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ABSTRACT
The advent of proteolysis-targeting chimaeras (PROTACs) mandates that new ligands for the recruitment
of E3 ligases are discovered. The traditional immunomodulatory drugs (IMiDs) such as thalidomide and its
analogues (all based on the phthalimide glutarimide core) bind to Cereblon, the substrate receptor of the
CRL4ACRBN E3 ligase. We designed a thalidomide analogue in which the phthalimide moiety was replaced
with benzotriazole, using an innovative synthesis strategy. Compared to thalidomide, the resulting
“benzotriazolo thalidomide” has a similar binding mode, but improved properties, as revealed in crystallo-
graphic analyses, affinity assays and cell culture.
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Introduction

The approach to eliminating dysregulated proteins via targeted
protein degradation is rapidly gaining momentum as an alterna-
tive to small-molecule inhibitors1. One of the most promising and
powerful molecular tools to achieve that are the so-called prote-
olysis-targeting chimaeras (PROTACs) in which two recruiter moi-
eties are joined with a linker2. One is a ligand of the protein of
interest (POI, i.e. the one to be degraded) and the other a ligand

of an E3 ligase. Once the two proteins (POI and E3 ligase) are
brought in proximity by the PROTAC molecule, this triggers poly-
ubiquitination of the POI by the E3 ligase, which makes the for-
mer a client for proteasomal degradation3. Cereblon (CRBN) is one
of the most important E3 ligases that has been employed for
PROTAC development4 so far. The ligand space of CRBN mostly
includes phthalimide-based thalidomide (1) and its analogs5. In
addition to these, structural requirements for CRBN ligand binding
have recently been elucidated6.
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The binding mode of thalidomide (1) includes a hydrogen
bond between one of the phthalimide carbonyl groups and a con-
served asparagine residue of the protein, which contributes to the
affinity between the two molecules7. However, the other phthali-
mide carbonyl is not involved in any specific interactions, not
even with water molecules, and thus represents an unsatisfied
polar group that potentially lowers the binding energy. We
hypothesised that replacing the phthalimide core with benzotria-
zole, thereby removing both carbonyl groups, would possibly
eliminate the possibility of hydrogen bonding with the conserved
asparagine, but also rid the molecule of the “dissatisfied” carbonyl
group. As the net result, the affinity to CRBN may be retained,
assuming that the introduced triazole nitrogen is less unfavoured
than the carbonyl group due to its decreased polarity with only a
single free electron pair. Herein, we report on the verification of
this hypothesis.

Results and discussion

The synthesis of the benzotriazole analogue 2 of thalidomide was
achieved as detailed below. Commercially available glutarimide 3
was (dimethylamino)methylenated at the a-position using the

Brederick’s reagent (4)8. The resulting derivative 5 readily entered
the Regitz diazo transfer reaction9 with 4-nitrophenylsulfonyl azide
(NsN3) to give hitherto undescribed 3-diazopiperidine-2,6-dione (6)
in excellent yield. a-Diazocarbonyl compounds were recently
established to regioselectively alkylate benzotriazoles at N2 when
activated as Rh(II) carbenes10. Indeed, when a-diazoglutarimide (6)
was activated by Rh(II) espionate (bis[rhodium(a,a,a0,a0-tetra-
methyl-1,3-benzenedipropionic acid)]) (1mol%) and reacted with
benzotriazole, desired ‘benzotriazolo thalidomide’ 2 was obtained
in excellent yield and complete regioselectivity (Scheme 1).

To our delight, when evaluated for affinity to the thalidomide-
binding domain of human CRBN in comparison to thalidomide (1,
Ki 8.5 ± 0.8 mM), using the recently reported thermophoresis-based
assay11, the benzotriazolo analogue 2 displayed an improvement
in affinity with a Ki value of 6.8 ± 1.6 mM.

To gain insight into the binding mode of 2, we employed our
previously established crystal soaking system based on the bacter-
ial CRBN homologue Magnetospirillum gryphiswaldense Cereblon
Isoform 4 (MsCI4)6. The obtained crystal structure revealed that 2
binds in the same overall orientation as thalidomide, but lacks any
specific hydrogen-bonding interactions with the target other than
those mediated by the glutarimide moiety (Figure 1)12. None of

Scheme 1. Synthesis of ‘benzotriazolo thalidomide’ 2.

Figure 1. Binding mode of ‘benzotriazolo thalidomide’ (2) compared to thalidomide. Left: two views of 2 bound to MsCI4 with an FO-FC omit map contoured at 4r.
Three tryptophan residues and a conserved asparagine residue of the binding site are indicated. Of note, the asparagine does not form interactions with 2. Right: The
binding of 2 compared to thalidomide in surface representation coloured by atom type. The hydrogen bond of thalidomide to the conserved asparagine is indicated.
Residue numbering according to the MsCI4 sequence.
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the benzotriazole nitrogen is involved in hydrogen bonds, not
even to water, suggesting that the retained affinity could indeed
be due to their lower polarity as compared to the ‘unsatisfied’ car-
bonyl groups in thalidomide.

Usage of 2 in PROTAC design mandates that a functionalised
version of it (akin to lenalidomide13 or pomalidomide14) is devel-
oped. Before taking steps into that direction, we were keen to
determine the cytotoxicity and apoptosis-inducing profile of
“benzotriazolo thalidomide” 2, in comparison to thalidomide (1)
itself. Figure 2 shows the cytotoxicity of the two compounds
towards MOLP-815 and KMS-12-PE16 multiple myeloma cell lines,
which clearly demonstrates the absence of any appreciable cyto-
toxicity at concentrations as high as 250 mM.

As to the apoptosis-inducing ability (evaluated by flow cytome-
try in MOLP-8 cells), compound 2 showed a clear advantage com-
pared to thalidomide (1): at 300 mM, it preserved a substantially
higher population of live cells (Table 1). This clearly shows the
promise of the ‘benzotriazolo thalidomide’ scaffold reported
herein for the future use in the design of PROTACs.

Conclusion

In summary, we have described a promising novel benzotriazolo
analogue of thalidomide. Despite the absence of the carbonyl
group involved in hydrogen bonding with CRBN, it retained affin-
ity, likely due to the relief from the other, ‘dissatisfied’ carbonyl
group. These assumptions are corroborated by the crystal struc-
ture of the complex between 2 and CRBN. Compound 2 is dis-
tinctly non-cytotoxic towards multiple myeloma cell lines (at
concentrations as high as 250 mM) and preserves more live cell
population in apoptosis-induction experiments, compared to thal-
idomide (1). Development of a functionalised version of 2 for the
use in the PROTAC design is highly desirable and is currently
underway in our laboratories.
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