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Abstract

Brucella species are Gram-negative, facultative intracellular bacteria that cause zoonotic brucellosis. Survival and replication
inside macrophages is critical for establishment of chronic Brucella infection. Virulent smooth B. abortus strain 2308 inhibits
programmed macrophage cell death and replicates inside macrophages. Cattle B. abortus vaccine strain RB51 is an
attenuated rough, lipopolysaccharide O antigen-deficient mutant derived from smooth strain 2308. B. abortus rough mutant
RA1 contains a single wboA gene mutation in strain 2308. Our studies demonstrated that live RB51 and RA1, but not strain
2308 or heat-killed Brucella, induced both apoptotic and necrotic cell death in murine RAW264.7 macrophages and bone
marrow derived macrophages. The same phenomenon was also observed in primary mouse peritoneal macrophages from
mice immunized intraperitoneally with vaccine strain RB51 using the same dose as regularly performed in protection
studies. Programmed macrophage cell death induced by RB51 and RA1 was inhibited by a caspase-2 inhibitor (Z-VDVAD-
FMK). Caspase-2 enzyme activation and cleavage were observed at the early infection stage in macrophages infected with
RB51 and RA1 but not strain 2308. The inhibition of macrophage cell death promoted the survival of rough Brucella cells
inside macrophages. The critical role of caspase-2 in mediating rough B. abortus induced macrophage cell death was
confirmed using caspase-2 specific shRNA. The mitochondrial apoptosis pathway was activated in macrophages infected
with rough B. abortus as demonstrated by increase in mitochondrial membrane permeability and the release of cytochrome
c to cytoplasm in macrophages infected with rough Brucella. These results demonstrate that rough B. abortus strains RB51
and RA1 induce apoptotic and necrotic murine macrophage cell death that is mediated by caspase-2. The biological
relevance of Brucella O antigen and caspase-2-mediated macrophage cell death in Brucella pathogenesis and protective
Brucella immunity is discussed.
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Introduction

Brucella species are Gram-negative, facultative intracellular

bacteria that cause brucellosis in humans and animals [1]. Human

brucellosis remains the most common zoonotic disease worldwide

with more than 500,000 new cases annually [2]. B. abortus infects

primarily cattle and is one of the common Brucella species that

afflict humans [2]. The brucellae disseminate or spread via the

blood and lymphatics where they multiply inside phagocytes and

cause bacteremia. Unlike many pathogenic bacteria, Brucella lacks

most of the classical virulence factors such as invasive proteases,

exotoxins, capsules, fimbriae, virulence plasmids, and lysogenic

phages [3]. Instead, Brucella virulence relies on its ability to survive

and replicate in the vacuolar phagocytic compartments of

macrophages. Brucella lipopolysaccharide (LPS) is a Brucella

virulence factor [4]. The LPS has three domains: lipid A, the

core oligosaccharide, and the O antigen (O-polysaccharide, or O-

side chain). The brucellae exhibit two phenotypes, i.e., smooth and

rough. Smooth Brucella strains include a complete LPS, while

rough Brucella strains do not contain or produce very low level O-

antigen. Smooth virulent Brucella strains, e.g., B. abortus strain 2308

(S2308), inhibit programmed cell death of infected human and

mouse macrophages [5,6,7]. For example, smooth B. suis infection

inhibits spontaneously occurring apoptosis in human macrophages

[5,6,7]. The inhibition of cell death facilitates the survival and

replication of smooth Brucella strains inside macrophages. In

contrast, many rough derivatives of B. abortus, B. melitensis, and B.

suis, deficient in the LPS O antigen (O-side chain), can not survive

inside macrophages and are therefore attenuated [8,9]. A number

of B. abortus rough strains are cytotoxic to macrophages and induce

macrophage cell death [9,10,11,12,13]. The underlying details of

the molecular mechanism of macrophage death induced by rough

Brucella strains remain obscure.

Several types of programmed cell death have been defined. These

include apoptosis, autophagy, and pyroptosis [14,15,16,17]. These

categories are based on criteria such as morphological alterations,
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initiation of a death signal, and the involvement of caspases. The

most thoroughly studied aspect of programmed cell death is

apoptosis. Apoptosis is mediated by a family of evolutionarily

conserved proteases known as caspases [18]. Activation of caspases

leads to cell shrinkage, nuclear condensation, and oligonucleosomal

DNA fragmentation. There are two types of apoptotic caspases:

initiator (apical) caspases and effector (executioner) caspases. Initiator

caspases (e.g., caspase-2, 8, 9, 10) activate effector caspases (e.g.,

caspase-3, 6, 7) that digest specific proteins and/or activate other

specific caspases (e.g., caspase-1, 4, 5, 11, 12, 13, 14). Two well-

studied pathways of apoptosis are the mitochondrial (intrinsic) cell

death pathway and the cell surface death receptor (extrinsic) pathway

[19]. The mitochondrial cell death pathway is characterized by

increased mitochondrial membrane permeability and the release of

cytochrome c [20]. Necrosis refers to the sum of changes that have

occurred secondary to cell death (e.g., apoptosis) after dead cells have

reached equilibrium with their surroundings. According to recent

nomenclature recommendations, necrosis is the end product of a cell

death process instead of a form of cell death in itself [17,21,22].

Although macrophages are highly adept at destroying bacteria,

modulation of macrophage cell death by some species of bacteria is

emerging as an important pathogenesis mechanism. One such

mechanism, pyroptosis, is a caspase-1-dependent pro-inflammatory

cell death [17]. Caspase-1 is required for induction of macrophage

cell death infected by many microbial species including Salmonella

typhimurium [23,24,25], Shigella flexneri [26], Legionella pneumophila [27],

and Mycobacterium tuberculosis [28]. The participating of caspase-2 has

also been reported in Salmonella-infected macrophages [29]. Our

previous microarray study indicates smooth virulent B. melitensis

strain 16 M down-regulates caspase-2 transcriptional levels and

inhibits transcription of genes involving mitochondria activities at

an early stage of infection [6]. No caspases were up-regulated in

strain 16M-infected macrophages. These results suggest that

smooth virulent Brucella modulate macrophage cell death by

inhibiting mitochondrial cell death pathway and caspase activation.

The caspase gene expression profiles in macrophages infected with

rough Brucella strains have not been studied.

We hypothesized that rough B. abortus strains would induce

macrophage cell death through a caspase-dependent pathway. To

test this hypothesis, we used rough B. abortus strains RB51 [30] and

RA1 [31] as compared with their parent smooth virulent strain 2308

(S2308). The live attenuated rough strain RB51 serves as the official

Brucella cattle vaccine and has been used in the US since 1996 [32].

The use of RB51 as a vaccine has the advantage that it does not

stimulate Brucella O antigen specific antibodies and thus does not

interfere with the diagnosis of wild type Brucella infection in the field.

The rough phenotype of RB51 is due to the mutation of wboA that

encodes a glycosyltransferase [33]. Compared to its parent strain

S2308, RB51 has at least one additional mutation of rpoB [34]. B.

abortus RA1 is a single wboA Tn5 rough mutant of S2308 [31]. Just as

to RB51, RA1 lacks the O side chain and is attenuated. Elucidation of

the mechanisms underlying of Brucella rough strains RB51 and RA1

induced macrophage response will improve our understanding of

Brucella vaccine immunity and foster our goal of developing an

effective vaccine against human brucellosis. The results presented

here demonstrate that RB51 and RA1 induce a novel apoptotic and

necrotic macrophage cell death pathway mediated by caspase-2.

Results

RB51 and RA1 induce apoptotic and necrotic
macrophage cell death

The programmed cell death of Brucella-infected macrophages

was first analyzed by Annexin V (green) and propidium iodide (PI,

red) staining. Fluorescein-conjugated Annexin V detects translo-

cation of phosphatidylserine from the inner cell membrane to the

outer cell membrane of cells at the early stage of apoptosis. PI

stains the DNA of necrotic cells and/or cells at late stage of

apoptosis [35]. The results of fluorescence staining of infected

macrophages indicated that rough B. abortus strains RB51 and

RA1 induce both apoptotic (stained green) and necrotic (stained

green and red) macrophage cell death. At 24 h post infection with

RB51 or RA1, 61.5%68.7% or 74.7%65.6% of the infected

macrophages, respectively, underwent either apoptotic or necrotic

cell death (Figure 1A, Table 1). The cytopathic effect of rough

Brucella on macrophages was further confirmed by the lactate

dehydrogenase (LDH) release assay, a nonradioactive cytotoxicity

assay used to monitor the LDH release from dying membrane-

damaged macrophages (Figure 1B).

The kinetic profiles of intracellular survival of different Brucella

strains were analyzed in parallel with the cell death of infected

macrophages (Figure 1C). Macrophage cells were infected with

RB51 or RA1 at a multiplicity of infection (MOI) of 200 that has

been commonly used for Brucella infection studies [12,36]. Neither

RB51 nor RA1 survived inside macrophages as demonstrated by

continuous decline of survived bacterial numbers inside macro-

phages. In contrast to these rough Brucella strains, a less amount of

smooth strain 2308 (S2308) cells was taken up by macrophages at

a MOI of 200 (data not shown). This observation is consistent with

other reports [8,12]. At 1 h post infection, the number of

internalized S2308 cells found inside macrophages at the MOI

of 2,000 was similar to the number of internalized RB51 or RA1

cells at a MOI 200 (Figure 1C). At 24 h post infection, the number

of living S2308 cells was significantly higher than that of S2308 at

6 h post infection and that of RB51 or RA1 at 24 h post infection.

These results indicated that S2308 survived and replicates inside

macrophages. However, S2308 failed to induce any macrophage

cell death, even with a MOI of 2,000, at 24 h post infection

(Figure 1A and 1B).

Programmed cell death of Brucella-infected macrophages was

confirmed and further analyzed by Hoechst 33342 and Annexin V

straining (Figure 2). Apoptotic cells were detectable as early as 2 h

post infection with RB51 (Figure 2). The level of cell death

increased to about 16.3%62.1 at 4 h post infection. Approxi-

mately, 19.5%62.9% macrophage cells exhibited both Annexin-V

and PI positive (necrotic cell) among the dead cells population at

4 h post infection. At 6 h after infection, 26.6%63.5% of cells was

membrane-damaged macrophages as established by a lactate

dehydrogenase (LDH) releasing test (Figure 1B). Of the dying cells,

70.3%65.9% were necrotic or late-apoptotic cells. Others are

early apoptotic cells (Figure 2A). RB51-induced apoptotic

macrophage cell death was confirmed by staining with Hoechst

33342. The RB51- and RA1-infected macrophages exhibited

typical signs of apoptosis, i.e., condensed nuclei and shrunken cells

(Figure 2B).

To specifically study Brucella internalization by individual

macrophages, a recombinant strain RB51GFP that expresses the

green fluorescent protein (GFP) [37] was used to infect

macrophages. Over 95% of macrophages were infected with

RB51GFP at any tested MOI (20, 200, and 2000) at 1 h post

infection (Figure 3A). The bacteria infection rate for individual

macrophages was uneven in any tested MOI. Some macrophages

were infected with more bacteria than others. With a low MOI of

20, the majority of RB51GFP-infected macrophages contained 2–

12 green fluorescence dots per macrophage (Figure 3A). The

higher MOIs usually resulted in increased numbers of infected

bacteria per macrophages. The PI staining of RB51GFP-infected

macrophages allowed us to simultaneously monitor macrophage

Casp2 in Brucella Pathogenesis
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cell death and Brucella numbers inside macrophages (Figure 3B). It

was found that most cell death occurred in Brucella-infected

macrophages. For example, in macrophages infected with

RB51GFP for 6 h (MOI: 200), most dying macrophages contained

intracellular bacteria shown by green fluorescence (Figure 3B). A

small number of PI-positive dying cells were not surrounded by

green fluorescence probably due to the disruption of cell

membrane leading to the release of bacteria. This possibility was

observed by comparing the images of light microscopy and

fluorescence microscopy.

To further determine the relationship between the infection dose

of Brucella and macrophage cell death, a kinetic experiment was

conducted (Table 1). In this experiment, macrophages were infected

with different MOIs and cell death evaluated at different time points

(4, 8, 24, and 48 h) following infection. It was found that the level and

speed of macrophage cell death were dependent on the infection

doses of rough Brucella. The macrophage cell death induced by RB51

with the MOI of 2,000 developed much faster than that with a MOI

of 200 or 20 (Table 1). Heat killed RB51 (HK-RB51) only caused

limited cell death (,10%) at a MOI of 2000 at 24 and 48 h post

infection. S2308 did not induce obvious cell death at any tested MOI.

To test if the same cell death also occurs in bone marrow

derived macrophages (BMDM) infected with rough Brucella strains,

BMDM were prepared using BALB/c mice and infected with

different Brucella strains. Live RB51 or RA1 was also capable of

inducing apoptotic and necrotic cell death in BMDM. Heat-killed

RB51 or RA1 did not cause obvious cell death with a MOI of 200.

It suggests that viable rough strains are required to induce

macrophage death. Live smooth strain S2308 did not induce cell

death of infected BMDM (Figure 4).

RB51 induces apoptosis and necrosis in primary
peritoneal macrophages isolated from RB51-vaccinated
mice

Vaccine strain RB51 has been widely used for studying

protective mechanisms against brucellosis using mice [30,38]. In

order to determine if RB51 or S2308 induces similar cell death in

primary macrophages in RB51-infected mice, BALB/c mice were

injected intraperitoneally (i.p.) with RB51, HK-RB51 or S2308 at

a dose of 56108 CFU. This is the same dosage and injection route

used for other typical RB51 mouse studies [39,40]. Peritoneal

macrophages were collected and monitored for induction of

Figure 1. Cell death of macrophages infected with B. abortus strains RB51,RA1 and their parent wild type S2308. (A) RB51 and RA1
induced 61.5%68.7% and 74.7%65.6% macrophage cells death, respectively, at a MOI of 200 at 24 h post infection. B. abortus strain 2308 induced
limited macrophage cell death even at the MOI of 2,000. (B) LDH release from RB51, RA1 and S2308 infected macrophages. The data represent the
means6standard deviations for three independent experiments. The asterisk (*) represents the significant differences (P,0.05) of the LDH release
level from macrophages infected by smooth S2308 compared to that from macrophages infected with rough strain RB51 or RA1. (C) Growth kinetics
of RB51, RA1 and S2308 in macrophages. The number of internalized cells of S2308 at MOI 2,000 found was similar to the number of cells of
internalized RB51 and RA1 at a MOI 200 at 1 h post infection. The asterisk (*) represents the significant differences (P,0.05) in survival level of smooth
S2308 compared to that of rough strain RB51 or RA1 inside infected macrophages.
doi:10.1371/journal.pone.0006830.g001
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apoptosis and necrosis. In total, 38.4%64.0% of the peritoneal

macrophages from RB51-vaccinated mice showed apoptotic or

necrotic staining at 24 h after infection (Figure 5). Macrophages

infected with Brucella S2308 appeared to be activated as

demonstrated by the larger size and irregular shape with long

pseudopodia, as compared with noninfected macrophages that

showed smaller size and oval shape with less short cytoplasmic

processes. Similar observation was found in macrophages treated

with HK-RB51. In addition, no obvious cell death was observed in

macrophages from control mice injected with saline, HK-RB51 or

S2308. These results indicate that RB51 induces apoptosis and

necrosis in primary macrophages from RB51-vaccinated mice.

Inhibition of caspase-2 inhibits RB51 and RA1-induced
macrophage cell death

The role of caspases in rough B. abortus-induced macrophage

cell death was examined. Peptide-based substrates and inhibitors

have been used extensively to monitor the association of caspases

with cell death and to identify the caspases involved [41,42].

Table 1. Kinetic analysis of Brucella-induced macrophage cell
death.

MOI H.P.I. a S2308b RB51b HK-RB51b

2,000 4 2 ++ -

8 2 +++ -

24 2 ++++ +

48 2 ++++ +

200 4 2 + -

8 2 ++ -

24 2 +++ 6

48 2 ++++ 6

20 4 2 2 2

8 2 6 2

24 2 + 2

48 2 + 2

aHours Post Infection.
bResults of Annexin V and/or PI staining of macrophages infected with

indicated bacteria: ++++, 75 to 100% positive; +++, 50 to 75% positive; ++, 25
to 50% positive; +, 5–25% positive; 6, ,5% positive; -, no positive staining.

doi:10.1371/journal.pone.0006830.t001

Figure 2. Apoptotic and necrotic macrophage cell death
induced by RB51. (A) Annexin V/PI staining shows both apoptosis
(solid arrow) and necrosis (hollow arrow) of macrophages at as early as
2 h post infection. (B) Staining with Hoechst 33342 shows cell shrinkage
and nuclear condensation (diamond head arrow) of infected macro-
phages at 6 h post infection at a MOI of 200. The results are a
representative of three independent experiments.
doi:10.1371/journal.pone.0006830.g002

Figure 3. Analysis of the relationship between internalization
of rough Brucella and macrophage cell death. (A) Uneven
macrophage internalization of RB51GFP with different infection MOIs
observed at 1 h post infection. (B) Most cell death occurred in
macrophages infected with RB51GFP (MOI: 200) at 6 h post infection.
The results are a representative of three independent experiments.
doi:10.1371/journal.pone.0006830.g003
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Pretreatment of macrophages with the pan-caspase inhibitor Z-

VAD-FMK prior to infection with RB51 or RA1 resulted in an

approximate 69.4%64.9% or 63.2%64.8%, respectively, de-

crease in macrophage cell death at 24 h post infection compared

to untreated infected macrophages (Figure 6). These results suggest

that RB51 and RA1-induced macrophage cell death is mediated

by a caspase(s). To determine the potential role of individual

caspases in the macrophage death, a series of nine caspase

inhibitors were tested for inhibition of cell death. The caspase-2

specific inhibitor (Z-VDVAD-FMK) blocked macrophage cell

death caused by RB51 or RA1 98.2 %60.5% or 80.3%65.2%,

respectively, compared to untreated controls at 24 h post infection

(Figure 6). The caspase-2 inhibitor appears to exert a greater

influence in preventing cell death in RB51-infected macrophages

than in RA1-infected macrophages; it might be attributed to the

differences in the gene mutations of these two strains. The

difference in inhibition of macrophage cell death provided by the

caspase-2 inhibitor over that of the pan-caspase inhibitor may be

attributed to the difference in the specificities of these inhibitors.

The inhibitors of caspase -1, 3, 4, 6, 8, 9, 10, and 13 failed to

significantly inhibit RB51 and RA1-induced macrophage cell

death in our studies. These results support our hypothesis that the

rough Brucella abortus strains induce macrophage cell death is

mainly mediated by caspase-2.

Caspase-2 is activated at an early stage of infection
Caspase-2 activation was analyzed by caspase colorimetric assay

and procaspase cleavage assay. The caspase colorimetric assay

showed that caspase-2 enzyme activity of RB51 and RA1 infected

macrophages increased approximately 59.9%68.3% (p,0.05) and

55.7%61.9% (p,0.05) respectively at 1 h post infection. This

increase was transient. It was followed by a rapid return to the

base line at 2 h post infection (Figure 7A). Capsase-2 activation

was analyzed further by detection of the cleavage of procaspase-2

protein [29]. As ascertained by western blot analysis, transient

decrease in the level of procaspase-2 (48 kDa) in RB51 or RA1-

infected macrophages was observed at 1 h, 2 h and 6 h post

Figure 4. Apoptotic and necrotic cell death of bone marrow derived macrophages infected with viable rough B. abortus strains RB51
or RA1 (MOI: 200) at 24 h post infection. Smooth strain S2308 (MOI: 2000) and heat-killed RB51 and RA1 (equivalent MOI: 200) did not induce
obvious macrophage cell death. The results are a representative of three independent experiments.
doi:10.1371/journal.pone.0006830.g004

Figure 5. Apoptotic and necrotic cell death in peritoneal
primary macrophages isolated from RB51-vaccinated mice.
Annexin V/PI staining shows both apoptosis and necrosis of peritoneal
macrophages at 24 h after infection with RB51. No obvious cell death
was observed in peritoneal macrophages from mice injected (i.p.) with
S2308 or heat-killed RB51 (HK-RB51). The results are a representative of
three independent experiments.
doi:10.1371/journal.pone.0006830.g005
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infection (Figure 7B). This confirmed that the activation of

caspase-2 occurs at the early stage of infection. In contrast, S2308

did not induce significant changes in the caspase-2 enzyme activity

or the level of procaspase-2 (Figure 7A and B). Caspase-1 activity

was also examined in RB51 or RA1-infected macrophages. No

significant changes were observed (data not shown).

The above results indicate that rough strains RB51 and RA1

induce similar apoptotic and necrotic cell death in macrophages

and that the cell death is mediated by caspase-2. We later focused

on comparing RB51 and its parent smooth strain 2308 to further

study the apoptotic and necrotic cell death mechanism induced by

rough B. abortus.

Inhibition of caspase-2 activity increases RB51 survival in
macrophages

To confirm the inhibition of programmed macrophage cell

death after treatment with the caspase-2 inhibitor, the LDH

release assay was used to monitor cytopathic cells (Figure 8A). The

LDH released from RB51-infected macrophages reached a value

of 54.6%66.5% of the total LDH available in both living and

dying cells at 8 h post infection, and 80.5%66.4% at 24 h post

infection. In contrast, after pretreatment with the caspase-2

inhibitor, the yield of LDH released was 9.3%66.0% and

24.7%613.3% at 8 h and 24 h post infection, respectively.

Inhibition of caspase-2 activity also increased the number of

RB51 survived inside macrophages (Figure 8B). The inhibitor did

not change the phagocytosis of RB51 by macrophage cells as

demonstrated by similar number of living brucellae with or

without the caspase-2 inhibition at 1 h post infection. At 8 h post

infection, approximately 5% of RB51 survived inside infected

macrophage cells. However, after the pretreatment of the

macrophages with the caspase-2 inhibitor prior to RB51 infection,

approximately 36% of brucellae survived in the macrophages. At

24 h post infection, the number of RB51 surviving inside the

macrophages pretreated with the caspase-2 inhibitor was approx-

imately 120 times greater than that inside untreated macrophages

(Figure 8B). This phenomenon might be related to more cells

survived due to the inhibition of macrophage cell death.

Knockdown of caspase-2 expression decreases RB51-
induced macrophage cell death

Using different specific caspase inhibitors, the present studies

demonstrate that caspase-2 plays an important role in rough B.

abortus induced macrophage cell death. To address potential

concerns as to the specificity of the caspase inhibitors [43], the

RNA interference (RNAi) technique [44] was used to further

identify the role of capase-2. RNAi is a natural, evolutionarily

conserved regulatory mechanism that is mediated by the

introduction of dsRNA into the cytoplasm of a host cell. RNAi

has provided a unique tool for sequence-specific silencing to

develop practical strategies for studying gene function, biological

processes and pathway analysis [44]. Short hairpin RNA (shRNA)

is a sequence of RNA that makes a tight hairpin turn that silences

gene expression via RNAi [45]. Macrophages with specific gene

knockdown were generated by transfection of macrophages with

lentivirus vectors expressing gene-specific shRNA [46]. Four

caspase-2 knockdown clones (RAW264.7-Casp2KD) and two

control clones (RAW264.7-GipZ) were selected based on EGFP

fluorescence detection. The protein expression of caspase-2 was

further monitored by Western blot analysis (Figure 8A).

RAW264.7-GipZ cells did not exhibit any difference in procas-

pase-2 expression compared with the original RAW264.7 cells.

The expression levels of procaspase-2 protein in four RAW264.7-

Casp2KD clones decreased by 34–64%. When infected with

RB51 at a MOI of 200 for 6 h, the control RAW264.7-GipZ

clones demonstrated a similar rate of cell death compared to the

Figure 6. Inhibition of rough B. abortus-induced macrophage cell death by a pan-caspase inhibitor and a caspase-2 inhibitor.
Macrophages were pretreated with individual caspase inhibitor and then infected with RB51 or RA1 at a MOI of 200. No inhibition was observed with
any of the other caspase inhibitor. The results are a representative of three independent experiments.
doi:10.1371/journal.pone.0006830.g006
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original RAW264.7 (68–74% vs. 71%). In contrast, the

RAW264.7-Casp2KD clones showed a significantly lower rate of

cell death rate (5–44%) (P,0.05) (Figure 9B). Of the four

RAW264.7-Casp2KD clones, clone two had the lowest cell death

rate (5%60.6%) and is correlated with the lowest caspase-2

protein expression (Figure 9). These results confirm that RB51-

induced apoptosis is mediated specifically by caspase-2.

Mitochondrial membrane potential (MMP) decreases
following cytochrome c release

Mitochondria are viewed as the major players in both necrotic

and apoptotic cell death [47,48]. A key feature of apoptotic and

necrotic cascades is the initiation of the mitochondrial permeabil-

ity transition (MPT) followed by the release of cytochrome c from

mitochondria. We hypothesized that RB51 induced apoptotic

macrophage cell death by activating a mitochondria-dependent

apoptotic pathway. Increased MPT results from a decrease of

MMP. Decreased MMP promotes a decrease in the retention of

the lipophilic cationic dye 3,39-dihexyloxycarbocyanine iodide

(DiOC6). This phenomenon is frequently used to quantify MMP

through flow cytometry [49] and was applied in this study. A

MMP decrease of 23.5%65.8% (P,0.05) was detected in RB51-

infected macrophages at 1 h post infection. At 6 h post infection,

the level of MMP decreased to 28.5%60.7% (P,0.05) of the

value of uninfected macrophages. The MMP of RB51-infected

macrophages remained at a low level for 24 h post infection

(Figure 10A). The MMP of S2308-infected macrophages increased

33.0%610.5% (P,0.05) at 1 h post infection but after 2 h post

infection returned to the level found with the uninfected

macrophages (Figure 10A).

A direct effect of the increased MPT and decreased MMP is the

release of cytochrome c from the mitochondria to the cytoplasm.

To test this effect, the cytochrome c levels from the cytosol of

infected and uninfected macrophages from the same experiment

were analyzed (Figure 10B). Release of cytochrome c into the

cytoplasm of RB51-infected macrophage was detectable as early as

2 h post infection (Figure 10B). No cytochrome c was detected in

Figure 7. Caspase-2 enzyme activity in infected macrophages
induced by RB51 but not by S2308. (A) Analysis of caspase-2
activities by a colorimetric assay. The asterisk (*) represents significant
differences (P,0.05) compared to the medium control group. (B)
Western blot analysis of precaspase-2 in infected macrophages. The
numbers shown in the figure represent the amounts of procaspase-2
quantified by densitometry and normalized to the b-actin content. The
data represent the means6standard deviations from three indepen-
dent experiments.
doi:10.1371/journal.pone.0006830.g007

Figure 8. Decreased cell death of infected macrophages and
increased RB51 survival inside macrophages with the usage of
the caspase-2 inhibitor. Macrophages pretreated with Z-VDVAD-
FMK were infected with RB51 for 24 h at a MOI of 200. (A) Macrophages
pretreated with the caspase-2 inhibitor and infected with RB51 released
less LDH than infected cells lacking inhibitor. (B) Growth kinetics of
RB51 in macrophages. The number of RB51 cells surviving inside
macrophages pretreated with the caspase-2 inhibitor was approxi-
mately 120 times greater than the number of cells found in untreated
macrophages (P,0.05). The asterisk (*) represents significant difference
(P,0.05) in the LDH release or bacterial CFUs from RB51-infected
macrophages with caspase-2 inhibitor treatment compared to that
without caspase-2 inhibitor. Data represent the means6standard
deviations from three independent experiments.
doi:10.1371/journal.pone.0006830.g008
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the cytoplasm of S2308-infected macrophage before 24 h post

infection.

Discussion

The results reported here indicated that attenuated rough B.

abortus strains RB51 or RA1, but not their parent smooth virulent

strain 2308, induced both apoptosis and necrosis in RAW264.7

macrophage cells, bone marrow-derived macrophages, and

peritoneal macrophages. The programmed cell death induced by

rough B. abortus is mediated primarily by caspase-2 and through a

mitochondria-dependent cell death pathway. Since rough strains

RB51 and RA1 have deficient LPS O antigen found in their

parent strain S2308, the rough Brucella phenotype with deficient O

antigen plays a critical role in caspase-2-mediated macrophage cell

death induced by rough Brucella.

Cell death of macrophages infected with rough Brucella strains

has been discovered by several groups [9,10,11,12,13]. The

discovery of cell death induced by rough Brucella was first reported

by Freeman et al in 1961 [11]. Fernandez-Prada et al later found

that a rough B. melitensis mutant WRR51 lacking a wboA gene

carried by smooth virulent B. melitensis strain 16 M resulted in

apoptotic cell death in human monocytes from healthy volunteers

[9]. Our results are consistent with this finding. Pei et al also

showed that several rough B. abortus strains obtained from a

transposon mutation induced necrotic and oncotic macrophage

cell death [12]. No apoptotic macrophage cell death was observed

in this report. One possible reason for the difference in the

observed cell death patterns might be that different rough mutants

were used in each study [12,50]. The rough phenotype can result

from mutations affecting O antigen precursor synthesis, its

polymerization and transport, or from defects in the inner core

oligosaccharide [50]. The structure of rough lipopolysaccharide

present in each mutant may vary. Different levels of necrotic/

oncotic macrophage cell death may also be induced by rough B.

abortus mutants with distinct gene mutations. For example, at the

MOI of 200, macrophage cell death was induced by rough strain

CA180 (mutation of manA encoding phosphomannomutase) but

not by rough strain CA533 (mutation of a rfbD-like gene encoding

a putative GDP-D-mannose dehydratase) at 8 h post infection

[12]. The observation that RB51 and RA1 induce similar patterns

of macrophage cell death suggests that the wboA gene mutation in

RB51 is a primary player in the apoptotic and necrotic cell death.

The absence of Brucella O antigen may not directly contribute to

the induction of macrophage cell death by rough Brucella. While

RB51 does not induce detectable antibodies in animals against

Brucella O antigen, RB51 has been found to produce a low but

detectable level of O antigen [51]. Gonzalez et al. [50] generated

rough Brucella mutants by transposon mutagenesis of more than 10

genes involved in O antigen (or O chain) or the core oligosaccharide

biosynthetic pathways. These rough mutants are classified into three

types based on the decrease in LPS molecular weight. Therefore,

rough Brucella strains are defined by deficient O antigen instead of

completely deleted O antigen. The reason of macrophage cell death

Figure 9. Inhibition of RB51-induced macrophage cell death by
caspase-2 shRNA. Macrophages with or without caspase-2 shRNA
were infected for 6 h with RB51 at a MOI of 200. (A) Caspase-2
expression in different clones was detected by Western blot analysis.
The numbers shown in the figure represent the amounts of procaspase-
2 that were quantified by densitometry and normalized to the b-actin
data. (B) The LDH assay was used to detect differential cell death in
different macrophage clones. The asterisk (*) represents significant
differences (P,0.05) of LDH releases from different clones compared to
that from the parent RAW264.7 cells. The data represent the
means6standard deviations from three independent experiments.
doi:10.1371/journal.pone.0006830.g009

Figure 10. Decreased mitochondrial membrane potential
(MMP) and increased cytochrome c release from mitochondria
in RB51-infected macrophages (MOI: 200). Infection with S2308 at
a MOI of 2,000 did not cause decrease of MMP or cytochrome c release.
(A) The results of flow cytometry results were summarized in graphic
form, and represent the means6standard deviations of three indepen-
dent experiments. The asterisk (*) represents significant differences
(P,0.05) compared to the medium control group. (B) Cytochrome c
release was analyzed by Western blot analysis. b-actin was used as a
reference. Only cytoplasmic portion of cell lysates was assayed. The
results are a representative of three independent experiments.
doi:10.1371/journal.pone.0006830.g010
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induced by rough Brucella does not rely on the complete deletion of

O antigen. Instead, the cell death is most likely due to the pleiotropic

effect of removing the majority of the O antigen that results in the

change of the Brucella cell envelope structure. The LPS defects alter

key topological, physiochemical and biological surface properties of

rough Brucella [50]. The outer membrane proteins and lipids in

rough Brucella cells are readily exposed to the host environment,

making them much easier to interact with the host cells. It has also

been found that the surface of rough Brucella out membrane is highly

hydrophobic and negatively charged [50]. Such a surface may allow

multiple nonspecific interactions with eukaryotic membranes.

Therefore, Brucella O antigen probably acts as a negative modulator

of non specific adherence which allows receptors to function [50]. It

has been observed that rough mutants penetrate more actively and

display higher adherence to macrophages than smooth strains

[52,53,54]. Rough and smooth Brucella strains enter macrophages

through different mechanisms. Virulent smooth Brucella cells use

lipid rafts to enter murine macrophages while rough Brucella cells do

not [55]. We found similar numbers of internalized brucellae inside

macrophages when rough strain MOI was 200 and smooth strain

MOI was 2000 (Figure 1). The MOI of 200 of rough strain induced

significant cell death, while smooth strain 2308 did not induce

obvious cell death even with an MOI of 2000. The results also

suggest that different outcomes of macrophage cell death is

primarily due to the difference of rough vs. smooth phenotypes

instead of the different numbers of phagocytosed Brucella cells.

Pei et al [9,10,11,12,13] found that viable intracellular rough

Brucella were required for inducing cytopathic effect on infected

macrophages. Although heat-killed rough brucellae were internal-

ized as efficiently as live bacteria, they did not induce macrophage

cell death [9,10,11,12,13]. Our study is consistent with the

conclusion although a very high MOI of 2,000 induced limited but

detectable macrophage cell death at late infection stage (Table 1).

Pei et al. [12] further found that protein synthesis from live rough

Brucella cells is required for induction of macrophage cell death. It

was shown that inhibition of bacterial synthesis and replication by

chloramphenicol treat prevented cell death of infected macro-

phage [13]. It is interesting that viable but not killed smooth

Brucella inhibit spontaneously occurring apoptotis in human

macrophages [5,6,7]. How live rough Brucella promotes apoptotis

and live smooth Brucella inhibits apoptosis is an important question

for better understanding Brucella pathogenesis and host responses

against Brucella infections.

The relationship between rough Brucella-induced apoptotic and

necrotic macrophage cell death may be complex. Necrosis refers to

the sum of changes secondary to cell death by another mechanism

such as apoptosis [17,21,22]. Our study showed that macrophage

cell death induced by rough Brucella was dose-dependent since

more cell death was observed with higher MOIs (Table 1,

Figure 3). Meanwhile, the numbers of internalized bacteria in

infected macrophages might not be even. Some macrophages

phagocytosed more rough bacteria than others with the same

MOI (Figure 3). Macrophages infected with more rough Brucella

cells tended to induce more and quicker macrophage cell death.

Necrosis occurred more than apoptotis in the late stage of Brucella-

induced macrophage cell death. Therefore, it is likely that

apoptotic and necrotic cell death of Brucella-infected macrophages

represents different stages of the same cell death pathway, from

early and late apoptosis to eventual necrosis. Alternatively, a non-

apoptotic pathway(s) of cell death might be induced in some

infected macrophages, which results in necrosis. Further investi-

gation is needed to test this possibility.

Caspase-2 is activated in response to embryonic development

[56] and many biological stresses, including DNA damage, aging,

UV irradiation, tropic factor withdrawal, endoplasmic reticulum

stress, death receptor activation and heat shock [57,58,59].

Deficient caspase-2 activation has been observed in gastric cancer,

and acute myeloblastic leukemias [60,61]. Caspase-2 activation

has also been observed in host cells infected with Salmonella [29]

and Epstein-Barr virus [62]. Salmonella typhimurium induced

primarily caspase-1-mediated pro-inflammatory pyroptosis

[23,24,25]. The action of caspase-2 was also needed for

Salmonella-induced apoptosis as shown by the results of experiments

using caspase-2 knockout macrophages and chemical caspase-2

inhibitors [29]. Unlike with S. typhimurium, rough (but not smooth)

B. abortus-induced macrophage cell death exhibits caspase-2

activation and is noticeable hampered by a caspase-2 inhibitor

and caspase-2-specific shRNA (Figure 6 and 9). On the other

hand, the macrophage cell death induced by rough B. abortus

strains RB51 and RA1 were not obviously inhibited by a caspase-1

inhibitor (Figure 6). These findings suggest that caspase-1 plays

minimal role in the Brucella-induced cell death. Loss of mitochon-

drial integrity and release of cytochrome c do not occur during

pyroptosis [17] but was observed in macrophages infected with

RB51 and RA1. This difference indicates that pyroptosis does not

play a major role in rough Brucella-induced cell death. Unlike

virulent Salmonella and Shigella strains which induce apoptosis in

infected macrophages, smooth virulent Brucella strains inhibit

programmed macrophage cell death and replicate in macrophages

[5,6,7,9,63]. The current study further indicates that B. abortus

smooth strain S2308 does not induce caspase-2 activation or

macrophage death. Therefore, the caspase-2-mediated macro-

phage apoptosis induced by rough attenuated strains but inhibited

by the parent wild type appears to be a novel findings not as yet

found in other bacterial pathogen.

How caspase-2 mediates programmed cell death of macrophages

infected by rough Brucella is unclear and deserves further

investigations. Across species caspase-2 is one of the most conserved

caspases. Its function in cell death signaling is still an enigma [64].

Caspase-2 is unique among the caspases in that it has features of

both upstream and downstream caspases. Caspase-2 contains a long

CARD prodomain that can be used to interact with adaptor

proteins. This is typical of initiator caspases. On the other hand, the

predicted cleavage specificity of caspase-2 appears to place it to be

an effector caspase similar to caspases-3 and -7 [58]. The present

studies reveals that caspase-3 or caspase-8 inhibitor slightly yet not

significantly inhibits RB51- and RA1-induced macrophage cell

death. The caspase-3 inhibitor (Z-DEVD-FMK) was reported to

also inhibit caspase-7 activity [65]. It is possible that caspase-2

functions as an initiator caspase and regulates apoptotic activities of

other effector caspases (e.g., caspase-3, -7 and -8). It is also possible

that caspase-2 regulates Brucella-induced cell death directly by acting

as an effector caspase. This hypothesis is supported by the

observation that caspase-3 and caspase-8 have the potential to

regulate downstream caspase-2 activity [7,64,66]. An alternative

possibility is that caspase-2 may function as an initiator caspase and

effector caspase at the same time.

The study provides new evidence to support the hypothesis that

smooth virulent Brucella has the ability to control or influence

mitochondrial functions, especially those related to programmed

cell death in macrophage cells, via a mechanism that is a crucial

survival mechanism in this pathogen. Virulent Brucella strain

S2308 appears to inhibit macrophage cell death by inhibiting

mitochondrial membrane transition and cytochrome c release

(Figure 10). The inhibition of macrophage cell death allows Brucella

survive and replicate inside macrophages. In contrast, rough

Brucella strains induce macrophage cell death through the release

of cytochrome c from the mitochondria. The dying macrophages
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release Brucella to a more hostile environment outside macrophag-

es. It is interesting to note that the Brucella species are classified as

a-Proteobacteria, the modern-day relatives of an ancient endo-

symbiont that gave rise to mitochondria [67,68]. Our previous

study indicates virulent B. melitensis strain 16 M inhibited

mitochondria activities at an early stage of infection [6]. The

interactions between mitochondrial permeability transition and

caspase-2 activation in the apoptotic cell death are still unclear. It

has been repeatedly proposed that caspase-2 can act upstream of

mitochondrial events as an initiator that triggers cytochrome c

release and subsequent apoptosome formation, either directly or

through generation of tBid [58,64,69]. Other studies place

caspase-2 neither upstream nor downstream but suggest it acts

in concert with the mitochondrial as well as the death receptor

pathways of apoptosis [70]. Our results suggest that programmed

cell death in macrophages infected with rough B. abortus is at least

partially due to the mitochondrial permeability transition and

cytochrome c release. The relationship between mitochondrial

permeability transition and caspase-2 activation in the apoptotic

cell death of Brucella-infected macrophages requires further

investigation.

The caspase-2-mediated cell death of macrophages infected

with vaccine strain RB51 and vaccine candidate RA1 may help us

to better understand the process of protective Brucella immunity.

Programmed cell death of macrophages infected with many

pathogens (e.g., M. tuberculosis, Salmonella, Influenza virus) plays an

important role in antigen presentation to T cells through a process

called cross-priming [71]. It is likely that rough Brucella-induced

macrophage cell death may play an important role in protective

immunity against brucellosis through cross-priming or other

mechanisms. Further understanding of Brucella-induced pro-

grammed cell death will undoubtedly help decipher Brucella

pathogenesis and promote rationale Brucella vaccine development.

Materials and Methods

Bacterial strains and macrophage cell culture
B. abortus vaccine strain RB51, strain RA1 and the parent wild

type strain S2308 were originally obtained from Dr. Gerhardt G.

Schurig’s laboratory at Virginia Tech. B. abortus strain RB51GFP

that contains a GFP plasmid (pNSGroE/GFP) was a gift from Dr.

Nammalwar Sriranganathan’s laboratory at Virginia Tech [37].

These bacterial strains were grown either in tryptic soy broth or on

tryptic soy agar plates. Heat-killed Brucella was prepared by boiling

bacteria for 20 min. The characteristics of these strains were

confirmed with AMOS (abortus-melitensis-ovis-suis) PCR reactions

[72], crystal violet staining, antibiotic resistance, urease test, and

thionin and fuchsin susceptibility [73]. To minimize naturally

mutated rough phenotypes in smooth strain S2308, one single

colony of smooth phenotype S2308 was selected based on crystal

violet staining and used for bacterial amplification. All studies

utilizing Brucella strains were performed in a Biosafety level 3 (BSL-

3) laboratory. Murine macrophage cell line RAW264.7 (ATCC

#TIB-71) was cultured at 37uC with 5% CO2 in complete tissue

culture medium (c-DMEM) consisting of Dulbecco’s modified

Eagle’s medium (DMEM; ATCC) supplemented with 10% heat-

inactivated fetal bovine serum (HyClone, Logan, Utah). Macro-

phages between passages 4 through 15 were used in these

experiments. Bone marrow-derived macrophages (BMDM) were

prepared from BALB/C mice and were cultured at 37uC with 5%

CO2 in RPMI-1640 supplemented with 10% heat-inactivated fetal

serum and 30% L-Cell Medium as previously described [74].

Bacterial and macrophage cells were maintained under conditions

that sustained exponential growth.

Macrophage infection assays
Macrophage cells were cultured in 96-well, 24-well, or six-well

plates. In the macrophage infection experiments, 56104 cells per

well were seeded in 96-well plate and 2.56105 cells per well were

seeded in 24-well plate. For flow cytometry assays, 16106 cells were

seeded per well in six-well plate. The macrophages were cultured

overnight prior to infection with RB51, RA1 or S2308 cells.

Macrophages were infected with Brucella at a multiplicity of infection

(MOI) of 20, 200 or 2,000. The plates were centrifuged at 300 x g for

5 min. All incubations with Brucella were conducted at 37uC in an

atmosphere containing 5% (vol/vol) CO2. After 30 min the cells

were washed three times with Dubecco’s phosphate buffered saline

(DPBS), and incubated in fresh DMEM supplemented with 50 mg/

ml of gentamicin to kill extracellular bacteria. A specific caspase

inhibitor might be included in the cell culturing. For caspase

inhibition studies, a caspase inhibitor sample pack (R&D systems

Inc, Minneapolis, US) was used which contains a pancaspase

inhibitor (Z-VAD-FMK) and nine specific caspase inhibitors

including those for inhibition of caspase-1 (Z-WEHD-FMK),

caspase-2 (Z-VDVAD-FMK), caspase-3 (Z-DEVD-FMK), cas-

pase-4 (Z-YVAD-FMK), caspase-6 (Z-VEID-FMK), caspase-8 (Z-

IETD-FMK), caspase-9 (Z-LEHD-FMK), caspase-10 (Z-AEVD-

FMK), and caspase-13 (Z-LEED-FMK). The macrophages were

pretreated with the individual caspase inhibitors at a final

concentration of 20 mM for 1 h prior to infection.

Determination of programmed macrophage cell death
Macrophages were infected in the presence, or absence, of a caspase

inhibitor as described above. Apoptotic or necrotic macrophages were

detected using two approaches. In the first approach, cells were stained

with Annexin V (green dye) and propidium iodide (PI, red dye) using

an Annexin V-FLUOS staining kit (Roche Diagnostics Corporation,

Indianapolis, Ind.). RB51, RA1 or S2308-infected macrophages were

incubated with Annexin V and PI at room temperature for 20 min and

observed by fluorescence microscopy (Nikon TE2000-S microscope).

Images were photographed with an RT Slide Spot digital camera.

Apoptotic and necrotic cell numbers were counted in representative

fields containing at least 200 cells. In the second approach, the nuclei of

RB51 infected cells and untreated control cells were stained with the

blue-fluorescent Hoechest 33342 (Invitrogen, OR)at 1 mg/ml in DPBS

at room temperature for 15 min and observed by fluorescence

microscopy. Gliotoxin-treated cells were employed as a positive control

for apoptotic cell death, and t-butyl-hydroperoxide (TBH)-treated cells

served as a positive control for necrotic cell death [12,13].

Quantitation of cell viability
Cells were cultured in triplicate in 96-well plates infected with

RB51, RA1 or S2308 as described above. The culture supernatants

were collected at various time points, and the lactate dehydrogenase

(LDH) released determined by a CytoTox 96 nonradioactive

cytotoxicity assay (Promega, Madison, Wis.) according to the

manufacturer’s instructions. To reduce the LDH background from

fetal bovine serum, the supernatants were diluted 1:1 with phosphate

buffered saline (PBS) before the assay. The percent of membrane-

damaged dying cells is expressed as a percentage of maximum LDH

release, i.e., 1006(optical density at 490 nm [OD490] of infected cells

- OD490 of uninfected cells)/(OD490 of lysed uninfected cells - OD490

of uninfected cells). The data presented represent the average6

standard deviation of at least three separate experiments.

Assay of Brucella survival inside macrophages
Macrophages were seeded in a 24-well plate with 2.56105 cells

per well and incubated overnight as described above. RB51, RA1
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and 2308 were used to infect macrophages with varying MOIs (see

above). To assess intracellular survival of Brucella inside macro-

phages, the cells were lysed with 1 ml 0.1% (vol/vol) Triton X-100

in sterile water at selected time points (1, 6 and 24 h). The colony

forming units (CFUs) were obtained by plating a series of dilutions

on TSA plates [75]. All experiments were conducted in triplicate.

Western blot analysis
Cells cultured in six-well plates were infected with RB51, RA1

or S2308 as described above. Cell lysis of the cytosolic fraction was

prepared with a Mitochondria/Cytosol Fractionation Kit (Biovi-

sion) according to the manufacturer’s instructions. Lysates (50 mg

per sample) were analyzed by Laemmli SDS-PAGE and

transferred onto Immobilon P membranes (Millipore) at 150 V

for 1 h in the presence of transfer buffer (25 mM Tris, 192 mM

glycine, 15% methanol, pH 8.3). After transfer, the membranes

were blocked for 1 h a blocking solution (5% low fat dried milk

dissolved in TBS-T (25 mM Tris-HCl, 150 mM NaCl, 0.5%

Tween 20, pH 7.4) and were probed overnight at 4uC with the

mouse anti-caspase-2 (Cell signaling, CA), Rabbit anti-b-actin

(Biovision, CA) or mouse anti-cytochrome c (NeoMarkers, CA)

antibodies. Membranes were washed with PBS-T and incubated

with HRP conjugated to either goat anti-rabbit IgG or goat anti-

mouse IgG (Biovision, CA) at room temperature for 1 h. After

extensive washing with TBS-T, the antigen was visualized using an

ECL Western Blotting Substrate (Pierce). The results were

quantified by densitometry and normalized to the b-actin data.

This experiment was conducted in triplicate.

Caspase-1 and -2 activity assays
Macrophages were cultured in T-25 flasks infected with RB51 or

S2308. The caspase-1 and -2 activities were determined by

monitoring proteolysis of the appropriate colorimetric substrates

using the Caspase Colorimetric Assays (R&D Systems, CA). WEHD

and VDVAD served as substrates employed to detect caspase-1 and

-2 enzyme activities, respectively. All experiments were conducted

in triplicate. The whole-cell lysate was added to a buffer containing

200 mM of the appropriate caspase-specific substrate conjugated to

p-nitroanilide. After an incubation of 37uC for 3 h, caspase activity

was quantified spectrophotometrically at a wavelength of 405 nm

using a VERSAmax microplate reader (Molecular Devices).

Preparation of stable caspase-2 knockdown macrophage
cell lines

Lentivirus vectors Lenti-Casp2miRNA-VSVG (Open Biosystems

OligoID V2LMM_16681) used for producing anti-caspase-2 shRNA

and empty lentivirus vector Lenti-GipZ-VSVG were generated at

the University of Michigan shRNA Core Facility. For transduction,

RAW264.7 cells were planted into six-well tissue culture plates at

2.56105 per well. On the following day, the cell medium was

aspirated off and replaced with 1.25 ml viral supernatant (MOI of

10) containing 8 mg/ml polybrene into each well. The plates were

gently rocked and centrifuged at 2,500 rpm for 90 min at 30uC using

an Eppendorf 5810R centrifuge. The medium was replaced after

24 h, and the cells were monitored for enhanced green fluorescent

protein (EGFP) expression. To select the stably transfected cells, at

48 h after transfection, cells were scraped down and planted to

10 cm cell culture dish, selected with c-DMEM containing 10 mg/ml

puromycin. Stably transfected cells were selected with the presence of

puromycin for over 4 weeks. Puromycin-resistant clones were picked

and expanded. The caspase-2 expression of each clone was

examined by Western blot analysis.

Analysis of mitochondrial membrane potential (MMP)
The loss of mitochondrial membrane potential (DYm) results in

a decrease in the retention of 3,39-dihexyloxycarbocyanine iodide

(DiOC6). The DYm was evaluated by measuring the retention of

the lipophilic cationic dye DiOC6 in mitochondria [49]. Briefly,

cells cultured in six-well plates were infected with RB51 or S2308

in triplicate as described above. At various time points post

infection, the cells were preloaded with 1.5 nM DiOC6 in c-

DMEM incubated at 37uC for 20 min, washed and fixed with 1%

paraformaldehyde at 25uC for 20 min. The cells were then

dislodged with a rubber policeman, pelleted at 500 x g, washed,

and resuspended in PBS containing 1% paraformaldehyde. Flow

cytometry to detect cells with diminished fluorescence was

performed under FL-1 logarithmic amplification using a FACS-

Canto Flow Cytometer (BD Bioscience). Macrophages stained

with an irrelevant isotype antibody source served as controls.

Analysis of cell death of peritoneal primary macrophage
vaccinated with RB51

Female BALB/c mice (three per treatment group) were injected

intraperitoneally with 0.2 ml of a 0.15 M NaCl saline solution

(controls) or 0.2 ml of saline containing approximately

56108 CFUs of strain RB51, heat-killed RB51 (HK-RB51), or

S2308. This dose was routinely used for RB51 vaccine efficacy

studies [39,40]. At 2 h post infection, peritoneal macrophages were

isolated from both RB51-immunized and saline-injected mice by

washing the cavity with cold PBS. Cell suspensions were washed

twice with cold complete tissue culture medium (RPMI 1640 with

10% fetal calf serum and 50 mg/ml gentamicin). Isolated peritoneal

cells were counted with 0.4% trypan blue and plated in complete

tissue culture medium at a concentration of 16106 cells per well in a

six-well plate. After incubation for 60 min at 37uC in a 5% CO2

atmosphere, the nonadherent cells were removed by washing them

five-time in 2 ml PBS hold at 37uC. The peritoneal macrophages

were incubated in fresh RPMI 1640 supplemented with 50 mg/ml

of gentamicin. Annexin V-FLUOS staining kit (Roche Diagnostics

Corporation, Indianapolis, Ind.) was used to detect the dead

peritoneal macrophage cells 24 h post infection.

Statistical data analysis
Statistical significance was determined using Student’s t-test for

data with two groups and one-way analysis of variance for multiple

group comparison; a P value of ,0.05 was considered significant.
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