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Abstract

Background

Computational approaches toward gene annotation are a formidable challenge, now that

many genome sequences have been determined. Each gene has its own function, but com-

plicated cellular functions are achieved by sets of genes. Therefore, sets of genes with

strong functional relationships must be identified. For this purpose, the similarities of gene

expression patterns and gene sequences have been separately utilized, although the com-

bined information will provide a better solution.

Result & Discussion

We propose a new method to find functional modules, by comparing gene coexpression

profiles among species. A coexpression pattern is represented as a list of coexpressed

genes with each guide gene. We compared two coexpression lists, one from a human guide

gene and the other from a homologous mouse gene, and defined a measure to evaluate the

similarity between the lists. Based on this coexpression similarity, we detected the highly

conserved genes, and constructed human gene networks with conserved coexpression

between human and mouse. Some of the tightly coupled genes (modules) showed clear

functional enrichment, such as immune system and cell cycle, indicating that our method

could identify functionally related genes without any prior knowledge. We also found a few

functional modules without any annotations, which may be good candidates for novel func-

tional modules. All of the comparisons are available at the http://v1.coxsimdb.info web

database.
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Introduction
With the sequencing of the human genome completed [1–3], the next step is to annotate all of
the functional elements in the genome, to reveal the genomic content. In spite of intensive anal-
yses using EST [4], CAGE [5] and/or comparative genomics [6–8], about half of the genes
remain uncharacterized. Thus, the focus has shifted to the functional annotation of the genes
[9, 10].

Although each gene has its specific function, complicated cellular functions are usually
achieved by combinations of individual functions, as in the ribosome, which synthesizes pro-
teins by the coordinated functions of many ribosomal proteins and RNAs. Metabolic pathways
are also good examples of genes that work together to achieve various biological functions.
Therefore, to understand the functional role of each gene, it is essential to find groups of genes
working with the same timing, by identifying genes with functional relationships. [11]

Various kinds of relationships can be considered to identify the functional modules. Pro-
tein-protein interactions (PPI), obtained by high throughput experiments such as yeast two-
hybrid methods [12], provide some of the most comprehensive interaction data [13,14], but
they only cover the proteins with direct interactions. In other words, genetic interactions (e.g.
transcription factor and target gene) and metabolic pathways are not included. Another way to
infer gene networks is based on the manual curation of the literature [15]. This approach pro-
vides high quality interaction data, but is quite time consuming and requires large amounts of
human resources.

DNA microarrays generate profiles of comprehensive gene expression patterns and their
clustering [16,17] to detect functionally related genes. Since one gene expression profile only
provides a snapshot of a cell state, many expression profiles are required to detect related genes
with reliable accuracy. Currently, over ten thousand gene expression data points are available
for some microarray platforms, and they have been used to identify genes [18], genetic interac-
tions [19] and gene modules [20,21].

To detect the regulatory relationships among genes, coexpression is a popular and promis-
ing approach [20,22]. Coexpression is calculated from large amounts of expression data
obtained by microarray [23] or RNA-seq [24] experiments, to detect the genes with similar
expression profiles. In this study, we have focused on the microarray data, because the number
of available microarray samples is about 10 times larger than that of RNA-seq experiments.
RNA-seq has some advantages, in terms of the gene expression profile quality. However, the
number of samples is also an important factor to identify good functional relationships
between genes, because larger coverage of various conditions is necessary to detect subtle func-
tional connections. According to the progress of several international projects, such as
ENCODE [25], the amount of available expression data is rapidly increasing, but is still cur-
rently limited as compared with that of DNAmicroarrays. Our approach will be applicable to
RNA-seq data in the future, when larger amounts are available.

For the identification of gene functions, sequence conservation is also very useful. Since
comparative analyses of genome sequences have worked very well to identify new potentially
functional elements, as in the recent comparisons of 29 mammalian genomes [8], such analyses
are becoming a standard practice when new genome sequences are solved [6,7,26].

Since both gene expression and sequence conservation are useful to understand gene func-
tions, the introduction of conservation into analyses of gene expression profiles should be
promising. Su et al. [27] compared the human and mouse transcriptomes, and found similar
gene expression profiles in the corresponding organs. More recently, Brawand et al. [28]
reported that the main differences in gene expression are due to the lineage, the chromosomes,
and the tissues. These approaches were very useful to characterize the functional relationships
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among genes over species, but a serious problem still exists in the consideration of the conser-
vation of gene expression patterns. It is easy to obtain samples from similar organs, but the
similarity may not always indicate the correspondence of the organs. It is almost impossible to
obtain samples corresponding to the same type of cells in the same state.

To overcome this difficulty, some studies have proposed methods to match samples over
species. Le et al. [29] developed a method to match experiments over species, by introducing a
new distance function between the samples, and Wise et al. [30] tried to match experiments
based on their descriptions along with the expression data. These methods may work well to
find similar gene expression states, but they naively assume that homologous genes have simi-
lar expression profiles. As we describe in this paper, this assumption is not always true.

We now propose a new method to compare gene expression patterns without sample
matching, to focus on the relationships among the genes in each species and to compare the
relationships among species. In this approach, we assume that the interactions between genes
are conserved over species, if the interactions are fundamentally important for the biological
roles of the genes. More precisely, we introduced a new method to measure the coexpression
similarities. We created gene networks based on the conserved gene coexpression to find the
functional modules by using a graph community detection algorithm, and found some well-
enriched functional gene modules without any prior knowledge.

Results & Discussion

Patterns of coexpression conservation
We compared the gene lists of the corresponding (or homologous) gene pairs to evaluate the
conservation of coexpression patterns and expression data from two species, human and
mouse. For each human gene (referred to as the guide gene), a list of coexpressed genes was
created by ordering the genes by the coexpression strength, and a corresponding list of mouse
genes was constructed for each homologous gene to the guide gene. The coexpression conser-
vation of a homologous gene pair was measured as the similarity in the lists for the top N genes
(Fig 1A). When the human guide gene had multiple homologous mouse genes, we compared
the coexpressed gene lists for each pair of homologous genes. Next, we drew a “conservation
chart” based on the number of corresponding gene pairs in the most coexpressed N genes, as
shown in Fig 1B. If the human and mouse coexpression lists are exactly equal, then the conser-
vation chart should look like the blue dashed line in Fig 1B. If the coexpression lists are equal
to Fig 1A, then the conservation chart looks like the red dashed line in Fig 1B. A conservation
chart represents the degree of similarity in the coexpression lists and indicates where the simi-
larity exists.

One of the highly conserved genes was RPS14 (ribosomal protein S14), which had 71 corre-
sponding genes in the top 100 most coexpressed genes (Fig 1C). Among the 60 genes, 55 are
ribosomal genes, which correspond to 92% (= 55/60) of the human ribosomal genes tested.
This result partially demonstrates the potential of our approach to detect related genes. How-
ever, many genes have low coexpression conservation, as in the example of PSMD9 (Fig 1D).
On average, 13.1 genes were found to have corresponding genes in the top 100 most coex-
pressed genes.

Although the “shapes of the conserved lines” in the conservation charts were quite divergent
and thus prevented a systematic classification, we found an interesting pattern, as shown in Fig
1E for SYCN (syncollin). This gene has a well-conserved region for the top 39 genes, while
there were only slight increases after that, and 24 of the 39 genes have the homologous genes in
mouse. SYCN is involved in the pancreatic secretion pathway (KEGG:hsa04972), and 12 of the
24 genes are also involved in the same pathway. This observation suggested that SYCN and the

Comparison of Gene Coexpression to Find Modules

PLOS ONE | DOI:10.1371/journal.pone.0132039 July 6, 2015 3 / 17



24 genes may form a functional cluster for the pathway. When we assume that functional gene
clusters are conserved over species, then the two coexpression lists for the orthologous gene
should be similar over species. Therefore, it may be possible to detect the functional clusters by
focusing on the well-conserved regions. Hereafter, we refer to the genes in conserved regions
that have corresponding mouse genes (namely, the 24 genes in the above example) as “con-
served coexpressed genes" or in short "CC genes".

Identification of conserved coexpressed genes
To detect the CC genes from the conservation chart, we tried to identify a turning point, where
a well-conserved region goes into a less conserved one. For this purpose, we searched for a
point by detecting a flat region in each conservation chart, because a conservation chart should
be flat for the genes in a list if the orders of the two coexpression lists are random. Thus, the ini-
tial point of the flat region was defined as the turning point, and we defined the conserved
region as the part on the left of the flat area. The CC genes were identified as the corresponding
genes between human and mouse of a guide gene in the conserved region. See the Materials

Fig 1. Overview of the conservation calculation method. (A) Schematic explanation of the comparison method for the conserved gene lists. Prepare a
gene list pair for an orthologous gene pair from human and mouse. Count the number of human genes (yellow highlighted genes) with corresponding genes
in the topN genes, where green arrows mean corresponding gene pairs. When a human gene corresponds to multiple mouse genes, we counted one human
gene. However, when a mouse gene corresponds to multiple human genes, we counted all of the human genes. (B) Conservation chart of (A). This chart
illustrates the change in the number of corresponding genes against the parameter value, N. (C) An example of a conservation chart for the most conserved
guide gene. (D) An example of a conservation chart with a typical shape. (E) An example of genes with a turning point.

doi:10.1371/journal.pone.0132039.g001
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and Methods section for the details of the turning point detection and the CC gene identifica-
tion. As a result, 4,672 guide genes had a turning point. Each guide gene had 6.6 genes on aver-
age, and 3,776 non-redundant CC genes were identified.

Conserved gene network in human
To visualize the relationships among all of the guide genes and their CC genes, we represented
them in a network style, where each node corresponds to a gene and an edge is drawn from a
guide gene to a CC gene, and removed all of the unidirectional edges. (Information about the
nodes and edges is provided in the Cytoscape format in the S1 File.). The resulting networks
are shown in Fig 2A. The networks consisted of one large and twenty small networks.

Since the large networks were too big to interpret, we separated them into more tightly
related gene modules for convenience. For this purpose, we used the community detection
algorithm developed by Palla et al. [32] for all of the networks shown in Fig 2A. This algorithm
searches for densely connected sub-networks by integrating small cliques, and thus requires
one parameter, the smallest clique size (SCS). We first used a default value (SCS = 4) and found
70 modules, as shown in Table 1. To characterize the functional roles of the modules, we per-
formed GO enrichment analyses by the Fisher exact test, and selected the GO term with the
smallest p-value from the statistically significant terms as the representative GO term. The
genes in each module are shown in S1 Table.

As a result, 45 of the 70 modules had significantly enriched GO terms. For example, the rep-
resentative term of the largest modules shown as ID: A-1 in Fig 2A was GO:0002376 (immune
system process), where 232 out of 404 genes had the GO term.

Some detected modules are not labeled with a Gene Ontology Term, as in the cases of the
15th, 16th, 18th and 19th modules. These modules had no significant terms with P-
values< 0.05, and thus might be novel functional modules, such as the other modules with sig-
nificant terms, because they have comparatively strong conserved coexpression.

Some gene modules had similar annotations and overlaps, indicating the existence of larger
modules, if we searched modules for lower density. To elucidate the relationships among the
modules, we observed the overlaps by changing three different SCS parameters of the module
detection algorithm. We used three, four and five as the SCS to reveal both the low-density
modules and high-density modules, as recommended by Palla et al. [32]. The numbers of
detected gene modules were 107, 70 and 42, and the mean numbers of genes were 17.4, 19.3
and 24.6, respectively. The genes in the modules for SCS = 3 and SCS = 5 are shown in S2 and
S3 Tables, respectively, and the enriched GO terms are shown in S4 and S5 Tables. The number
of detected module with SCS = 4 (70 modules) may be larger than expected as expected, but it
should be noted that our method will not detect the gene modules that were changed from
mouse to mouse, because our method is based on the conservation between human and
mouse, which may result in that the number of modules was limited.

The largest gene module in SCS = 3 is shown in Fig 2B. In this module, 308 out of 767 genes
had the GO term GO:0002376 (immune system process). This module can be further separated
into 9 sub-modules with 10 or more genes by using SCS = 5, as indicated in Fig 2B, where dif-
ferent colors represent the different modules with SCS = 5. Some of the colored gene modules
were related to the immune system GO term, but others were not. For example, the ID: B-1, B-
2 and B-4 gene modules in Fig 2B are related to GO:0002376 (immune system process), while
the ID: B-5 gene module at the bottom right in Fig 2B with the representative GO: 0030198
(extracellular matrix organization), and some other enriched GO Terms as shown in the web
database at http://v1.coxsimdb.info/coxsim/hsa-v13-01/mmu-v13-01/SCS:5/5. Most of the
enriched GO terms are directly related with immune system process, but we can also see some
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Fig 2. Detected gene networks (A) Gene networks based on coexpression conservation.We generated networks with 3,776 genes. The largest gene
network contained 2,717 genes. Genes (nodes) were colored when they were a member of the top 20 largest modules with SCS = 4. Gray nodes were parts
of some smaller modules, and black nodes were not parts of any modules. We prepared this picture of the network with Cytoscape ([31]). (B) The largest
gene modules with SCS = 3 and the large modules with SCS = 5 are colored. This module has the representative term “immune system process”, but not all
of the sub-modules with SCS = 5 have immune-related GO terms, as discussed in the text. (C) The gene network without a turning point. Since some gene
networks had high coexpression conservation, no flat region was found. We used 100 instead of a turning point, because turning points cannot be defined for
these genes. This network was generated from these highly conserved genes.

doi:10.1371/journal.pone.0132039.g002
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Table 1. Detected genemodules. Summary of detected gene modules and representative GO terms when SCS = 4.

Community
ID

Community
Size

Representative
GOID

Representative GO name # of GO
annotated

# of
intersect

p-value

1 404 GO:0002376 immune system process 1897 232 1.14E-
99

2 97 GO:0043588 skin development 295 27 2.32E-
19

3 83 GO:0030198 extracellular matrix organization 353 32 2.81E-
26

4 67 GO:0006936 muscle contraction 255 35 4.16E-
40

5 48 GO:0060271 cilium morphogenesis 153 7 1.68E-
02

6 43 GO:0072376 protein activation cascade 52 11 5.09E-
14

7 42 GO:0006414 translational elongation 88 35 3.85E-
70

8 32 GO:0045333 cellular respiration 145 25 6.40E-
41

9 31 GO:0006986 response to unfolded protein 128 10 1.84E-
09

10 28 GO:0016126 sterol biosynthetic process 48 18 1.55E-
35

11 23 GO:0008544 epidermis development 256 8 8.33E-
05

12 22 GO:0007586 digestion 107 8 4.98E-
08

13 21 GO:0007601 visual perception 175 16 4.15E-
23

14 19 GO:0006520 cellular amino acid metabolic process 430 15 7.19E-
16

15 19

16 18

17 17 GO:0048285 organelle fission 496 12 2.77E-
10

18 17

19 16

20 15 GO:0019915 lipid storage 57 6 3.59E-
07

21 14 GO:0048706 embryonic skeletal system development 116 11 4.46E-
17

22 13 GO:0006458 'de novo' protein folding 52 9 8.23E-
16

23 12 GO:0034728 nucleosome organization 87 5 1.42E-
04

24 10 GO:0030317 sperm motility 35 3 4.26E-
02

25 10 GO:0045333 cellular respiration 145 8 9.16E-
11

26 10 GO:0006936 muscle contraction 255 6 1.45E-
04

27 9 GO:0007156 homophilic cell adhesion via plasma membrane
adhesion molecules

91 9 2.48E-
16

28 9 GO:0042438 melanin biosynthetic process 14 6 5.12E-
13

(Continued)
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Table 1. (Continued)

Community
ID

Community
Size

Representative
GOID

Representative GO name # of GO
annotated

# of
intersect

p-value

29 8

30 8

31 7 GO:0006397 mRNA processing 393 7 2.62E-
07

32 7 GO:0006096 glycolytic process 61 6 7.87E-
10

33 6

34 6 GO:0006956 complement activation 32 5 6.04E-
09

35 6 GO:0031427 response to methotrexate 4 2 2.43E-
02

36 6

37 6

38 6 GO:0043407 negative regulation of MAP kinase activity 65 4 1.50E-
04

39 5 GO:0015988 energy coupled proton transmembrane transport,
against electrochemical gradient

27 3 1.60E-
03

40 5

41 5 GO:0007588 excretion 63 3 2.16E-
02

42 5 GO:0006364 rRNA processing 107 5 5.32E-
07

43 5

44 4 GO:0009954 proximal/distal pattern formation 29 4 3.52E-
07

45 4

46 4 GO:0002331 pre-B cell allelic exclusion 3 2 4.87E-
03

47 4 GO:0006631 fatty acid metabolic process 296 4 4.65E-
03

48 4

49 4 GO:0008211 glucocorticoid metabolic process 24 4 1.57E-
07

50 4

51 4 GO:0006687 glycosphingolipid metabolic process 49 4 3.14E-
06

52 4 GO:0007339 binding of sperm to zona pellucida 32 3 1.09E-
03

53 4

54 4

55 4 GO:0006521 regulation of cellular amino acid metabolic process 60 4 7.23E-
06

56 4

57 4 GO:0022904 respiratory electron transport chain 93 3 2.83E-
02

58 4

59 4 GO:0006986 response to unfolded protein 128 4 1.58E-
04

60 4

61 4

(Continued)
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interesting terms such as GO: 0032963 (collagen metabolic process) and GO: 0001568 (blood
vessel development). This result may indicate that the immune system tightly cooperates with
collagen metabolic process, blood vessel development and other systems.

Some genes lacked turning points and had large numbers of corresponding genes, indicating
that the genes are quite strongly conserved. To characterize them, we generated another gene
network for them by regarding 100 as the tentative turning point, instead of determining a
turning point. As a result, 336 genes, 1,953 edges and 8 individual networks were detected
(shown in Fig 2C). Only 9 genes among the 336 genes had no connection with other genes
without any turning points. We applied the community detection algorithm again for this net-
work, and found 13 modules. The largest module was ID: C-1 (Fig 2C), where 95 genes were
involved and 85 of them were annotated as GO:0007049 (cell cycle). This result suggests that
the genes for fundamental functions, such as cell cycle, translation or cytoskeleton, have highly
conserved coexpression and are tightly connected in each function.

Effect of the introduction of conservation
We performed the same module detection analysis for a human coexpression network without
conservation, to evaluate the effect of the conservation. Coexpression data for human were
obtained from COXPRESdb [33], where the strengths of coexpression are described by a rank-
based measure called Mutual Rank (MR) [34]. Smaller MR values indicate stronger
coexpression.

When we used MR = 3, 5, 10, 15, 20, and 30 as cutoffs, 22, 165, 458, 600, 667, and 622 mod-
ules were detected, respectively (shown in S6 Table). We calculated the GO enrichment of the
modules for each MR threshold, and found that 5/22, 41/165, 76/458, 56/600, 56/667, and 33/
622 modules were enriched with at least one GO term. However, the conservation filtering
method proposed in this paper detected 45 enriched modules out of 70 modules (Fig 3A), and
the ratio of enriched modules based on coexpression conservation is clearly better than the
ratios of enriched modules based on the non-filtering method with COXPRESdb at any MR
threshold (< 41/165 with MR = 5, see Fig 3B). This observation suggests that the conservation-
based method may reduce false positives to identify functional modules.

To check the reduction of false positives in each module, we further compared the modules
with MR = 10 (458 modules) and the modules identified by conserved coexpression (70

Table 1. (Continued)

Community
ID

Community
Size

Representative
GOID

Representative GO name # of GO
annotated

# of
intersect

p-value

62 4

63 4

64 4 GO:0019322 pentose biosynthetic process 4 4 1.48E-
11

65 4 GO:0060481 lobar bronchus epithelium development 5 2 1.62E-
02

6 4 GO:0070059 intrinsic apoptotic signaling pathway in response to
endoplasmic reticulum stress

29 3 8.00E-
04

67 4

68 4

69 4

70 4 GO:0002399 MHC class II protein complex assembly 4 2 9.74E-
03

doi:10.1371/journal.pone.0132039.t001
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modules). We found that 47 modules were similar (S7 Table), where a pair of modules was
judged to be similar if the number of common genes was significantly large (Fisher’s exact test,
p-value< 0.05 with Bonferroni correction). If a module had multiple similar modules, then
only the mutually best pair was used. We also counted the number of genes with the represen-
tative GO term of the module (Ngene

rep GO), and used the ratio to the number of genes in the module

(Ngene
rep GO=N

gene) as an indicator to evaluate the goodness of the modules. If we assume that the

representative GO term truly explains the function of a module, then a higher ratio indicates a
better module explanation, or a module with fewer falsely related genes (or genes with different
annotations). As a result, 13 out of 47 modules were found to share the same representative
GO term (S7 Table), and the average ratio (Ngene

rep GO=N
gene) was 1.18 times higher in the conserva-

tion-based method than the COXPRESdb method. Notably, the raw number Ngene
rep GO was also

1.18 times higher and the sizes of the conservation coexpression-based modules were larger
than those of the COXPRESdb-based modules (Fig 3C), indicating that fewer falsely related
genes were included in the modules (S7 Table).

Some examples of similar module pairs are shown in Fig 4. The first module pair in Fig 4
and S7 Table has different representative GO terms with 25 common genes, one for “skin
development” and the other has no significant term, where the size of the conservation-based
module (97 = 72+25) is much larger than that of COXPRESdb (42 = 25 + 17). The larger size
and the existence of the representative GO term indicate the enhanced enrichment of the
related genes. The second module pair also has a larger number of genes with the representative
term in the conservation-based module (35) than that of COXPRESdb (24). Since it shares the
same representative GO terms, the larger number of genes with the representative GO term
may indicate the presence of a smaller number of related genes outside of the module. How-
ever, the ratio of the genes with a representative GO term for the conservation-based module
(0.52) is smaller than that of COXPRESdb (0.62), which indicates the inclusion of a larger
number of unrelated genes in the conservation-based modules. Since the conservation charts
of the large module member genes have few flat regions in a small N range, the turning points
of these genes were found in a large N range. Therefore, genes that are not directly related to a
representative term may be included in the detected gene module. As described above, the con-
servation-based modules have better Ngene

rep GO=N
gene ratios on average, as in the case of the third

Fig 3. Comparison between the conserved coexpression-basedmodules and those based on coexpression without conservation. (A) The number
of detected gene modules against MR for the coexpression-based method (left 6 bars) and the conservation-based method (right bar). The modules are
colored according to whether a module had enriched GO terms. (B) The ratio of enriched gene modules. (C) A box plot of the gene module size distribution.

doi:10.1371/journal.pone.0132039.g003
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example. However, in some cases the COXPRESdb-based modules produce better modules
from the viewpoint of the inclusion of falsely related genes, as in the second example. In short,
coexpression conservation may reduce the number of false negatives and false positives, to
detect the functionally related genes on average.

Implementation of web-based database
All results of coexpression conservation, CC genes, and module detection are available through
the web database named COeXpression SIMilarityDataBase (COXSIMdb, http://v1.coxsimdb.
info). The overview of the database is shown in Fig 5. To use this web database, insert the gene
symbol or entrez gene ID into the search field at the top of the COXSIMdb page (shown in Fig
5A). This web service provides a list of genes related to the query, with a view of the results of
the coexpression conservation of a gene (Fig 5B). Fig 5C illustrates an example of a COXSIMdb
main result view. The result view has up to 4 sections. The first section is a summary of the
human and mouse genes and a conservation chart. The second section is a list of CC genes and
any associated KEGG pathway. The third section is a list of detected gene modules that include
the gene if it is involved in the modules. The gene modules detected with SCS = 4 are shown in
the default mode, but links to the modules detected with SCS = 3 and SCS = 5 are also provided.
The last section is a table view of the comparison of coexpressed genes between human and
mouse. Each gene is colored by the gene type and whether it is a CC gene, and homologous
genes are shown in a pop-up window when the cursor moves over the genes.

Conclusion
In this paper, we have described a new method to compare gene expression patterns by focus-
ing on gene coexpression, to avoid the problem of sample matching. We also developed an
algorithm to detect the conserved modules, and the GO term enrichment analyses revealed
that the conserved gene modules have strong functional relationships. In other words, our
method could detect some functional modules, without any prior knowledge. Many modules
are well known, such as ribosomal protein or immune system, but some detected modules have
significantly enriched GO terms, and thus they will be good candidates for further experimen-
tal analyses to identify the novel functional modules.

Fig 4. Example of the correspondence between the conservation-basedmethodmodules and the
COXPRESdb-basedmodules. The three module pairs with the largest numbers of intersecting genes are
shown. The list of all similar module pairs is provided in S7 Table.

doi:10.1371/journal.pone.0132039.g004
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Fig 5. How to use COXSIMdb. (A) First, search for a gene by its symbol or entrez gene ID. (B) Second,
select a gene of interest. (C) View of the coexpression conservation results. This view provides a summary of
the genes, a list of CC genes, the detected gene modules, and a comparison of coexpression.

doi:10.1371/journal.pone.0132039.g005
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Materials and Methods

Datasets
All human and mouse coexpression data were obtained from COXPRESdb [33], versions Hsa.
c4-1 (20,280 genes) and Mmu.c3-1 (20,959 genes), respectively. COXPRESdb is a database of
co-regulated gene relationships. The coexpression strengths were obtained from COXPRESdb,
and are represented by Mutual Rank (MR) [34]. MR is a rank-based measure, and smaller val-
ues indicate stronger coexpression. We prefer MR over the Pearson Correlation Coefficient
(PCC), because MR shows better performance in GO prediction [34]. All homologous gene
sets were obtained from HomoloGene [35], version build 65, and the genes that were not in
HomoloGene were removed from the analyses. There were 18,981 human genes and 21,766
mouse genes in HomoloGene, and we used 14,611 homologous gene pairs between human and
mouse in our analyses. We used Gene Ontology Terms (GO Terms) [36] to annotate the func-
tions of the gene modules. The correspondence between the genes and the GO terms was
obtained from the gene2go file in NCBI [35].

Detection of turning point and conserved coexpression genes
As described in the Results and Discussion section, we counted the number of human genes
with mouse homologs to draw the conservation chart (Fig 1A and 1B), and then searched for
the lines with a turning point. It should be noted that we counted the number of human genes
when a gene had multiple homologous genes in mouse. In other words, a human gene with two
or more homologous genes in mouse was counted as one, while a mouse gene with two human
homologs was counted twice.

In the example shown in Fig 1E, some conservation charts have two distinct regions, highly
conserved and non-conserved, which can be detected as a turning point in the conservation
chart. When a functional gene relationship is conserved between two species, the gene coex-
pression relationship will also be conserved. Therefore, to detect the functional modules, we
tried to detect the turning point in each conservation chart.

The turning point is detected by focusing on the flat area in a conservation chart. If a gene
module has k genes, then the two coexpression lists should have the same order in the top k
genes, but the orders in the list after the k genes can be expected to be random. Therefore, if no
new corresponding genes are found after the highly conserved region, it should be the turning
point. We defined the turning point as the region with a 10-length flat region, which is a region
with no new corresponding genes, and defined the conserved region as the region to the left of
the turning point. We searched for turning points among the top 400 coexpressed genes.

When we also checked 5, 10, 15 and 20 as the length of the flat region to define the turning
point, 1,890, 3,776, 3,478 and 2,783 non-redundant conserved-coexpressed genes (CC genes, as
described below) were found, respectively. We selected the length of the flat region to maximize
the number of CC genes. On the one hand, the use of flat regions longer than 10 to detect the
turning point decreased the number of CC genes, because no flat region was found in the con-
servation chart. On the other hand, the shorter flat region also made the number of CC genes
decrease, because turning points were found in the first position.

The genes in the conserved regions can be considered to have strong functional relation-
ships. Therefore, we focused on the genes in the conserved regions, to emphasize their strong
relationship with the guide gene. Since some unrelated genes can be mixed in the coexpression
lists due to coexpression noise, we used the genesmutually found in the conserved regions and
named them CC genes. In other words, if gene A is the CC gene of guide gene B, then guide
gene B should also be a CC gene of gene A. If there were multiple turning points, our turning
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point detection algorithm selected the first one of them, and tended to select the turning point
at the smallest N.

Some genes did not have a flat area because their coexpression lists were highly conserved.
We also generated a conserved coexpression gene network by using the following method.
Since these genes did not have a flat area, we could not determine a turning point. We used 100
as the threshold of N instead of the turning point in these cases. Subsequently, we generated a
coexpression gene network without a flat area, using the same procedure described above.

A Python implementation to calculate the conservation and the turning point is available at
S2 File.

Analysis of the gene network and module detection
Since the CC genes are those with a tight functional relationship to the guide gene, we repre-
sented the relationship as a network, where a node indicated a gene and an edge represented a
relationship between a CC gene and the guide gene.

Biological networks tend to be scale-free, with a small world network and a modular struc-
ture [37–39]. Since our network also had similar features, we applied a community detection
algorithm implemented in networkx [40] to find the functional modules, according to Palla
et al. [32]. To characterize the functional roles of the modules, enrichment analyses were per-
formed, using TargetMine [41] and based on Fisher’s exact test. We defined the representative
GO term as the GO term with the smallest p-value in a module.

Since some gene modules had overlaps or similar annotations, we performed the module
detection with three different strictness values, corresponding to the change in a parameter for
the smallest clique size (SCS) used in Palla et al. [32]. Detection with a larger SCS yielded
smaller and higher clustering coefficient modules. More precisely, we used three, four and five
for the three different SCS values, and calculated the overlaps between the detected gene mod-
ules. Finally, we performed clustering of the gene modules by connecting the overlapped
modules.

Supporting Information
S1 File. The edge list of the network shown in Fig 3. Since this network is an undirected
graph, we did not distinguish column 1 from column 2.
(ZIP)

S2 File. A Python implementation to calculate the conservation and the turning point.
(GZ)

S1 Table. The list of genes in detected clusters when SCS = 4.
(XLSX)

S2 Table. The list of genes in detected clusters when SCS = 3.
(XLSX)

S3 Table. The list of genes in detected clusters when SCS = 5.
(XLSX)

S4 Table. The list of representative GO terms when SCS = 3.
(XLSX)

S5 Table. The list of representative GO terms when SCS = 5.
(XLSX)
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S6 Table. The list of genes in detected modules in COXPRESdb-based analysis when
SCS = 4.
(CSV)

S7 Table. The correspondence between conservation coexpression-based modules and
mutual rank-based modules.
(XLSX)
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