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Abstract
Background: Inappropriate responses to normal intestinal bacteria may be involved in the development of 
Inflammatory Bowel Diseases (IBD, e.g. Crohn's Disease (CD), Ulcerative Colitis (UC)) and variations in the host genome 
may mediate this process. IL-10 gene-deficient (Il10-/-) mice develop CD-like colitis mainly in the colon, in part due to 
inappropriate responses to normal intestinal bacteria including Enterococcus strains, and have therefore been used as 
an animal model of CD. Comprehensive characterization of changes in cecum gene expression levels associated with 
inflammation in the Il10-/- mouse model has recently been reported. Our aim was to characterize changes in colonic 
gene expression levels in Il10-/- and C57BL/6J (C57; control) mice resulting from oral bacterial inoculation with 12 
Enterococcus faecalis and faecium (EF) strains isolated from calves or poultry, complex intestinal flora (CIF) collected 
from healthy control mice, or a mixture of the two (EF·CIF). We investigated two hypotheses: (1) that oral inoculation of 
Il10-/- mice would result in greater and more consistent intestinal inflammation than that observed in Il10-/- mice not 
receiving this inoculation, and (2) that this inflammation would be associated with changes in colon gene expression 
levels similar to those previously observed in human studies, and these mice would therefore be an appropriate model 
for human CD.

Results: At 12 weeks of age, total RNA extracted from intact colon was hybridized to Agilent 44 k mouse arrays. 
Differentially expressed genes were identified using linear models for microarray analysis (Bioconductor), and these 
genes were clustered using GeneSpring GX and Ingenuity Pathways Analysis software. Intestinal inflammation was 
increased in Il10-/- mice as a result of inoculation, with the strongest effect being in the EF and EF·CIF groups. Genes 
differentially expressed in Il10-/- mice as a result of EF or EF·CIF inoculation were associated with the following pathways: 
inflammatory disease (111 genes differentially expressed), immune response (209 genes), antigen presentation (11 
genes, particularly major histocompatability complex Class II), fatty acid metabolism (30 genes) and detoxification (31 
genes).

Conclusions: Our results suggest that colonic inflammation in Il10-/- mice inoculated with solutions containing 
Enterococcus strains is associated with gene expression changes similar to those of human IBD, specifically CD, and that 
with the EF·CIF inoculum in particular this is an appropriate model to investigate food-gene interactions relevant to 
human CD.
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Background
The term 'Inflammatory Bowel Disease' (IBD) refers to a
heterogeneous collection of conditions characterized by
chronic inflammation of the gastrointestinal tract, and
includes Crohn's Disease (CD) and Ulcerative Colitis
(UC) [1]. While there is some overlap in disease pathol-
ogy, CD and UC also have distinct pathologic features;
CD can, for example, affect any part of the gastrointesti-
nal tract, whereas UC is confined to the colon and rec-
tum, often causing diarrhea. The inflammation seen in
CD is typically discontinuous, segmental and involves all
layers of the intestinal wall. In UC, inflammation tends to
be continuous and superficial, only affecting the mucosal
layer of the colonic wall [2].

The exact etiology and pathogenesis of IBD is still
unclear, although there is strong epidemiological evi-
dence for a genetic contribution to disease susceptibility.
Several candidate genes for IBD susceptibility have been
identified, including nucleotide-binding oligomerization
domain containing 2 (NOD2) [3-5], tumour necrosis fac-
tor (TNF) [6], members of the toll-like receptor (TLR)
family [7], IL-4 [8] and IL-18 [9], and a number of genes
encoding transporter molecules, such as the ATP-binding
cassette, sub-family B (MDR/TAP), member 1 (ABCB1)
[10,11] and solute carrier family 22 (organic cation/ergot-
hioneine transporter), member 4 (SLC22A4) genes
[12,13].

The IL-10 gene deficient (Il10-/-) mouse has been used
as a model of IBD [14-21]. These mice, when bred onto a
C57BL/6J (C57) background, have been reported to
develop CD-like colitis by 12 weeks of age when raised
under conventional conditions [19], while female 129 Ola
× C57Il10-/- mice have been shown to develop colitis from
20 weeks of age under specific pathogen free (SPF) condi-
tions [21].

The precise mechanism that results in inflammation in
Il10-/- mice is unclear, although, as is the case in human
IBD, there is evidence of an inappropriate inflammatory
response to normal intestinal flora [22].

Clinical isolates of Enterococcus faecalis have been
shown to induce IBD-like symtoms in germ-free Il10-/-

mice [14,23,24]. Enterococcus species are a common com-
ponent of the intestinal flora of healthy humans and ani-
mals [25-27], comprising up to 1% of the adult microflora
[28]. Enterococcus faecalis and Enterococcus faecium are
the two species most commonly detected in the human
bowel [29-31], and both are known to carry a variety of
virulence factors (reviewed in [25]) which may play a role
in the establishment of inflammation.

Based on these published studies, and on our own
observations of only mild inflammation in 12 week old
Il10-/- mice (C57 background) that were raised under con-
ventional conditions (M. P. G. Barnett, "unpublished
observations"), we decided to establish bacterially-inocu-

lated Il10-/- mice as a model of IBD in order to test food-
gene interactions associated with IBD. We tested two
hypotheses: (1) that oral inoculation of Il10-/- mice with a
mixture of pure Enterococcus isolates (both faecalis and
faecium), alone or combined with conventional intestinal
flora derived from healthy and conventionally raised C57
mice, would result in greater and more consistent intesti-
nal inflammation than that observed in Il10-/- mice not
receiving this inoculation, and (2) that this inflammation
would be associated with changes in colon gene expres-
sion levels in key pathways similar to those previously
observed in human studies, and these mice would there-
fore be an appropriate model for human CD [32,33].

We have previously published body weight, histology
and preliminary gene expression data using this mouse
model [34]. Here we describe in detail gene expression
changes in colonic tissue in response to bacterial inocula-
tion in Il10-/- on a C57 background, measured using high
density oligonucleotide microarrays.

Results
Animal body weight
There was no difference in mean body weight between
Il10-/- and C57 mice at the start of the experiment (Il10-/-

18.9 ± 1.0 g; C57 18.8 ± 0.8 g). As reported previously
[34], Il10-/- mice in the conventional conditions (C) and
EF·CIF groups gained less weight during the course of the
trial, both when compared to similarly-inoculated C57
mice, and when compared to Il10-/- mice in the other
three treatment groups.

Intestinal Histology
Total intestinal histology results have been reported else-
where, in which colon was shown to be the intestinal sec-
tion most susceptible to inflammation [34]. A more
detailed analysis of the colon histology results showed
that inflammatory cell infiltration was the most promi-
nent feature of the observed inflammation in inoculated
Il10-/- mice (accounting for approximately 80% of total
colon HIS), and was significantly higher in these animals,
when compared with C57 mice in the same group, or
when compared with non-inoculated Il10-/- mice (i.e.,
SPF and C groups). Furthermore, Il10-/- mice inoculated
with EF inocula (either EF or EF·CIF) showed signifi-
cantly higher tissue destruction, both when compared
with similarly-inoculated C57 mice, and when compared
with Il10-/- under SPF and C conditions (Figure 1).

Plasma Serum Amyloid A (SAA)
Overall, plasma SAA levels were higher in Il10-/- mice
compared with C57 mice (Il10-/- 87 ± 100; C57 15 ± 42
μg/ml, P < 0.001), and this difference between mouse
strains was also significant in each of the treatment
groups (P < 0.05). The interaction between strain and
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group was not significant (P = 0.53), and no overall signif-
icant within-strain effect of treatment group was
detected (P = 0.15). While the lack of a significant
between-strain difference in mice inoculated with EF·CIF
seems to be due to the presence of two outliers (one in the
C57 group and one in Il10-/- group), there is no data from
any other observations which would justify the removal
of these values. These data are summarized in Table 1.

A small number of SAA values were negative (i.e. were
at the limit of detection). Because these data were log
transformed (which resulted in homogeneous variance), a
constant was added to all values before transformation.
This constant was 6.8, being the absolute value of the
minimum recorded value (-6.3 μg/ml) plus 0.5.

Plasma Cytokines
For five of the cytokines measured (namely IL-10, IFNγ,
TNFα, granulocyte monocyte colony-stimulating factor
(GM-CSF), and IL-17), there were four or fewer non-zero

values across the dataset, thus no statistical analysis was
performed. Data from analysis of the remaining five
plasma cytokines are summarized in Table 1.

Microarrays
We have previously described microarray data from these
experiments comparing Il10-/- mice with C57 mice in
each of the five treatment groups [34]. The total number
of probes differentially expressed in any of the within-
treatment (Il10-/- vs. C57) comparisons was 6,521, and
this set was used for unsupervised hierarchical clustering.
This analysis grouped the array slides into two main clus-
ters: inoculated Il10-/- in one cluster, and C57 mice and
non-inoculated Il10-/- mice in the other cluster (Figure 2).

We therefore decided to focus on genes differentially
expressed when comparing inoculated Il10-/- mice (i.e.
CIF, EF, and EF·CIF) with Il10-/- mice not receiving an
inoculation, in order to better understand interactions or

Figure 1 Summary of the colon histological injury score (HIS) in Il10-/- and C57 mice in response to various treatments. Data represent mean 
± SD for 5 mice fed the AIN-76A diet, and housed in specific pathogen free (SPF) or conventional (C) conditions, or housed in conventional conditions 
and orally inoculated with 12 Enterococcus strains (EF), with conventional intestinal flora from normal C57 mice (CIF), or a 1:1 combination (EF·CIF). 
Asterisks denote Il10-/- mice with values significantly different (*P < 0.05, ***P < 0.01) from C57 mice in the same treatment group, while the "†" symbol 
denotes Il10-/- mice with values significantly (P < 0.05) different from Il10-/- mice under SPF conditions for the same histological parameter. One Il10-/- 

mouse in the CIF treatment group died during the course of the trial. An autopsy was unable to unequivocally establish the cause of death.
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relationships between genes which may be leading to the
increased inflammation observed in the inoculated mice
(first hypothesis), and to compare these changes with
those previously observed in human IBD (second hypoth-
esis).

There were no significant differences in expression (q <
0.05) of any probes between Il10-/- mice in the C or SPF
groups at 12 weeks of age, thus subsequent analysis of
gene expression changes in inoculated Il10-/- mice was
with those in the C group. Il10-/- in the CIF group had

Table 1: Plasma serum amyloid A and cytokine data from Il10-/- and C57 mice

Mouse strain P (Il10-/-vs. C57)

Assay Treatment Group Il10-/- C57

SAA SPF 60.1 ± 30.4 7.1 ± 6.6 < 0.05

C 43.9 ± 24.4 6.5 ± 4.7 < 0.05

EF 140.5 ± 136.3 6.4 ± 7.5 < 0.05

CIF 43.5 ± 11.4 6.5 ± 14.2 < 0.05

EF·CIF 137.4 ± 161.1 50.6 ± 90.9 < 0.05

IL-1α SPF 40.4 ± 39.6 25.0 ± 34.6 NS

C 11.3 ± 25.2 38.3 ± 36.3 NS

EF a 80.3 ± 67.5 9.5 ± 21.2 0.03

CIF 0.0 ± 0.0 55.2 ± 59.4 NS

EF·CIF 44.9 ± 49.1 55.4 ± 59.6 NS

IL-4 SPF 1.0 ± 1.0 1.8 ± 1.1 NS

C 1.0 ± 0.9 1.0 ± 0.5 NS

EF b 0.3 ± 0.6 b 0.5 ± 0.4 NS

CIF 1.0 ± 1.9 1.0 ± 0.5 NS

EF·CIF c 0.4 ± 0.5 c 0.8 ± 1.6 NS

IL-5 SPF 33.4 ± 0.6 59.6 ± 57.0 NS

C 19.9 ± 18.2 33.2 ± 1.7 NS

EF 31.1 ± 19.3 35.9 ± 3.3 NS

CIF 55.4 ± 68.6 26.7 ± 15.0 NS

EF·CIF 22.1 ± 20.4 d 13.2 ± 18.1 NS

IL-6 SPF 2.4 ± 3.3 0.0 ± 0 NS

C 5.2 ± 11.5 6.1 ± 6.8 NS

EF e 59.7 ± 30.0 5.4 ± 8.4 0.03

CIF 8.0 ± 16.0 5.9 ± 8.9 NS

EF·CIF 25.3 ± 24.5 0.03 ± 0.08 0.03

Data represent mean ± SD of plasma levels of SAA and IL-6 for 5 mice (except for Il10-/- mice in the CIF group, n = 4) fed AIN-76A diet, and in 
treatment groups described in the legend to Table 3. P-values are for across-group comparisons between Il10-/- and C57 mice under the same 
treatment conditions (NS denotes not significantly different between strains). Superscript letters denote mice with values significantly 
different (P < 0.05) from mice of the same strain in different treatment groups as follows: (a) EF-inoculated Il10-/- mice showed significantly 
higher IL-1α levels than Il10-/- mice in the C and CIF groups; (b) IL-4 in the EF groups was significantly lower than in the SPF and C groups in 
both mouse strains; (c) IL-4 in the EF·CIF group was significantly lower than that in the SPF group in both mouse strains; (d) across the C57 
mice, those receiving the EF·CIF inoculation had significantly lower IL-5 levels than either EF or SPF; (e) Il10-/- mice in the EF inoculation group 
had significantly higher IL-6 than all other Il10-/- treatment groups except for EF·CIF.
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approximately 1,500 gene probes differentially expressed
compared to those in group C, while Il10-/- mice inocu-
lated with EF or EF·CIF had over 3,500 differentially
expressed probes when compared with Il10-/- mice in
group C (Table 2).

Comparison with human IBD
Thirty two genes are known to undergo changes in tran-
scriptional activity in IBD [35]. In order to assess the rele-
vance of the inoculation protocols used in our study to
that of human disease, we compared changes in expres-
sion of these thirty-two genes across each of the treat-
ment groups. These results, summarised in Table 3, show
that the two inoculations containing EF strains were most
effective in mimicking human IBD on the basis of gene
expression changes, in particular with respect to changes
in gene expression levels of cytokines and chemokines
and their receptors.

Ingenuity pathways analysis
Table 4 shows the top functions in each treatment group
and the number of differentially expressed genes associ-
ated with each function. For all groups analyzed using
IPA, the most significant biological functions were
grouped into three categories: 1) Diseases and Disorders;
2) Molecular and Cellular Functions; and 3) Physiological
System Development and Function (Table 4).

Table 5 lists the Canonical Pathways showing signifi-
cant differences between Il10-/- and C57 mice within each
treatment group, calculated by IPA. Calculation was
either according to ratio (the number of genes from the
data set that map to the canonical pathway in question
divided by the total number of genes that map to the
same canonical pathway) or significance (Fischer's exact
test was used to calculate a P-value determining the prob-
ability that the association between the genes in the data-
set and the canonical pathway is explained by chance
alone). A full list of the genes within the ten most signifi-
cant Canonical Pathways is shown in Additional file 1
Table S1.

In order to examine those molecules directly interact-
ing with IL-10 (and therefore gain insight into the effect
of the lack of this protein in the Il10-/- mice), the Neigh-
bourhood Explorer function of IPA was used. The Net-
work Neighborhood of IL-10 consists of 405 molecules
which have been identified as directly interacting with IL-
10. The number of differentially expressed genes (Il10-/-
vs. C57) within this network as a result of the treatments
was as follows: SPF (7); C (8); EF (86); CIF (79); EF·CIF
(82). Two genes of interest in this comparison were
regenerating islet-derived 3 beta (Reg3b) (Table 3) and
the polymeric immunoglobulin receptor (pIgR), as these
were the only genes which showed significantly higher
expression in Il10-/- mice in the SPF, C and CIF groups
(compared to C57 mice), but for which there was no dif-
ference in the EF and EF·CIF groups. The expression of
Reg3b mRNA was between 4- and 8-fold higher in the
colon of Il10-/- mice in the SPF and C and CIF groups
when compared to C57 mice in the same groups, but
there was no differential expression of this molecule in
the EF and EF·CIF groups (Table 3). In the case of the
related Reg3g gene, while its expression was higher in
Il10-/- mice in all experimental groups, the difference was
greatest in the C and CIF groups (~9-fold), less in the SPF
and EF·CIF groups (~5-fold) and lowest in the EF group
(3-fold, Table 3). In the case of pIgR, expression was
higher in the SPF (2.0-fold), C (2.2-fold) and CIF (1.7-
fold) groups when comparing Il10-/- mice with C57 mice,
but there was no difference in the EF or EF·CIF groups.

In order to better understand the effect of the EF·CIF
inoculation in Il10-/- mice compared with the same inocu-
lation in C57 mice, genes from the top five canonical

Figure 2 Hierarchical clustering of 20 microarray slides (repre-
senting RNA pooled from either two or three mice per slide) and 
6,521 probe sets. A heat map of 6,521 transcripts and 2 dendograms 
that group gene probes (left) and microarray slides (top) together is 
shown. This represents all differentially expressed probes for the com-
parison Il10-/- vs. C57 mice for any of the five treatment groups (SPF, C, 
EF, CIF, EF·CIF). Each line is a probe, and each column is an array slide. 
Expression signal intensities are shown in red and blue, indicating high 
and low expression, respectively. Arrays for Il10-/- mice are represented 
in yellow and C57 mice in blue in the bar above the heat map.
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pathways on the basis of IPA P-value (Oxidative Phos-
phorylation, Antigen Presentation Pathway, IL-10 Signal-
ing, Interferon Signaling, LPS/IL-1 mediated inhibition of
RXR function) were combined with those from the top
five on the basis of calculated ratio (Antigen Presentation
Pathway, Interferon Signaling, Oxidative Phosphoryla-
tion, IL-10 Signaling, Circadian Rhythm Signaling). A
network was built by connecting these molecules accord-
ing to their interactions, as determined by the IPA
Knowledge base (Figure 3). A similar analysis was per-
formed for EF·CIF-inoculated Il10-/- mice compared to
Il10-/- mice which were not inoculated (Il10-/- (EF·CIF vs.
C), Figure 4).

Key molecules in the Il10-/- (EF·CIF vs. C) comparison
were: IFNγ, TNF, STAT1, IL-1β and suppressor of
cytokine signaling 1 (SOCS1) and SOCS3. These mole-
cules also appear to be important when comparing
EF·CIF-inoculated Il10-/- with C57 receiving the same
inoculation (Figure3), as do peroxisome proliferator-acti-
vated receptor alpha (PPARα) and TLR4. Conversely, the
expression levels of the pro-inflammatory IL-18 gene
were reduced in the Il10-/- (EF·CIF vs. C) comparison, and
in Figure 4, IL-18 is shown to interact directly with five
other molecules in the network; in contrast, this molecule
does not feature in the EF·CIF (Il10-/- vs. C57) comparison
(Figure 3).

Quantitative real-time polymerase chain reaction (qRT-
PCR)
For the three xenobiotic metabolism genes selected for
qRT-PCR validation (Cyp2c40, Ces2 and Sult1a1) the
reduced expression in inoculated Il10-/- mice observed in
the microarray analysis was confirmed (both magnitude
and direction) by qRT-PCR. In the case of the immune
response genes Ifng and Ncf4, the direction of the gene
expression change (an increase in both cases) was con-
firmed, but the magnitude of the change for Ifng was
higher in the PCR analysis compared to the microarray
results (Figure 5).

Discussion
Our study clearly shows that oral inoculation of 5 week
old Il10-/- mice (C57 background) with a bacterial prepa-
ration (12 Enterococcus strains combined with complex
intestinal flora from C57 mice raised under conventional
conditions) results in consistent and increased colon
inflammation at 12 weeks of age, compared with Il10-/-

mice which were not inoculated (C group). These tissue
changes were similar to those seen in human IBD, and
were accompanied by significant changes in expression of
genes involved in 'immune response', 'inflammatory dis-
eases' and 'antigen presentation'.

Table 2: Number of differentially expressed genes in colon tissue of Il10-/- mice compared to C57 mice

Differentially expressed genes (q < 0.05) Ingenuity Pathways Analysis

Comparison Increase Decrease Total Network eligible Fold-change 
cut-off

Functions/pathways/lists 
eligible

Between strain comparisons(Il10-/- vs. C57)

SPF 76 46 122 45 N/A 38

C 115 70 185 90 N/A 80

EF 2,258 2,565 4,823 2,494 |1.70| 740

CIF 1,630 1,845 3,475 1,136 |1.42| 736

EF·CIF 2,111 2,074 4,185 2,138 |1.47| 740

Within strain comparisons (Il10-/-)

EF vs. C 1,602 2,028 3,630 1,085 |1.36| 746

CIF vs. C 756 734 1,490 463 N/A 421

EF·CIF vs. C 1,572 2,231 3,808 1,030 |1.36| 723

Data represent numbers of differentially expressed genes for each comparison, calculated using BioConductor 'limma analysis' package. False 
discovery rate control of q < 0.05 was used as a filtering criterion, and the fold-change cut-off listed applied to each group to reduce the 
Network Eligible genes for Ingenuity Pathways Analysis to 800 ± 1. The most significant functions were identified using Ingenuity Pathway 
Analysis Software. Total RNA from colon tissue was used for microarray hybridization to Agilent Technologies 44 k (G4122-60510) mouse 60 
mer oligonucleotide arrays. Data represent mean values from two pools of RNA for each mouse strain, with RNA from either two or three mice 
in each pool.
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Table 3: Differentially expressed genes in colon tissue of Il10-/- mice compared to C57 mice, and in Il10-/- mice orally 
inoculated with intestinal bacteria, in common with those observed in human studies

Gene RefSeq ID Mouse Model

Transfer Between strain comparisons (Il10-/- vs. C57) Within strain comparisons (Il10-/-)

SPF C EF CIF EF·CIF EF vs C CIF vs C EF·CIF vs C

Cytokine and cytokineR genes:

Tnf NM_013693 2.3 1.1 1.1 2.4 c 2.0 c 2.3 c 1.9 c 1.7 b 2.0 c

Ifng NM_008337 4.7 1.2 1.2 3.2 c 2.1 c 2.4 c 2.3 c 1.9 b 2.0 c

Ltb NM_008518 8.9 2.0 1.4 3.1 c 2.5 c 2.8 c 2.1 b 2.0 b 2.3 b

Il6 NM_031168 2.6 -1.0 1.0 1.2 1.1 1.2 1.3 1.3 1.4

Il16 NM_010551 2.7 1.1 1.1 1.4 a 1. 1 1.2 1.3 1.2 1.2

Il18R1 NM_008365 17.7 1.2 1.2 1.5 b 1.6 b 1.2 1.3 a 1.3 1.2

Il22 NM_016971 9.3 ND ND ND ND ND ND ND ND

Chemokine and chemokineR genes:

Ccr2 NM_009915 7.1 1.6 a 1.6 a 2.6 c 2.7 c 1.9 c 1.8 c 1.8 b 1.7 b

Ccr7 NM_007719 2.2 1.0 1.0 -1.2 1.3 1.2 -1.1 1.3 1.1

Ccl2 NM_011333 2.5 1.6 1.4 4.5 c 3.6 c 3.6 c 3.1 c 2.5 c 2.8 c

Ccl3 NM_011337 4.1 -1.0 1.2 1.6 1.6 2.4 a 1.3 1.2 1.9 a

Ccl4 NM_013652 4.3 1.2 1.1 1.9 b 1.7 a 2.2 b 1.8 a 1.7 2.0 b

Ccl5 NM_013653 6.1 1.7 1.0 5.1 c 1.7 a 2.1 b 3.0 c 3.0 c 3.5 c

Ccl7 NM_013654 3.1 1.2 1.1 1.8 b 1.5 a 1.6 c 1.7 b 1.5 1.7 b

Ccl11 NM_011330 1.4 1.1 -1.1 -1.0 1.0 1.1 1.1 1.1 1.3 a

Ccl17 NM_011332 2.4 1.1 1.1 1.3 a 1.4 a 1.1 1.2 1.1 1.0

Ccl20 NM_016960 10.4 1.1 1.0 1.2 1.4 a 1.2 1.1 1.3 1.2

Cxcr3 NM_009910 2.0 1.2 -1.0 1.6 b 1.2 1.4 a 1.5 a 1.3 1.5 a

Cxcl1 NM_008176 4.8 1.0 1.1 2.4 c 1.7 b 2.3 c 1.8 b 1.4 1.9 b

Cxcl5 NM_009141 21.9 1.4 1.3 3.4 c 2.5 c 2.8 c 2.2 c 2.1 b 2.4 c

Cxcl10 NM_021274 14.7 1.6 1.6 6.9 c 6.0 c 7.2 c 3.4 b 2.7 a 2.8 a

Genes involved in tissue remodeling:

Mmp3 NM_010809 28 1.3 1.1 3.7 c 3.1 c 4.0 c 2.9 c 2.6 b 3.8 c

Mmp7 NM_010810 5.3 1.4 1.3 2.3 c 2.0 c 2.2 c 1.6 b 1.4 1.6 b

Mmp9 NM_013599 2.0 1.0 1.1 1.3 1.2 1.2 1.1 1.1 1.1

Mmp14 NM_008608 2.7 1.1 1.2 1.5 a 1.3 1.2 1.1 1.2 1.3

Timp1 NM_011593 1.4 1.2 1.0 1.2 1.3 1.3 1.2 1.3 1.3

Regenerating islet derived genes:

Reg3g NM_011260 221.8 5.3 a 9.0 b 3.4 a 8.8 c 5.7 b -1.7 -1.8 -2.2

Pap (Reg3b) NM_011036 132.1 8.0 b 4.4 a 1.9 5.2 b 2.4 -1.7 -1.8 -2.2

S-100 family genes:

S-100a8 NM_013650 133.1 1.4 1.2 6.5 c 5.8 c 9.0 c 4.7 c 4.2 c 7.1 c

S-100a9 NM_009114 225.4 1.6 1.7 13.8 c 15.7 c 22.8 c 9.2 c 9.5 c 14.2 c

Multidrug resistance (MDR) genes:

Abcb1a NM_011076 -8.2 -1.3 -2.5 a -5.7 c -3.6 c -4.5 c -2.3 b -1.6 -2.1 b
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Histological analysis
Several studies have reported the development of intesti-
nal inflammation in Il10-/- mice when raised under either
SPF or conventional conditions in the absence of bacterial
inoculation [16,19,36]. It has been also reported that the
induction of IBD-like colitis (and therefore relevance as a
model) in the Il10-/- mouse is dependent on the back-
ground mouse strain (with C3H/HeJBir or BALB/C Il10-/-

mouse being more susceptible, and C57BL/6 Il10-/- mice
(the strain used in this study) being more resistant to the
development of intestinal inflammation [1,19]) and the
commensal bacteria to which the mice are exposed [23].

We observed no significant difference in intestinal
inflammation between Il10-/- mice (C57 background) and
C57 control mice when kept in either SPF or conventional
conditions. In addition, comparison of colon gene expres-
sion levels between Il10-/- and C57 mice in these two
treatment groups showed relatively few changes in the
current study. The Il10-/- mice in these studies were
brought in from The Jackson Laboratory (where they had
been raised under SPF conditions), were free of all tested
viruses, bacteria and mycoplasma and other opportunis-
tic organisms, and were maintained under quarantine
during the trial. It therefore seems likely that the failure of

Genes involved in epithelial metabolism and biosynthesis:

Ptgs2 NM_011198 3.2 1.1 1.1 1.3 1.1 1.4 1.3 1.1 1.4

Total DE genes: 30 4 4 22 21 19 11 18 19

Data represent differentially expressed genes for each comparison in common with the 32 genes shown to be differentially expressed in human 
IBD, with the "Transfer" column showing data from a CD45RB Transfer Colitis model previously published by te Velde et al [35]. Total RNA from 
colon tissue was used for microarray hybridization to Agilent Technologies 44 k (G4122-60510) mouse 60 mer oligonucleotide arrays. Data 
represent mean values from two pools of RNA for each mouse strain, with RNA from either two or three mice in each pool. In the case of 
significantly differentially expressed genes, the text is shown in italics, and denoted by superscript letters where p < 0.05 is represented by a, p < 
0.01 by b, and p < 0.001 by c. The total number of differentially expressed genes in each comparison (maximum 32) is shown at the bottom of the 
table.

Table 3: Differentially expressed genes in colon tissue of Il10-/- mice compared to C57 mice, and in Il10-/- mice orally 
inoculated with intestinal bacteria, in common with those observed in human studies (Continued)

Table 4: Key functions associated with inflammation in Il10-/- mice identified using Ingenuity Pathways Analysis

Top Function Number of differentially expressed genes (P-value)

SPF C EF CIF EF·CIF

Diseases and Disorders

Immunological Disease 9 (< 0.05) 9 (< 0.05) 176 (< 0.0001) 127 (< 0.0005) 117 (< 0.0005)

Inflammatory Disease 7 (< 0.05) 9 (< 0.05) 180 (< 0.0001) 112 (< 0.0005) 113 (< 0.0005)

Cancer 6 (< 0.05) 9 (< 0.05) 339 (< 0.0001) 249 (< 0.0005) 242 (< 0.0005)

Organismal injury and abnormality 7 (< 0.05) 11 (< 0.05) 95 (< 0.0001) 61 (< 0.0005) 63 (< 0.0005)

Haematological Disease 3 (< 0.05) 4 (< 0.05) 139 (< 0.0001) 58 (< 0.0005) 107 (< 0.0005)

Molecular and Cellular Function

Cell-to-cell Signaling and Interaction 14 (< 0.05) 11 (< 0.05) 188 (< 0.0001) 156 (< 0.0005) 155 (< 0.0005)

Cellular Movement 5 (< 0.05) 3 (< 0.05) 192 (< 0.0001) 156 (< 0.0005) 164 (< 0.0005)

Amino Acid Metabolism 2 (< 0.05) 2 (< 0.05) N/A 72 (< 0.0005) 78 (< 0.0001)

Carbohydrate Metabolism 2 (< 0.05) 9 (< 0.05) 59 (< 0.0001) 102 (< 0.0005) 113 (< 0.0005)

Cell Death 7 (< 0.05) 10 (< 0.05) 250 (< 0.0001) 221 (< 0.0005) 221 (< 0.0005)

Physiological System Development and Function

Immune Response 22 (< 0.05) 18 (< 0.05) 190 (< 0.0001) 190 (< 0.0005) 186 (< 0.0005)

Immune and lymphatic system development 16 (< 0.05) 16 (< 0.05) 169 (< 0.0001) 150 (< 0.0005) 150 (< 0.0005)

Hematological system development and function 15 (< 0.05) 14 (< 0.05) 190 (< 0.0001) 179 (< 0.0005) 171 (< 0.0005)

Tissue morphology 7 (< 0.05) 6 (< 0.05) 134 (< 0.0001) 108 (< 0.0005) 114 (< 0.0005)

Tissue development 9 (< 0.05) 1 (< 0.005) 122 (< 0.0001) 78 (< 0.0005) 80 (< 0.0005)
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these mice to develop inflammation under conventional
conditions is due at least in part to insufficient exposure
to commensal intestinal bacteria. Our results clearly
demonstrate that, in the absence of such bacterial expo-
sure and in the conventional conditions used in our study,
the Il10-/- mouse on a C57 background at 12 weeks of age
is not a suitable model for human IBD.

Relevance of bacterial inoculation
All of the inoculation protocols we tested resulted in
increased intestinal (particularly colon) inflammation in
Il10-/- mice, both when compared with similarly-inocu-
lated C57 mice and when compared with Il10-/- mice
which received no inoculation (SPF or C groups).
Although the CIF inoculation showed some evidence of
colon inflammation, based on HIS the two inoculation
preparations containing Enterococcus species (EF and
EF·CIF) were more effective in the induction of inflam-
mation. In particular, the EF·CIF inoculation resulted in a
significant increase in overall HIS, with the greatest effect
observed in the colon. The nature of the inflammation
within the colon was transmural and discontinuous,
affecting different layers of the intestinal wall, similar to
human CD [2]. Our findings for the Il10-/- mice inocu-
lated with Enterococcus species are in agreement with
those of other studies where these bacterial species have

been shown to induce inflammation in Il10-/- mice
[14,23,37]. Our results support observations that inocula-
tion of Il10-/- mice with Enterococcus species gives rise to
characteristics of chronic inflammatory diseases, such as
a dysregulated immune response acting in combination
with inflammatory mechanisms that may lead to tissue
damage.

This study used Enterococcus strains isolated from
calves and poultry, and there were several reasons for
this. First, these strains were readily available, and there is
clear evidence in the literature that Enterococcus species
induce inflammation in this mouse model [14,23,24];
establishing a relevant mouse model of IBD within our
laboratory was the key goal of these studies. Furthermore,
enterococci are ubiquitous as a gastrointestinal bacte-
rium in warm-blooded animals, and using those strains
isolated from calves ensured that we included entero-
cocci from a mammalian host. Lastly, all strains were
fecal isolates, and therefore derived from an appropriate
environment.

We do not have specific information on the relationship
of these isolates to those derived from mice. It is possible
that some virulence factors in poultry may be different
from calves, which may be different from mice. However,
we have shown that the enterococci, either alone or in

Table 5: Key canonical pathways associated with inflammation in Il10-/- mice

Canonical Pathways Number of differentially expressed molecules (P-value)

SPF C EF CIF EF·CIF

Ranked according to ratio (differentially expressed genes/total number of genes)

Antigen Presentation Pathway 5/39 (< 0.0001) 5/39 (< 0.0001) 10/39 (< 0.0001) 10/39 (< 0.0001) 10/39 (< 0.0001)

Interferon Signaling 1/29 (0.1) 1/29 (0.1) 9/29 (< 0.0001) 6/29 (< 0.005) 6/29 (< 0.01)

IL-10 Signaling 1/70 (0.2) 2/70 (< 0.05) 12/70 (< 0.0001) 12/70 (< 0.001) 13/70 (< 0.0005)

p38 MAPK Signaling 1/95 (0.3) 2/95 (0.1) 13/95 (< 0.001) 15/95 (< 0.0005) 17/95 (< 0.0001)

Cell Cycle: G2/M DNA Damage Checkpoint 
Regulation

N/A N/A 7/42 (< 0.01) 5/42 (0.06) 7/42 (< 0.01)

Inositol Metabolism N/A N/A 4/24 (< 0.005) 3/24 (0.13) 4/24 (< 0.05)

Keratan Sulfate Biosynthesis N/A N/A 5/31 (< 0.05) 3/31 (026) 5/31 (< 0.05)

IL-6 Signaling N/A 1/93 (0.41) 13/93 (< 0.0005) 13/93 (< 0.005) 15/93 (< 0.0005)

Fatty Acid Metabolism 1/187 (0.5) 4/187 (< 0.05) 28/187 (< 0.0001) 26/187 (< 0.0001) 28/187 (< 0.0001)

Ranked according to P-value (as determined by IPA)

Total number of significant pathways 2 6 15 44 40

Fatty Acid Metabolism 1/187 (0.3) 2/187 (0.1) 28/187 (< 0.0001) 25/187 (< 0.0001) 28/187 (< 0.0001)

LPS/IL-1 Mediated Inhibition of RXR 
Function

1/170 (0.4) 2/170 (0.2) 33/170 (< 0.0001) 26/170 (< 0.0001) 31/170 (< 0.0001)

Tryptophan Metabolism 2/237 (0.05) 1/237 (0.4) 26/237 (< 0.0001) 22/237 (< 0.0001) 24/237 (< 0.0001)

β-alanine Metabolism N/A N/A 10/99 (< 0.0001) 15/99 (< 0.0001) 14/99 (< 0.0001)

Valine, Leucine and Isoleucine Degradation N/A N/A 12/107 (< 0.0001) 14/107 (< 0.0005) 16/107 (< 0.0001)



Barnett et al. BMC Immunology 2010, 11:39
http://www.biomedcentral.com/1471-2172/11/39

Page 10 of 21

Figure 3 Generation of a biological network of genes of the most significant Canonical Pathways for the EF·CIF (Il10-/- vs. C57) comparison. 
The network was generated by IPA using all molecules from significantly affected Canonical Pathways (Fatty Acid Metabolism; LPS/IL-1 mediated in-
hibition of RXR function; Tryptophan Metabolism; β-Alanine Metabolism; Valine, Leucine and Isoleucine Degradation; Antigen Presentation Pathway; 
Interferon Signaling; IL-10 Signaling; Fatty Acid Elongation in Mitochondria). Connections were applied based on known interactions between these 
genes within the Ingenuity Pathways Knowledge Base. Central genes and their direct interactions were identified and were supported by published 
information. *Genes that are detected 2 or more times on the array.
Genes or gene products are represented as nodes, and the biological relationship between two nodes is represented as a line (i.e. an edge). All edges 
are supported by at least 1 reference from the literature. Red and green colored nodes indicate genes with up- and down-regulated expression, re-
spectively. The intensity of the colors specifies the degree of up- or down-regulation. Greater intensity represents a higher level of differential expres-
sion. Nodes and edges are displayed with various shapes and labels that present the functional class of genes and the nature of the relationships 
between the nodes, as shown in legend below the figure.



Barnett et al. BMC Immunology 2010, 11:39
http://www.biomedcentral.com/1471-2172/11/39

Page 11 of 21

Figure 4 Generation of a biological network of genes of the most significant Canonical Pathways for the Il10-/- (EF·CIF vs. C) comparison. 
The network was generated by IPA using all molecules from significantly affected Canonical Pathways (Oxidative Phosphorylation; Antigen Presenta-
tion Pathway; IL-10 Signaling; Interferon Signaling; LPS/IL-1 mediated inhibition of RXR function; Circadian Rhythm Signaling). Connections were ap-
plied based on known interactions between these genes within the Ingenuity Pathways Knowledge Base. Central genes and their direct interactions 
were identified and were supported by published information. *Genes that are detected 2 or more times on the array. Genes or gene products are 
represented as nodes, and the biological relationship between two nodes is represented as a line (i.e. an edge). All edges are supported by at least 1 
reference from the literature. Red and green coloured nodes indicate genes with up- and down-regulated expression, respectively. The intensity of 
the colours specifies the degree of up- or down-regulation. Greater intensity represents a higher level of differential expression. Nodes and edges are 
displayed with various shapes and labels that present the functional class of genes and the nature of the relationships between the nodes, as shown 
in the legend to Figure 3.
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combination with CIF derived from control mice, trigger
inflammation regardless of the fact that they are from a
different host. Thus the original host may be immaterial,
and there is some factor (or factors) common to Entero-
coccus strains which triggers inflammation in a geneti-
cally predisposed host. Other studies have used human
oral Enterococcus isolates in Il10-/- mice [23,37], which
also suggests that there is no host specificity.

Finally, while the ability of the bacteria within the vari-
ous inocula to colonize, and to persist, within the murine
gut was not established in this study, neither colonisation
nor persistence is necessarily a pre-requisite if the appro-
priate inflammatory response is observed even from
transiently dosed enterococci. Thus, although the long-
term fate of the inoculated bacteria within the murine gut
was not established, the consequences of the inoculation
in terms of intestinal inflammation, which was the key
outcome of the study, have been clearly established.

Gene expression profile in inoculated Il10-/- mice
Each of the inoculation procedures induced changes in
the expression levels of a large number of genes, both
when comparing Il10-/- mice with similarly inoculated
C57 mice and when comparing the inoculated Il10-/- mice
with those raised under conventional conditions.

It is apparent from the unsupervised hierarchical clus-
tering analysis of all differentially expressed genes
(Figure2) that the various groups of mice fall into two
main clusters, with C57 mice and Il10-/- mice in the SPF
and C groups (i.e. those which had not received any inoc-
ulation) in one, and inoculated Il10-/- mice in the other.
The Il10-/- mice that did not receive any inoculation were
clustered more closely with the C57 mice than with those
Il10-/- mice which did receive a bacterial inoculation. This
confirms the histological observation that, in the absence
of bacterial inoculation, the Il10-/- mouse on a C57 back-
ground at 12 weeks of age is not a suitable model for
human IBD in the conditions used for our study. Further-
more, bacterial inoculation led to many more changes in
the expression of genes that would normally interact with
IL-10.

Of the three inoculation protocols, CIF appears to be
the least effective in triggering intestinal inflammation,
showing the lowest number of relevant differentially
expressed genes. This is in agreement with published
studies showing Enterococcus species to be particularly
effective in triggering inflammation in the Il10-/- mouse
model.

Expression levels of mRNA encoding pro-inflammatory
cytokines IFN-γ, TNF-α, and IL-1 in colon tissue were
higher in inoculated Il10-/- mice compared with C57
mice, regardless of the inoculation, although mRNA
expression of the pleiotropic pro-inflammatory cytokine

Figure 5 Real time quantitative PCR validation of gene expres-
sion results from microarray analysis. Real time quantitative PCR 
was performed to determine the relative expression of Ifng (a), Sult1a1 
(b), Cyp2c40 (c), Ces2 (d) and Ncf4 (e), five genes which showed differ-
ential expression (as determined using microarray analysis) in Il10-/- 

mice as a result of bacterial inoculation. Results for the differentially ex-
pressed genes were normalized against the geometric mean of CANX 
and HPRT. An asterisk indicates a significant difference in gene expres-
sion for the comparison of interest.
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IL-18 was lower in the colon of EF·CIF-inoculated mice.
The pro-inflammatory IL-6 was detected in plasma sam-
ples at higher levels in both EF and EF·CIF-inoculated
Il10-/- mice compared with similarly inoculated C57 mice
and (in the case of EF) compared with non-inoculated
Il10-/- mice, although there was no difference in the colon
mRNA levels of IL-6 for these two inoculations as deter-
mined by microarray analysis. IL-6, a pleiotropic
cytokine, has been shown to play a crucial role in the
chronic inflammatory process in IBD [38]. This cytokine
is produced by macrophages, lymphocytes and intestinal
epithelial cells in response to intestinal microflora [39]
and stimulates T-cell expansion via anti-apoptopic signal-
ing [38]. T-cell accumulation increases IL-6 levels and
thereby a vicious cycle is induced, leading to chronic
inflammation. While there were also some differences in
the concentrations of other plasma cytokines both within
and across strains (e.g. IL-1α higher in EF-inoculated
Il10-/- mice, IL-4 lower in EF- and EF·CIF-inoculated
mice, both Il10-/- and C57), the levels of Th1/Th2 cytok-
ines measured in plasma samples were generally low or
undetectable. In future studies, inflammatory markers
such as these Th1/Th2 cytokines could be measured at
the site of inflammation to confirm observed gene
expression changes, and further verify the relevance of
this model of IBD. Our findings are in agreement with
observations that the pathogenesis of IBD in humans is
mediated in part through an imbalance of pro- and anti-
inflammatory cytokines [40]. Our inoculated Il10-/- mice
showed a cytokine profile (increased IFNγ, TNFα, IL-1,
IL-6 gene expression levels in colon tissues) that is char-
acteristic of the CD inflammatory response. CD is
thought to be dominated by a T-helper (Th)-1 response
[41], with increased production of IFNγ [42] and IL-2
[43]. TNF-α has been identified as a key pathogenic
cytokine for immune-mediated inflammatory diseases
such as CD [44].

As shown in Table 3, this is further supported by the
fact that inoculation of Il10-/- mice with Enterococcus
strains led to differential expression (compared with Il10-

/- mice that did not receive an inoculation) of many of the
thirty two genes (19 for EF·CIF, 18 for EF) previously
identified in the literature as being relevant to IBD in
human studies [35], including the ATP-binding cassette
(ABC) transporter ABCB1A. Our study is also in agree-
ment with other studies using Il10-/- mice, in which MHC
class II mRNA expression levels in cecal samples was
increased, and cytochrome-P450 expression was
decreased [45]. We observed up-regulation of MHC class
II molecule mRNA (antigen presentation pathway, Table
5) and down-regulation of mRNA expression of several
cytochrome P450 genes (Cyp4b1, Cyp2c9, Cyp2c18), as
well as a sulfotransferase (Sult1c1), a carboxylesterase

(Ces1) and the ATP-binding cassette (ABC) transporters
Abcb1b, Abcb4, Abcb6 and Abcb9 in the colon of EF·CIF-
inoculated Il10-/- mice. Other xenobiotic metabolism
genes such as aldo-keto reductases (Akr1c6), a flavin con-
taining monooxygenase (Fmo5), and three of the genes
selected for RT-PCR validation (Ces2, Sult1a1 and
Cyp2c40) were also down-regulated. A decrease in the
expression of detoxification enzymes and transporters
may be an effect secondary to the occurrence of inflam-
mation; both inflammation and infection are known to
down-regulate the activity and expression levels of drug
metabolizing enzymes and transporters [46].

Our results clearly show that expression of mRNA
encoding the CD14 protein, a receptor expressed on the
surface of macrophages, monocytes and neutrophils
which is essential for LPS-dependent signal transduction
via TLR4 [47], was up-regulated in Il10-/- mice as a result
of bacterial inoculation, particularly associated with EF
inoculation (both EF and EF·CIF treatments). This could
be a mechanism by which inflammation is initiated in our
mouse model of IBD. Quantitative trait loci and microar-
ray analyses of intestinal tissues of two Il10-/- strains with
divergent susceptibility to developing inflammation,
C3H/HeJBir Il10-/- mice (most susceptible) and C57 Il10-/

- mice (less susceptible), identified Cd14 as a candidate
gene associated with this difference in susceptibility [1].
In addition, a polymorphism in the human CD14 pro-
moter (resulting in increased expression of the CD14
receptor) was shown to be associated with both CD [48]
and UC [49]. Both of these studies refer to genetic sus-
ceptibility to inflammation associated with CD14, while
our study shows a change in the expression of Cd14
mRNA in inflamed mice, possibly caused by increased
cell influx, thus they are not directly comparable. All of
these studies do, however, highlight the potential impor-
tance of CD14 in the initiation of intestinal inflammation.

In the current study, Reg3b mRNA levels were higher in
the colon of Il10-/- mice in the SPF and C (non-inflamed)
and CIF (moderately inflamed) groups when compared to
C57 mice in the same groups, but not in the EF and
EF·CIF groups, which showed more severe signs of
inflammation (Table 3); a similar pattern was observed
for the Reg3g gene. Reg3b and Reg3g are expressed in
mouse intestine [50], and encode murine orthologues of
human pancreatitis-associated proteins (PAP) which may
be involved in the innate immune response to bacterial
colonisation of the intestinal tract [51] and can inhibit the
inflammatory response by blocking NFκB activation [7].

The Reg3b and Reg3g genes are induced after develop-
ment of intestinal inflammation in germ-free severe com-
bined immunodeficiency (SCID) mice colonised with
commensal bacteria [52], and bacterial-epithelial contact
may drive Reg3g expression as a mechanism to limit
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microbial penetration and maintain mucosal surface
integrity [53]. In our study, the fact that expression levels
of both Reg3b and Reg3g were lower in Il10-/- mice inocu-
lated with Enterococcus strains relative those in the C and
CIF groups may reflect an inability of these mice to
appropriately respond to this inoculation, and a failure to
effectively deal with the additional enterococci intro-
duced via inoculation [54]. Alternatively, lower overall
expression levels of these two Reg3 genes in response to
Enterococcus inoculation may result in insufficient sup-
pression of the immune response, potentially a crucial
early step in the initiation and development of intestinal
inflammation in these mice. This is in agreement with
studies in the Il2-/- mouse model, where increased expres-
sion levels of Reg3b and Reg3g genes might be associated
with prevention of colitis triggered by colonization with
commensal E. coli [51]. While the levels of Reg3b may be
sufficient to explain the lack of phenotype in the SPF/C
groups (and to a lesser extent the CIF group), the absence
of IL10 (which has been shown to regulate Reg3b in rat
cells in vitro [55]) in the Il10-/- mice may mean that insuf-
ficient Reg3b is expressed to suppress inflammation
induced by enterococci. It is not clear from the literature
what constitutes a 'suppressive' amount of Reg3b in a
colitic phenotype, and further studies would be required
to establish this, and to clarify functional roles of either
Reg3b or Reg3g in Enterococcus-induced inflammation in
this model.

The decreased expression of polymeric immunoglobu-
lin receptor (Pigr) mRNA in Il10-/- mice in the EF and
EF·CIF groups showed a similar pattern of expression to
Reg3b in our study. The protein product of the Pigr gene
is a glycoprotein expressed on the basolateral surface of
secretory columnar and crypt epithelial cells, and is
responsible for active transport of secretory antibodies
such as IgA across the secretory epithelium that lines the
mucosal surfaces. Studies with Pigr knockout (Pigr-/-)
mice have produced strong evidence that innate secretory
antibodies protect against invasion by pathogenic bacte-
ria via immune exclusion; these mice are unable to bind
and actively transport dimeric IgA to the mucosa and
thus are more susceptible to infection with virulent
strains such as Salmonella [56]. Furthermore, Pigr-/- mice
exhibit profound immunopathological changes and clini-
cal disease in response to induction of colitis with dextran
sulfate sodium, suggesting that Pigr may play an impor-
tant role in modulating inflammatory responses in the
mucosa during active colitis [57]. The low Pigr gene
expression in our Il10-/- mice receiving an inoculation
with Enterococcus strains suggests a reduced capacity to
prevent induction of a systemic immune response, a pos-
sible mechanism by which otherwise harmless commen-

sal bacterial strains may have initiated the chronic
inflammation observed in these two treatment groups.

In the current study, antigen presentation genes such as
major histocompatibility complex (MHC) class II mole-
cules (human leukocyte antigen (HLA) family members -
H2-Ab1, H2-Aa, H2-Eb1 and Cd74) showed higher
expression levels in colon in Il10-/- mice in all treatment
groups (SPF, C, EF, CIF, EF·CIF) compared with C57 mice
in the same treatment groups. The up-regulation of anti-
gen presentation genes in our study is consistent with
increased expression of HLA class II molecules that typi-
cally occurs in IBD in humans [58]. In addition, MHC
class II antigen expression has been observed in the colon
epithelial cells of Il10-/- mice as early as three weeks of
age, with higher expression levels observed in mice at
three to six months of age [19]. It has also been reported
that IFNγ appears to play a role in development of intesti-
nal colitis, but that neither IFNγ nor MHC class II expres-
sion are required for sustaining disease once it has
become established [19]. In our study, in contrast to anti-
gen presentation gene response, there was no difference
in expression levels of colon Tnf or Ifng genes between
Il10-/- and C57 mice in the C or SPF groups, but both of
these genes were up-regulated in Il10-/- mice as a result of
bacterial inoculation. This occurs when compared with
similarly-inoculated C57 mice, and with Il10-/- mice in
the C group. These results are further evidence that IFNγ
does play a role in the development of intestinal colitis,
whereas MHC class II expression alone is not sufficient to
trigger an inflammatory response in this model.

Conclusions
Overall, our findings indicate that inoculation of Il10-/-

mice with solutions containing intestinal bacteria
increases colon inflammation, and that the use of Entero-
coccus strains in particular results in a more appropriate
model of IBD compared with non-inoculated Il10-/- mice.
High density oligonucleotide microarrays have identified
gene expression changes in Il10-/- colonic tissue in
response to bacterial inoculation that are consistent with
the current knowledge of mechanisms responsible for
human IBD. In addition, there is preliminary evidence for
the inflammatory response in this model being initiated
by a failure of the normal mechanisms which recognize
commensal bacterial, through molecules such as pIgR
and REG3A/REG3G. Our data suggest that in particular
the EF·CIF inoculation, which results in exposure to a
highly complex bacterial environment, gives an appropri-
ate and relevant mouse model of human IBD in which a
variety of food components could be tested to establish
potential ameliorating effects, and to understand the
mechanisms by which these effects may occur.
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Methods
Animals and diet
This study was reviewed and approved by the
AgResearch Ruakura Animal Ethics Committee in Hamil-
ton, New Zealand according to the Animal Protection
Act (1960) and Animal Protection Regulations (1987) and
amendments. Twenty five male Il10-/- (C57 background,
formal designation B6.129P2-Il10tm1Cgn/J) mice and
twenty five male C57 control mice were received from
The Jackson Laboratory (Bar Harbor, ME, USA) at
approximately 5 weeks of age. Prior to this time, Il10-/-

mice were raised under SPF conditions, and were there-
fore free of all tested viruses, bacteria and mycoplasma
and other opportunistic organisms (including Helicobac-
tor, Pasteurella, and Pseudomonas). Mice were main-
tained under quarantine throughout the trial, and were
housed either in pairs or groups of three (5 mice per
treatment) in shoebox-style cages containing untreated
wood shavings and a plastic tube for environmental
enrichment. The animal room was maintained at a tem-
perature of ~22°C and humidity of ~50% with a 12-hour
light/dark cycle. All mice had ad libitum access to water,
which was refreshed twice a week. An AIN-76A pow-
dered diet, prepared as previously described [59], was
supplied twice a week, with sufficient provided to meet
the daily intake of Il10-/- mice, as determined in a previ-
ous feeding trial (data not shown). The diet for all groups
was sterilized by gamma irradiation (25 kGy, Schering-
Plough, Wellington, New Zealand) to a level required for
SPF conditions, to minimize the possibility of bacterial
introduction to the SPF group of animals. All mice were
weighed twice weekly and carefully monitored for disease
symptoms (weight loss, soft faeces and inactivity).

Experimental design
Both Il10-/- and C57 mice were randomly divided into five
treatment groups with five animals per group (Figure 6).
One group of mice was housed in SPF conditions (isola-
tor cages supplied with high efficiency particulate air
(HEPA)- filtered air (Tecniplast SpA, Buguggiate, Italy));
a second group was maintained under conventional con-
ditions (C), while the remaining groups were kept in con-
ventional conditions and orally inoculated (200 μl) with
solutions containing either the 12 strains of Enterococcus
listed in Table 1 (EF; 1.2 × 108 colony forming units
(CFU)), CIF derived from healthy age-matched C57BL/6
mice raised under conventional conditions, or a combina-
tion of the two (EF·CIF; 6.0 × 107 CFU from the EF inocu-
lum), as described below. The CIF inoculation was
included to better mimic the complete microbiota associ-
ated with the mouse gastrointestinal tract. Microbial
ecology of the gastrointestinal tract is a complex interac-
tion between microorganisms, the host and food compo-
nents with potentially as few as 50% of microbes being

able to be cultured in the laboratory, many requiring
unknown or undefined conditions for growth [60]. It is
likely that many of the uncultivable micro-organisms may
have a role in gastrointestinal tract homeostasis in addi-
tion to eliciting inflammation.

Preparation of bacterial solutions for oral inoculation
Enterococcus strains were obtained from calf or poultry
faeces using sterile Amies transfer swabs (Biolab Limited,
Auckland, New Zealand) and inoculating directly onto
Slanetz and Bartley agar (Oxoid, Hampshire, UK). Plates
were incubated at 42°C for 48 hours with red or purple
colonies subcultured and incubated using the same cul-
ture conditions. Putative enterococcus strains were
stored as glycerol stocks at -85°C in brain heart infusion
broth supplemented with 30% (v/v) glycerol. Speciation
of the E. faecium and E. faecalis strains was performed
using PCR primers specific for amplification of the D-ala
D-ala ligase gene - ddlEF (5'-TAGAGACATTGAATAT-
GCC-3') and ddlER (5'-AATCGCACCGGCTCAATC-3')
- which were modified from a previous study [61].

Seventy-two hours prior to inoculation, colonies of the
E. faecalis and E. faecium strains (Table 6) were sub-cul-
tured from slope tubes onto fresh Slanetz & Bartley agar,
and incubated at 42°C for 48 h. A single colony from each
culture was subsequently transferred to 5 ml of Todd
Hewitt Broth (Oxoid, Hampshire, UK), and incubated at
37°C for 24 h. Each Enterococcus culture was centrifuged
to pellet the bacterial cells (3000 g, 10 min, 4°C), which
were then re-suspended in 5 ml sterile PBS (pH 7.4) and
pooled (EF inoculum).

Figure 6 Overall study design. Both Il10-/- and C57 mice were fed 
AIN-76A diet from the time of arrival (34 ± 3 days of age), and were ran-
domly divided into five treatment groups with five animals per group. 
One group of mice was housed in SPF conditions, a second group was 
maintained under conventional conditions (C), while the remaining 
groups were kept in conventional conditions and orally inoculated 
(200 μl) with solutions containing either the 12 strains of Enterococcus 
listed in Table 1 (EF), conventional intestinal flora (CIF) derived from 
healthy age-matched C57 mice raised under conventional conditions, 
or a combination of the two (EF·CIF). Inoculation was performed at ap-
proximately 5.5 weeks of age, and tissue sampling at 12 weeks of age.

Il10–/– mice  
(25)   Conventional conditions              (C: 5 Il10–/–, 5 C57) 

  SPF conditions            (SPF: 5 Il10–/–, 5 C57) 

C57 mice 
(25) 

  Conventional + EF inoculation             (EF: 5 Il10–/–, 5 C57) 

  Conventional + CIF inoculation           (CIF: 5 Il10–/–, 5 C57) 

Inoculation (5.5 weeks) 

  Conventional + EF·CIF inoculation      (EF·CIF: 5 Il10–/–, 5 C57) 

Sampling (12 weeks) 
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The healthy, age-matched C57BL/6 mice from which
flora were being collected were euthanized by CO2
asphyxiation and cervical dislocation and the gastrointes-
tinal tract (from stomach to just below the caecum)
removed. Digesta were collected from the intestine and
caecum by gently washing with sterile PBS, pH 7.4, then
suspended in a total of 30 ml PBS. After mixing by gentle
inversion and a settling period of approximately 5 min,
the suspension was collected (CIF inoculum). Inoculation
solutions EF and CIF were mixed in a 1:1 (v/v) solution to
obtain the EF·CIF inoculum.

Sample collection
At 12 weeks of age, samples were collected from all mice.
To minimize time variation between the last food intake
and sampling, mice were fasted overnight on the night
before sampling. On the morning of sampling, food was
returned for two hours, followed by a further two hour
fast immediately prior to tissue sampling [62].

Mice from all treatments were euthanized using CO2
asphyxiation followed by cervical dislocation. Blood was
sampled via cardiac puncture (0.5 to 1 ml), cells pelleted
and the plasma snap-frozen and stored at -85°C for subse-
quent cytokine and SAA analysis. The intestine was
quickly removed, cut open lengthwise and flushed with
0.9% sodium chloride to remove any traces of digesta,
then carefully laid out on an ice-cold stainless steel tray.
Sections of each intestinal region (duodenum, jejunum,
ileum and colon) were frozen in liquid nitrogen before
storage at -85°C, for gene profiling, and a sub-sample
from each intestinal region was fixed in 10% phosphate
buffered formalin and stored at room temperature until
histological evaluation of inflammation.

Histology
Histological examination was performed as previously
described [34,59]. Briefly, formalin-fixed samples were

processed, sectioned, stained with haematoxylin and
eosin and evaluated for inflammation under a light
microscope, using a modification of a previously
described scoring system [15,63]. A histological injury
score (HIS) was assigned based on the presence of
inflammatory lesions, tissue destruction and tissue repair.

Plasma SAA
Inflammation was also determined by analysis of SAA
levels in plasma using a murine-specific Phase SAA
ELISA kit, according to the manufacturer's protocol
(Tridelta Development Ltd., Maynooth, County Kildare,
Ireland). Pipetting of standards and samples was per-
formed using an epMotion 5070 Liquid Handling Work-
station (Eppendorf South Pacific Pty. Ltd., NSW,
Australia). Briefly, standards or samples plus biotinylated
monoclonal SAA antibody were incubated in microtitre
plate wells pre-coated with capture monoclonal SAA
antibody. In one step, SAA (in the standard or sample)
was captured and labelled in a sandwich format. After
washing to remove unbound material, wells were incu-
bated with streptavidin-horseradish peroxidase prior to
the addition of enzyme substrate (3,3',5,5'-tetramethyl-
benzidine, TMB). The reaction was stopped with the
addition of 2 M sulphuric acid. Optical density in the
wells was measured at 450 nm (630 nm as reference)
using an automated plate reader (Versamax, Molecular
Devices, CA, USA).

Plasma cytokines
Plasma samples were analyzed for the presence of Th1/
Th2-related cytokines (IL-1α, IL-2, IL-5, IL-6, IL-10,
IFNγ, TNFα, granulocyte monocyte colony-stimulating
factor (GM-CSF), IL-4 and IL-17) using a FlowCytomix
Multiplex (Th1/Th2 10plex) mouse kit (Bender MedSys-
tems GmbH, Vienna, Austria) according to the manufac-
turer's instructions. Briefly, microbeads coated with

Table 6: Strains of Enterococcus faecalis and E. faecium used in solutions for oral inoculation

Enterococcus faecalis Enterococcus faecium

Strain Source Strain Source

AGR991 calf SN081 calf

AGR1140 calf SN068 calf

AGR1371 calf SN077 calf

SN070 poultry SN067 calf

SN079 poultry SN071 calf

SN083 poultry AGR979 poultry

All strains were individually subcultured on Slanetz & Bartley medium, grown in Todd Hewitt Broth and re-suspended in 5 ml sterile PBS (pH 
7.4) before pooling. Inoculation solutions used in each of the three groups of inoculated mice (Figure 6) were prepared as described in the 
text.
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antibodies to the specified cytokines were mixed with
plasma samples. Biotinylated secondary antibodies were
then added, and the mixture incubated at room tempera-
ture for 2 h with constant shaking (500 rpm). The amount
of cytokine that bound to the antibodies was then
detected using streptavidin conjugated to phycoerythrin,
with end-point measurement in a flow cytometer (FACS-
can, Becton Dickinson, North Ryde, NSW, Australia).
Levels of each cytokine were determined by comparison
with a standard curve (concentration range for all cytok-
ines 0-20000 pg/ml).

RNA isolation and synthesis of labeled cRNA
Total RNA from intact colon tissue was isolated by
homogenizing the samples in TRIzol (Invitrogen, Auck-
land, New Zealand) according to the manufacturer's
instructions. RNA was quantified with a Nanodrop ND-
1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA), and RNA integrity was assessed
with an RNA 6000 Nano LabChip kit using the Agilent
2100 Bioanalyser (Agilent Technologies, Palo Alto, CA,
USA). Extracted RNA was purified using RNeasy spin
columns (QIAGEN, San Diego, CA, USA). Only total
RNA with an OD 260/280 ratio > 2.0, a Bioanalyzer 28 s/
18 s peak ratio ≥ 1.2 and an RNA integrity number ≥ 7.5
was used for microarray hybridization. An equimolar
pool of total RNA extracts from colon tissues of two or
three different mice per treatment was made, resulting in
two pools per treatment. A reference design was used for
microarray hybridization: colonic RNA extracts from all
mice were pooled in an equimolar proportion and used as
the reference sample.

The Low RNA Input Fluorescent Linear Amplification
Kit (Agilent Technologies Inc., Palo Alto, CA, USA) was
used to synthesize cDNA and fluorescent cRNA. Labelled
cRNA was made on the same day for all pools, including
the reference sample. cDNA was synthesized from 500 ng
of purified total RNA from each pool according to the
manufacturer's protocol. Cyanine 3-cytidine triphosphate
(Cy3, PerkinElmer, Waltham, Massachusetts 02451, USA)
was used to label sample groups, while the reference RNA
was labeled with cyanine 5-CTP (Cy5, PerkinElmer,
Waltham, MA 02451, USA). Hybridization was per-
formed according to a reference design without dye swap.

Microarray hybridization and scanning
The in situ hybridization kit-plus (Agilent Technologies
Inc., Palo Alto, CA, USA) was used to hybridize cRNA
samples to Agilent Technologies Mouse G4121A - 44 k 60
mer oligo arrays. For each experimental group, two pools
of cRNA were hybridized, thus in total twenty arrays were
used. Cy3-labelled cRNA (0.75 μg) and Cy5-labelled
cRNA (0.75 μg) were hybridised onto the microarray
according to the manufacturer's protocol, as previously

described [34]. Slides were scanned using a GenePix
4200A scanner (Molecular Devices Corporation, Sunny-
vale, CA, USA) at a photomultiplier tube (PMT) setting
of 450 V. Spot identification and quantification were per-
formed using GenePix 6.0 software (Molecular Devices
Corporation, Sunnyvale, CA, USA). The microarray data
are available as accession GSE12223 in the Gene Expres-
sion Omnibus repository at the National Center for Bio-
technology Information http://www.ncbi.nlm.nih.gov/
geo/info/linking.html.

Microarray data analysis
Statistical analysis was performed using linear models for
microarray analysis (limma) within the Bioconductor
framework [64]. Before analysis, poor quality spots were
manually flagged and filtered out. Quality of the microar-
ray data was assessed on diagnostic plots (boxplots and
density plots) and spatial images generated from the raw
(non-processed) data. All twenty arrays passed these
strict criteria and were included in the analyses. Intensity
ratio values for all microarray spots were normalized
using a within-slide global Locally Weighted Scatterplot
Smoothing procedure to remove the effect of systematic
variation in the microarrays; no background correction
was necessary due to homogeneous hybridization. The
normalized data from the arrays of each treatment group
were averaged. For each comparison, differentially
expressed genes were identified using FDR control with a
threshold of q < 0.05.

Further analysis of the differentially expressed genes
(for example, clustering, self-organizing maps) was per-
formed using Bioconductor and GeneSpring 7.3 (Agilent
Technologies Inc., Palo Alto, CA, USA). To gain an over-
all idea of the pattern of gene expression changes across
the various treatments, unsupervised hierarchical cluster
analysis was performed on the group of all probes differ-
entially expressed in any of the within-treatment Il10-/-

vs. C57 comparisons using Bioconductor.
Network, pathways and functional analyses were gener-

ated using Ingenuity Pathways Analysis (IPA, Version 5.0
or Version 6.0, Ingenuity Systems, Redwood City, CA,
USA; http://www.ingenuity.com). For analysis using IPA,
the full dataset (representing all IDs on the Agilent array)
was uploaded for analysis, and the set of differentially
expressed genes analyzed using the complete gene-list as
a reference data set. For analyses where more than 800
differentially expressed genes were identified as network-
eligible, a fold-change cut-off was applied to reduce this
number to 800, as is recommended by IPA. The fold-
change cut off for each list is reported in the results sec-
tion. In the case of genes being replicated on the array,
the median value of the replicates was used for IPA
analysis.

http://www.ncbi.nlm.nih.gov/geo/info/linking.html
http://www.ncbi.nlm.nih.gov/geo/info/linking.html
http://www.ingenuity.com
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Functional analysis in IPA identified biological func-
tions and/or diseases that were most relevant to the data
set. Genes from the dataset that met the FDR cutoff (q <
0.05) and were associated with biological functions and/
or diseases in the IPA Knowledge Base were considered
for the analysis. Fischer's exact test was used to calculate
the probability that each biological function and/or dis-
ease assigned to that data set is due to chance alone.

Canonical pathways analysis identified those pathways
from the IPA library that were most significant to the data
set. Only those genes from the data set meeting the FDR
cutoff (q < 0.05) and associated with a canonical pathway
in the IPA Knowledge Base were considered for this anal-
ysis. The significance of the association between the data
set and the canonical pathway was measured in two ways:
1) The ratio of the number of genes from the data set that
map to the canonical pathway in question divided by the
total number of genes that map to the same canonical
pathway; 2) Fischer's exact test was used to calculate the
probability that the association between the genes in the
dataset and the canonical pathway is explained by chance
alone.

Because we have used an Il10-/- mouse model, the
"Neighborhood Explorer" feature of IPA was used to
investigate genes associated with Il10. The Neighborhood
Explorer is a network which displays all molecules that
directly interact with a molecule of interest (in this case
mRNA encoded by the Il10 gene, which is non-functional
in the Il10-/- mice), either regulating or being regulated by
that molecule, or physically interacting with it. These
interactions are based on information contained within
the Ingenuity Pathways Knowledge Base.

Quantitative real-time polymerase chain reaction
Five genes showing differential expression in EF·CIF-
inoculated Il10-/- mice (compared with similarly inocu-
lated C57 mice) were selected for validation and their
expression levels established using quantitative real-time
polymerase chain reaction (qRT-PCR). cDNA was syn-
thesized from the same total RNA samples used for the
microarray analysis, using the Transcriptor First Strand
cDNA Synthesis Kit (Roche Diagnostics, Mannheim,
Germany). Reverse transcription was performed using
1.0 μg of total RNA and oligo-dT primers according to
the manufacturer's instructions.

The PCR conditions were: 95°C for 5 min, 35 cycles at
95°C for 15 s, 63°C for 10 s and 72°C for 15 s. Melting
curve analyses were performed by increasing the temper-
ature (1°C/s) from 65°C to 95°C, with continuous fluores-
cence acquisition. With the exception of neutrophil
cytosolic factor 4 (Ncf4) [59], primers for the selected
genes (cytochrome P450, family 2, subfamily C, polypep-
tide 40 (Cyp2c40), carboxylesterase 2 (Ces2), sulfotrans-
ferase 1A (Sult1a1) and IFNγ (Ifng)) were designed using

Primer 3.0 [65], with available public sequences. RefSeq
IDs and primer sequences are as previously described
[66]. Ifng and Ncf4 are genes associated with immune
response, while Cyp2c40, Ces2 and Sult1a1 are xenobiotic
metabolism genes. PCR conditions for all primers were
optimized and amplicons were sequenced to confirm
identity. Specificities of all PCR reactions were verified by
melting curves analyses and agarose gel electrophoresis.
Data were normalized against two reference genes
(hypoxanthine guanine phosphoribosyl transferase 1
(Hprt1) and calnexin (Canx) [59]).

Threshold cycle (Ct) values were obtained in triplicates
for each sample on the LightCycler 480 (Roche Diagnos-
tics, Mannheim, Germany) using LightCycler 480 SYBR
Green I Master (Roche Diagnostics, Mannheim, Ger-
many) in 20 μl reactions, according to the manufacturer's
protocol. Standard curves for all selected genes and refer-
ence genes were generated using serial dilutions of
pooled cDNAs from all samples. LightCycler 480 Relative
Quantification Software was used to calculate mRNA
concentrations based on the appropriate standard curves
and normalized ratios (target/reference).

Statistical analysis
Statistical analyses of live weight, HIS, qRT-PCR and
plasma SAA and cytokines were performed using Gen-
Stat (VSN International, Hemel Hempstead, UK; 9th edi-
tion, 2006 or 10th edition, 2007). Differences in HIS both
between and within mouse strains were analyzed using
an ANOVA with pooled variance. As expected, there
were a high number of zero histology scores for the C57
mice and so the data for the two strains were analyzed
separately. Plasma concentrations of SAA and cytokines
were analyzed by ANOVA using strain and treatment as
factors. Log transformed values were used for statistical
analysis of the histology and SAA data. Due to the skewed
nature of the data, and the large proportion of zeros
observed for some of the plasma cytokine measurements,
a variety of different transformations (such as log, square-
root, and non-parametric rank transformations) were
required across these variables. Specific transformations
used are described in the results section for the cytokine
analyses.

A probability value of less than 0.05 was considered sig-
nificant while a probability value greater than 0.05 but
lower than 0.10 was considered a trend. It must be noted
that one Il10-/- mouse from the CIF inoculation group
died during the experiment (52 days of age) for unknown
reasons. This animal was not scored for histological signs
of inflammation, and no data from this animal (e.g. live
weight) were included in any of the analyses. Unless oth-
erwise stated, data are presented in the text as mean ±
SD.
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pathways as identified by Ingenuity Pathways Analysis (using Fischer's exact 
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