mM HEPES, pH 7.5, 50mM
KCl, 2mM EGTA and CompleteTM protease inhibitor
(Roche Applied Sciences, Indianapolis, IN, USA). Tissues
were homogenized using a Brinkman Polytron homog-
enizer for 20 s at setting 4. Lysates were centrifuged at
800 g for 10min to remove large cell debris. The resulting
lysates were resuspended (2mg/ml) in 20mM HEPES
(pH 7.0), 150mM KCl, 2mM EGTA, 1% (w/v) CHAPSO
(Sigma), and protease inhibitor mixture and incubated at
48C for 1 h with end-over-end rotation. The lysates were
centrifuged at 100 000 g for 1 h, and the supernatants were
collected. The samples were flash frozen in liquid nitrogen
and stored at �808C. Protein concentration was deter-
mined using the Bio-Rad protein assay (Bio-Rad,
Hercules, CA, USA).

Oligonucleotides

The sequences of the oligonucleotides used in this study
are presented in Table 2. Oligonucleotides containing
8-oxodG, deoxy-uracil or tetrahydrofuran (THF)
(Midland Certified Reagent Company, Midland, TX and
Integrated DNA Technologies, Coralville, IA, USA) were
50-32P-labeled by incubating with [g-32P] ATP
(PerkinElmer, Boston, MA, USA) in the presence of T4
polynucleotide kinase. Unincorporated free [g-32P] ATP
was separated from the reaction mixtures using G25
desalting columns (GE Healthcare Corp., Piscataway,
NJ, USA). The 32P-labeled oligonucleotides were then
annealed to the complementary strands in the presence
of 100mM KCl by heating the samples at 908C for 5min
and allowing them to slowly cool to room temperature.
For gap-filling reaction and repair synthesis incorpora-
tion, unlabeled substrates were annealed as described
above.

Oligonucleotide incision assays

8-OxodG incision activity was measured using an oligo-
nucleotide incision assay, as previously described (20). The
protein concentration of the lysates for all DNA
glycosylase assays was adjusted with 20mM HEPES–
KOH (pH 7.4), 1mM EDTA, 100mM KCl, 25% glycerol
(v/v), 0.015% Triton X-100, 5mM DTT and protease
inhibitors. Incision reactions (20 ml volume) contained
40mM HEPES–KOH, 5mM EDTA, 1mM DTT, 75mM
KCl, 10% glycerol, 95 fmol of 32P-labeled duplex

oligonucleotide. The reactions were incubated at 328C
for 17 h with 16 mg of tissue lysates. The reaction was
terminated by the addition of 1 ml each of the following,
5mg/ml Proteinase K and 10% SDS, and incubated at
558C for 30min. The DNA was ethanol-precipitated by
the addition of 1 mg of glycogen, 4 ml of 11M ammonium
acetate, and 63 ml ethanol, pelleted, dried and suspended in
formamide dye. The samples were resolved in a denaturing
20% polyacrylamide gel containing 7M urea. After
electrophoresis, the gels were visualized using a
Molecular Dynamics Phosphoimager (GE Healthcare
Bio-Sciences Corp., Piscataway, NJ, USA). The images
were analyzed using ImageQuant 5.2 software (GE
Healthcare Bio-Sciences Corp., Piscataway, NJ, USA).
Incision activity was calculated as the amount of radio-
activity in the band corresponding to the damage-
specific cleavage product over the total radioactivity in
the lane.
Uracil incision activity was measured using a 30-mer

oligonucleotide containing a single uracil at position 12
(Table 1). Incision reactions (20ml) containing 70mM
HEPES–KOH (pH 7.4), 5mM EDTA, 1mM DTT,
75mM NaCl, 10% glycerol and 5 mg of protein were
incubated for 1 h at 378C. The reactions were terminated
and DNA processed as described for the measurement of
activities of the other glycosylases.
AP endonuclease 1 (APE1) incision activity was

measured using a 28-mer oligonucleotide containing the
abasic site analog THF at position 11 (Table 1). Samples
were diluted in 10mM HEPES–KOH (pH 7.4) containing
100 mM KCl. Reactions (10ml) contained 25mM
HEPES–KOH (pH 7.4), 25mM KCl, 0.1mg/ml BSA,
5mM MgCl2, 10% glycerol, 0.05% Triton X-100 and
25 ng protein. Reactions were incubated for the indicated
duration at 378C and terminated by the addition of
formamide dye and heating at 908C for 10min. Samples
were resolved, visualized and analyzed as described for the
measurement of DNA glycosylase activities.

Gap-filling assay

Pol b single nucleotide gap-filling activity was measured
using a non-labeled 34-mer duplex oligonucleotide con-
taining a single gap at position 16 (Table 1). Samples were
diluted in 10mM Tris–HCl (pH 7.4) containing 100mM
KCl. Reactions (10 ml) contained 50mM Tris–HCl
(pH 7.4), 50mM KCl, 1 mM DTT, 5 mM MgCl2, 5%
glycerol, 5 mM dCTP (Roche Applied Sciences,

Table 2. Names and sequences of oligonucleotides used in this study

Assay Name Sequence

8-Oxoguanine incision OG 50-GAA CGA CTG T(OG)A CTT GAC TGC TAC TGA T
30-CTT GCT GAC A C T GAA CTG ACG ATG ACT A

Uracil incision and BER synthesis incorporation UU 50-ATA TAC CGC GG(U) CGG CCG ATC AAG CTT ATT
30-TAT ATG GCG CC G GCC GGC TAG TTC GAA TAA

AP-site incision AP 50-GAA CGA CTG T (F) A CTT GAC TGC TAC TGA T
30-CTT GCT GAC A C T GAA CTG ACG ATG ACT A

Gap-filling GAP 50-CTG CAG CTG ATG CGC ()GT ACG GAT CCC CGG GTA C
30-GAC GTC GAC TAC GCG GCA TGC CTA GGG GCC CAT G

OG=8-oxoguanine; F= tetrahydrofuran abasic site analog.
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Indianapolis, IN, USA), 1 pmol of duplex gap oligonu-
cleotide, 4 mCi of a32P-dCTP (GE Healthcare Corp.,
Piscataway, NJ, USA) and 1 mg protein. Reactions were
incubated at 378C for 1 h or the indicated duration and
terminated by the addition of formamide dye and heating
at 908C for 10min. Samples were resolved and visualized
as described above.

Base excision repair synthesis incorporation assay

Repair synthesis reactions (10 ml) contained 40mM
HEPES (pH 7.6), 0.1mM EDTA, 5mMMgCl2, 0.2mg/
ml BSA, 20mM KCl, 1mM DTT, 40mM phosphocrea-
tine, 100 mg/ml creatine phosphokinase, 2mM ATP,
40 mM of each dATP, dTTP, dGTP and 4 mM of dCTP,
0.8mCi a32P-dCTP, 3% glycerol, 80 ng of double-strand
U-containing oligonucleotide and 10 mg tissue lysate
protein. The reactions were incubated at 378C for 3 h
and terminated by adding 2.5 mg of proteinase K and 0.5ml
of 10% SDS and incubating at 558C for 30min. The DNA
was precipitated overnight at �208C after addition of 1 mg
glycogen, 4 ml of 11M ammonium acetate, 60 ml of
ethanol. Samples were centrifuged, dried, suspended in
10 ml of formamide loading dye. The gels were resolved
and visualized as described earlier. BER activity was
quantified as 32P-dCTP signal strength of the product
band relative to control sample #1 (relative activity=1),
after subtracting the background of a reaction without
protein.

Western analysis

Proteins in tissue lysates (10–20 mg) were separated on
12% Novex� Tris-glycine gels (Invitrogen, Carlsbad, CA,
USA) or 12.5% Criterion Tris–HCl gels (Bio-Rad,
Hercules, CA, USA), blotted onto a PVDF membrane
and blocked for 1 h at room temperature in 5% non-fat
dry milk (Bio-Rad, Hercules, CA, USA) in TBST (20mM
Tris—HCl, pH 7.2, 137mM NaCl, 0.1% Tween-20).
Fresh milk-TBST was added with the primary antibody,
which was one of the following: rabbit polyclonal anti-
UDG (FL-313) (Santa Cruz Biotechnology, Santa Cruz,
CA, USA), mouse monoclonal anti-human APE1
(Trevigen, Gaithersburg, MD, USA), mouse monoclonal
anti-human pol b (Trevigen), rabbit polyclonal anti-beta
tubulin (Abcam, Cambridge, MA, USA). Detection was
performed with ECL+Plus� (GE Healthcare Bio-Sciences
Corp., Piscataway, NJ, USA). Blots were quantified using
ImageQuant 5.2 software.

Statistical analysis

The results are reported as mean� SD. Each assay was
performed at least twice. Results from control sample #5
and AD sample # 7 in some assays were statistically
defined as outliers based on box plots and were therefore
excluded from all statistical analyses in this study. The
differences among human control and AD or MCI
samples were analyzed by the Student’s t-test, and a
P< 0.05 was considered statistically significant.
Correlation coefficients were calculated using Pearson’s
correlation test. Trend analysis was performed by

calculating the linear contrast using the SAS software
version 9.1.

RESULTS

Impaired BER activities and lower protein levels in AD
inferior parietal lobule

To test whether BER activities are altered in human AD
brain, BER assays were conducted using brain tissue from
short post-mortem interval autopsies of 10 sporadic AD
patients and 10 age-matched human controls (Table 1).
The activity of DNA glycosylases was measured as the
incision of a radiolabeled DNA oligonucleotide substrate
containing a single lesion, either uracil or 8-oxodG. An
oligonucleotide containing the abasic site analog THF was
used to measure AP-site incision activity. Incision activity
was calculated as the amount of radioactivity in the band
corresponding to the damage-specific cleavage product
over the total radioactivity in the lane. In the inferior
parietal lobule (IPL), uracil incision activity was signifi-
cantly lower (P=0.022) in AD samples than in control
samples (Figure 1A). UDG protein level was also lower in
AD samples than in control samples (P< 0.001)
(Figure 1D).

8-OxodG incision activity was also significantly lower
(P=0.010) in IPL from AD patients (Figure 1B). Since
the 8-oxodG DNA glycosylase (OGG1) is the main DNA
glycosylase for this lesion in human tissues, these results
suggest lower abundance or activity of OGG1 in this
tissue from the AD patients. However, AP-site incision
activity and protein levels were similar in IPL from AD
patients and controls (Figure 1C). Single nucleotide gap-
filling capacity in brain tissue was analyzed as the
incorporation of a radiolabeled dCTP nucleotide into a
34-mer double-strand substrate containing a single gap.
Single nucleotide gap-filling activity was significantly
lower (P=0.006) in IPL from AD patients (Figure 1E
and F). Furthermore, pol b protein level was lower in IPL
from AD patients than in control samples (P< 0.0001)
(Figure 1D).

Uracil-initiated BER capacity in brain tissue was
analyzed as the incorporation of a radiolabeled dCTP
nucleotide into an unlabeled 30-mer double-strand sub-
strate containing a U/G base pair. Because the data
presented above indicate that pol b and UDG are reduced
in IPL from AD patients, it was predicted that total BER
capacity would also be reduced. Indeed, the amount of
DNA repair synthesis in a uracil-containing double-
stranded oligonucleotide (Table 2) was significantly
lower (P=0.017) in IPL from AD patients than from
controls (Figure 1G and H). Total BER capacity
positively correlated with UDG activity (r=0.87 con-
trols; r=0.92 AD) and pol b activity (r=0.86 controls;
r=0.94 AD) in control and AD lysates (Figure 2A and
B), supporting the idea that the lower BER in the AD
lysates was caused by decreased activity of these two
enzymes. Furthermore, total BER capacity in controls was
inversely correlated with age (r=�0.89), whereas most
AD patients had low levels of BER regardless of age
(r=�0.25) (Figure 2C).
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Impaired BER activities and lower protein levels
in human AD cerebellum

If lower BER activity is a sensitizing feature in AD rather
than an underlying cause of the disease, we might expect

similar alterations in BER activities in both affected and
unaffected regions of brain from AD patients. This
question was examined by comparing BER activities in
cerebellum (CE) (least affected) and IPL (affected) regions
of individual brains. The results indicated that similar
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changes in BER function occur in CE and IPL brain
regions (Figure 3A–G). In particular, uracil incision
activity and UDG protein level were significantly reduced
(P=0.030 and P=0.032, respectively) in AD CE
(Figure 3A and D). Moreover, 8-oxoG incision activity

was significantly reduced (P=0.003) in AD samples
(Figure 3B). As for the IPL, AP incision activity and
APE1 protein level was similar in CE from AD patients
and controls (Figure 3C). Additionally, AD CE lysates
had significantly reduced (P=0.025) single nucleotide
gap-filling activity (Figure 3E and F) and pol b protein
level (P=0.005) (Figure 3D), although to a lesser extent
than IPL. Consequently, total BER capacity was sig-
nificantly reduced (P=0.031) in CE from AD patients
(Figure 3G). As observed for BER assays in IPL, total
BER capacity correlated positively with UDG (r=0.72
controls; r=0.67 AD) and pol b (r=0.31 controls;
r=0.57 AD) (Figure 4A and B) and tended to decrease
with the age of controls (r=�0.29), but not with the age
of AD patients (Figure 4C).

Characterization of BER activities in human amnestic
MCI inferior parietal lobule

Recent reports showed increased oxidative DNA damage
in leukocytes (4) and brain specimens (21) in subjects with
amnestic mild cognitive impairment (MCI), a transition
phase between normal aging and early dementia and the
earliest clinically detectable phase of AD. This suggests
that accumulation of DNA damage may be an early event
in the progression of AD that could contribute to the
pathogenesis of this disease. To test whether loss of BER
function occurs in subjects with high risk of developing
AD, BER activities were measured in IPL from nine
amnestic MCI patients (Table 1), and compared to BER
activities in AD patients and controls. The results showed
a significant linear trend of decrease in uracil incision
activity (P=0.027) (Figure 5A) and single-nucleotide
gap-filling activity (P=0.010) (Figure 5C) with the
severity of the clinical diagnosis. Median uracil incision
(Figure 5B) and gap-filling (Figure 5D) activities were 26
and 23% lower in amnestic MCI samples than in controls.
Although total BER capacity was not statistically
significantly lower in samples from amnestic MCI patients
(Figure 5E), median total BER capacity was reduced by
62% (Figure 5F). Uracil incision and gap-filling activities
also correlated with total BER capacity in IPL from
amnestic MCI patients (Figure 5G).

Amyloid b (Ab) plaques and NFT are hallmarks of AD.
Although there was no correlation between BER activities
and the number of Ab plaques in patients with AD or
amnestic MCI (data not shown), BER activities were
inversely correlated with Braak stage (22), a measure of
NFT abundance, in patients with amnestic MCI
(Figure 5H).

DISCUSSION

The goal of this study was to determine whether BER
dysfunction plays a role in susceptibility to or progression
of AD. This question was addressed by measuring BER
activities in brain specimens from patients with AD or
normal controls. The results indicate that AD is associated
with a significant impairment of general BER function.
Our findings show that uracil incision activity and UDG
protein levels were significantly lower in brains of AD
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patients than in controls. Uracil accumulates in DNA as
a result of spontaneous deamination of cytosine (23),
generating a U:G mismatch; or incorporation of dUMP
during replication (24), which results in a U:A base pair.

UDG activity decreases rapidly during neuronal develop-
ment and remains at a low level in adult neurons (25),
suggesting that uracil might accumulate in DNA of adult
neurons and contribute to neuronal aging (26).
Furthermore, a recent study reported that suppression of
UDG expression induced apoptosis in cultured rat
hippocampal neurons (27), supporting a role for this
enzyme in maintaining neuronal viability. Importantly,
folic acid deficiency, which has been linked to
increased susceptibility to AD (28), promoted uracil
misincorporation and hypomethylation of DNA in
neurons and sensitized them to Ab toxicity (29). It also
resulted in increased DNA damage and hippocampal
neurodegeneration in APP transgenic mice (29). This is
consistent with the possibility that reduced uracil incision
capacity could sensitize neurons to Ab toxicity in the
brains of AD patients.

8-OxodG incision activity is a primary function of
OGG1, a bifunctional DNA glycosylase with a strong
glycosylase activity but weak AP lyase activity (30,31).
Lower OGG1 activity was previously observed in nuclear
lysates from affected human AD brain regions using a
sodium borohydride trapping assay (32). This assay
detects the covalent complex formed between the AP
lyase activity of OGG1 and the abasic site intermediate,
and thus measures only the robustness of the AP lyase
activity. By employing a DNA cleavage assay we show
here that 8-oxodG incision activity of OGG1 is lower in
AD extracts independent from its limited AP-lyase
activity.

The finding that AP-site incision activity and APE1
protein levels were similar in brains of AD patients and
controls differs from previous reports of increased APE1
expression in AD (13,14). However, only expression levels
and not APE1 activity was reported in the previous
studies. The activity is a more finite determination of
function. However, there could be issues with different
experimental protocols, such as post-mortem interval and
tissue handling.

Single nucleotide gap-filling activity and pol b protein
level were also significantly reduced in brains of AD
patients. DNA pol b protects cells against the cytotoxicity
of oxidative DNA damage (33) and plays a role in genome
maintenance in aging and carcinogenesis (34).
Importantly, mice lacking pol b display neonatal lethality
with abnormal neurogenesis characterized by apoptotic
cell death in the developing central and peripheral nervous
systems, but not in other tissues (35). A recent report (12)
on reduced pol b protein levels in AD brains supports our
observation. DNA pol b contributes two essential enzy-
matic activities to BER: a 50-deoxyribose phosphate (dRP)
lyase activity, necessary to remove the dRP intermediate
generated by APE1 cleavage of the abasic site, and a
nucleotidyl transferase activity that incorporates the
correct nucleoside triphosphate in a template-dependent
manner (36). While we have not directly measured
dRP-lyase activity in these samples, the observation
of decreased gap filling indicates a likely defect in
pol b-catalyzed DNA synthesis in brains of AD patients.

Overall BER capacity ultimately determines the effi-
ciency of repair of BER-specific lesions. Our results show
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that total uracil-initiated BER was significantly lower in
brains of patients with AD. Moreover, the finding that
total BER capacity correlated positively with UDG and
pol b activities in control and AD brains supports the idea
that the lower BER was caused by decreased activity of

these two enzymes. Notably, total BER capacity was
inversely correlated with age of controls, but not with age
of AD patients. Instead, the low BER capacity associated
with AD regardless of age suggests a premature aging
phenotype.
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It is important to note that the BER defects reported
here were not limited to neuropathologically affected
regions of AD brains, but instead were apparent in IPL
and CE of AD patients. This suggests that BER
dysfunction is a general feature of AD brains. This
observation also dissociates the reduced BER levels in the
IPL from selective loss of neurons in this region, since
there is no neuronal cell death in the cerebellum of AD
patients.
MCI is a syndrome defined as cognitive decline greater

than the expected for an individual’s age and education
level but that does not interfere notably with activities of
daily life (37). Although some individuals with MCI
remain stable or even return to normal over time, more
than half progress to dementia within five years. The
amnestic subtype of MCI, examined in the present study,
has the highest risk of progression to AD. Interestingly,
BER activities were reduced in brain tissue from patients
with amnestic MCI, a condition also characterized by
increased load of oxidative DNA damage (4,21). This
suggests that BER dysfunction, and increased accumula-
tion of oxidative DNA damage, could occur at the earliest
stages of dementia and AD.
Ab plaques and NFT are hallmarks of AD. Thus, it is

important to ask whether BER dysfunction is associated
with these neuropathological features. Gabbita and
colleagues (5) found no correlation between the number
of oxidative DNA lesions in AD brain regions and the
number of NFT or Ab plaques. Similarly, BER dysfunc-
tion did not correlate with the number of Ab plaques in
this study. However, BER activities and NFT were
inversely correlated with Braak stage (22), a measure
of NFT abundance, in brains of amnestic MCI patients.
A similar pattern could not be observed in brains of AD
patients because all AD patients in this study were
classified in the highest Braak stage (VI). The possible
heterogeneity of outcome of amnestic MCI patients
supports the finding that the BER deficiency correlates
with the NFT pathology. Moreover, since NFT pathology
in AD is associated with cognitive decline (38), our finding
suggests a link between BER capacity and the degree of
neurological impairment, as measured by Braak stage.
The question of how BER deficiency is involved in the

progression of AD has yet to be answered. One possibility
is that lack of proficient BER sensitizes neurons to the
deleterious effects of Ab and NFT. It has been speculated
that a cause for oxidative DNA damage in AD is the
accumulation of Ab itself. This hypothesis resulted from
the observation that Ab can directly generate hydrogen
peroxide through iron and copper ion reduction (39,40).
The combined effect of increased oxidative DNA damage
and a significant deficiency in DNA repair could
potentially lead to neuronal loss. This may also explain
why although BER deficiency was detected in both
affected and non-affected regions of AD brains, neuronal
loss is limited to areas where Ab plaques and NFT are
present.
In summary, this study demonstrates significant BER

dysfunction in brains of AD patients, resulting from
reduced UDG, OGG1 and pol b activities. Our findings
that BER deficiencies were detected in both affected and

non-affected brain regions of AD patients suggest that
impairment of BER is a general feature of AD brains. We
also show that BER activities in amnestic MCI patients
inversely correlated with the severity of disease. Together,
these findings suggest that defective BER may play an
important role in the progression of AD. The results
presented here may lead to better understanding of the
molecular mechanisms involved in AD, and pave the way
to the development of risk assessment tools as well as
preventive drug therapy.
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