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Today, there is widespread recognition that our most powerful enemy
may not be the next world war, a nuclear bomb, or even acts of terrorism,
but rather Mother Nature. A new disease with high transmissibility and
mortality could emerge from an unnoticed quarter and drastically reduce
the human population before sufficient resources and expertise could be
marshaled. It is likely that such a new and deadly disease would have its
origin in the animal world. In fact, a full 75% of emerging diseases of
humans come from animals. As the human population expands, and we hop
from continent to continent; as we mix various species together for trade,
personal satisfaction, or to advance our technology, we are certain to move
more microorganisms into novel niches, with pathogenic results.

Many outbreaks of emerging disease in humans are preceded by a similar
emergence in an animal population. In general, emerging disease agents can
be broadly defined to include three groups: known agents appearing in a new
geographic area, known agents or their close relatives occurring in a hitherto
unsusceptible species, and previously unknown agents detected for the first
time. This review seeks to describe some of the emerging diseases of animals
and their relations to the corresponding and subsequently emerging diseases
in the human population. As a framework, diseases will be clustered
into one of the three groups listed above: agent in a new geographic area,
agent in a new species, and previously unknown agent detected for the first
time.
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Emerging zoonotic disease—occurrence in a new area

Some of the most worrisome infectious diseases are those that are already
recognized as endemic in one area, so that current control practices keep
these diseases in check and off the international public health radar screen.
With globalization, pathogen distribution patterns become redrawn in
haphazard and unpredictable ways. Almost invariably, the new host region
is taken by surprise. Two examples are Rift Valley fever, an African disease
that recently emerged with ferocity for the first time outside Africa, and
alveolar echinococcosis, a smoldering and highly fatal parasitic infection
that is making insidious moves from its historic home in the Arctic to many
new and more southerly climes.

Rift Valley fever

Rift Valley fever (RVF) is a mosquito-borne viral disease that causes
mass mortality among newborn ruminants, especially sheep, and a flu-like
illness in humans. The disease had always been confined to the African
continent. Then, in 2000, a severe epidemic occurred in the Arabian
peninsula. In this outbreak, the unusual presentation of disease, the high
human case-fatality rate, and the presence of multiple potential mosquito
vectors made the disease a serious cause for concern.

RVF virus was first isolated in 1930 in an epizootic situation among
sheep on a farm near Lake Naivasha in Kenya’s Rift Valley [1]. A
characteristic feature of the disease is hepatic damage, as described in the
original report, ‘‘Enzootic hepatitis or Rift Valley fever.’’

RVF virus can infect a very wide host range; severe, often fatal disease
has been documented in lambs, calves, goat kids, puppies, kittens, mice, and
hamsters. Moderate disease has been seen in many other species [2]. The
incubation period is 2 to 6 days. The virus replicates primarily in hepa-
tocytes. Clinical signs in ruminants include weakness, anorexia, jaundice,
and death. Pregnant animals will abort or give birth to malformed young.
The disease is usually more severe in sheep than in cattle. Most infections in
humans are asymptomatic. Those who become clinically ill most commonly
experience a flu-like illness. Photophobia and symptoms of hepatic
impairment may be evident. Approximately 5% of clinically ill people will
develop complications, which are often grave. These include encephalitis,
retinopathy, hepatorenal failure, and disseminated intravascular coagula-
tion leading to massive hemorrhage. Disease in humans is almost invariably
noted after mass mortality among animal species.

RVF is transmitted by mosquitoes. At least 30 species of mosquitoes in
eight genera can effectively carry the virus from one mammalian species to
another. This lack of ‘‘monogamy’’ with respect to vector competence
ensures that RVF could easily become established in a number of areas
outside its historic range. Transovarial transmission occurs, and the virus
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can remain in dormant eggs oviposited in dry areas. With rainfall, eggs
hatch, and the resulting mosquitoes can transmit the disease. Outbreaks
usually occur subsequent to climatic conditions that favor an increase in the
vector population. Ruminants are considered to be amplifier hosts and can
experience a significant viremia. This animal infection results in expansion
of the infected vector populations, with the disease spreading to the human
population.

Before 1977, RVF was confined to Africa south of the Sahara; however,
the construction of the Aswan Dam and the subsequent development of
flood plains for agriculture resulted in a large outbreak in Egypt in the late
1970s. Likewise, construction of the Diama Dam on the Senegal River
precipitated an outbreak in Mauritania in 1987. Excessive rainfall, largely
brought about by the El Niño Southern Oscillation Effect, created moist,
mosquito-enhancing conditions that contributed to an outbreak in Kenya
and Somalia in 1997 to 1998 [3]. In each of these instances, mass mortality in
animals preceded human infections. Then, in September of 2000, the
Ministries of Health in both Yemen and the Kingdom of Saudi Arabia
received reports about acute disease in humans that was compatible with
RVF. The focus of disease was the northwestern region of Yemen and the
southwestern corner of Saudi Arabia. Just before reports of human disease,
there were records of extensive morbidity and mortality among livestock,
predominantly sheep.

In Saudi Arabia, there were a total of 886 suspected cases during the
outbreak. Laboratory confirmation was attempted on 834 of the patients;
positive results were obtained on 683 (81.9%). The male-to-female ratio was
4:1. Of these 683 laboratory confirmed cases, 95 died, for a case-fatality rate
of 13.9%. Seventy-seven of the 683 cases were Yemenis living and working
in Saudi Arabia; the case-fatality rate for these patients was 26%. The
higher case-fatality rate for Yemenis may be related to the lack of affordable
access to health care and thus to late presentation [4]. Also, most of the
Yemenis living in Saudi Arabia were male rural workers, who proved to be
the highest risk group.

Clinical and epidemiologic data from Yemen are not as readily available.
According to Centers for Disease Control and Prevention records, between
August and November 2000 there were 1087 suspected cases, including 121
deaths [5]. Three quarters of the patients reported exposure to sick animals,
handling an aborted fetus, or participating in slaughter of animals.

The key presenting complaints in the outbreak in Saudi Arabia were
nausea, vomiting, abdominal pain, and diarrhea, all related to the acute
hepatitis developing. In addition, renal failure was a common complication,
occurring in one fourth of the patients. That factor makes this outbreak
quite different from what has been seen in past outbreaks in Africa, where
the majority of cases were reported as flu-like illness. The case/fatality rate
also was much higher than that reported in previous outbreaks [4]. The
reasons for the higher death rate may be related to underreporting of mild
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or asymptomatic cases, or to pre-existing subclinical liver disease caused by
the schistosomiasis and viral hepatitis that are known to exist in this part of
Saudi Arabia [6].

The genetic sequence of the virus obtained from this outbreak is closely
related to that of the virus that was circulating and causing disease in Kenya
and Somalia in 1997 to 1998, a fact suggesting that it was introduced into
the Arabian peninsula from eastern Africa [7]. The lack of variation among
isolates from this outbreak indicates that the agent had only recently been
introduced to the area. The suspected route of introduction is in infected
livestock. Rainfall had been heavy the previous year, as aerial surveys and
satellite images revealed an increased vegetations index [8].

This outbreak of RVF in the Arabian peninsula underscores the
interconnectedness of human and animal populations. The blurring in-
terface created by trade, combined with favorable climatic factors, made
possible a portal of entry and subsequent amplification, creating first an
emerging disease in livestock, then a significant public health crisis for the
region.

Alveolar echinococcosis

Alveolar echinococcosis is a chronic disease caused by infection with the
intermediate form of the tapeworm Echinococcus multilocularis. This
parasite is geographically distributed in the northernmost part of the
northern hemisphere, including areas of western Europe, Asia, China,
northern Japan, Alaska, Canada, and the north central region of the United
States [9]. In these areas, E multilocularis is maintained in a sylvatic cycle
that involves foxes and small rodents as the definitive and intermediate
hosts, respectively. While other wild canids and domestic dogs and cats can
serve as alternate definitive hosts, infected humans are an aberrant or
intermediate host [10]. Once ingested by humans, the egg releases an
oncosphere that finds its way from the duodenum to visceral tissues, usually
the liver, where the metacestode stage develops as multiple infiltrating
hydatid cysts of slow but constant growth and expansion [11]. The infection
is so aggressive that the lesion was initially thought to be a neoplasm. It was
Rudolf Virchow, the father of modern pathology and also the first person to
use the term ‘‘zoonosis,’’ who correctly identified the disorder as an
infectious process.

Because clinical signs usually develop 5 to 15 years post–initial infection
when tissue invasion is extensive, often the only treatment possible is radical
surgery with concurrent long-term antiparasitic treatment [11]. In many
instances more drastic measures, such as liver transplantation, are the only
alternatives. These treatments represent a considerable cost burden to
patients and countries where the disease is endemic.

The range of E multilocularis is currently expanding to areas where it
was not previously reported, and this expansion is apparently due to the
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translocation of the definitive host. In Europe, the increasing fox popula-
tion, in part the result of successful rabies control programs, has resulted in
animals invading urban centers. These urban centers provide not only
abundant small rodent intermediate hosts, but also alternative definitive
hosts such as the domestic dog and cat.

As the range of E multilocularis increases, incidence of human disease is
carefully monitored. In Alaska, there is considerable evidence of the disease
among Eskimos. Children are most likely to be infected, presumably
because of play habits and increased oral exposure, with the disease
appearing as they become young adults [10,12]. In some areas, seropreva-
lence among the human population is increasing, although a specific rise in
clinical cases has not yet been seen. It is unknown whether this seropreva-
lence is due to immunity or to an early stage of infection, before cyst
development [13,14]. More extensive epidemiologic investigations are
warranted.

Control of alveolar hydatid disease is problematic. Focal geographic
eradication of the cestode has been reported on the small Japanese island of
Rebun by eliminating dogs and foxes on the entire island. This method is
impractical in larger geographic areas because of ecological, ethical, and
humane considerations [15]. It has been proposed that control of
E multilocularis could be better achieved by broad ecological study of the
region in question and implementation of education programs. These
educational programs can focus on the modification of specific high-risk
behaviors, the periodic administration of anthelmintics to companion pets,
and baiting methods with anthelmintics for the wild reservoir [16].
Education appears to be an economically feasible control measure in small
urban areas, where it has shown promising results in decreasing E multi-
locularis environmental contamination [17].

Over 100 years have passed since Rudolf Virchow cast a spotlight on
alveolar echinococcosis by clarifying the infectious nature of the process.
The lethality of the disease, the economics of treatment options, and the
spread into nonendemic and often urban areas are all considerable causes
for modern concern.

Emerging zoonotic disease—occurrence in a new species

It is well known that 75% of all emerging infectious diseases of humans
occur as a result of an animal pathogen’s moving into a human host. A less-
recognized possibility is that of an infectious agent in one animal species
moving into a second animal species to create an emerging disease of
animals. What is the total number of potential pathogens currently present
in animals? How many are capable of moving from animals to humans, or
from one animal species to another?

A recent paper by Dr. Sarah Cleaveland et al [18] catalogs and
categorizes all known pathogens of humans, domestic livestock, and
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domestic carnivores based on their ability to move from one species to
another. Surprisingly, of the 1415 known pathogens of humans, 61.6% have
an animal origin. A total of 616 pathogens were documented for domestic
livestock, with 77.3% considered ‘‘multiple species’’ (ie, capable of infecting
more than one type of animal). For domestic carnivores the total was 374
pathogens, with 90% classified as ‘‘multiple species.’’ So it is apparent that
there is considerable promiscuity among animal pathogens. As unusual
species are grouped together, swapping of flora can easily occur.

Cleaveland makes no efforts to catalog the number of agents found in
wildlife—understandably so. The list would be not only enormous but also
notably incomplete, because we lack detailed knowledge about existing
diseases of so many wild species of animals. In this light, it is notable that
many of the emerging human and animal diseases we have dealt with in
recent years have come from wildlife. This is a largely unexplored arena,
with many more pathogens yet to emerge. The following two examples
demonstrate how a pathogen moving from one animal species to another
can have a very significant subsequent impact on public health.

Monkeypox

Monkeypox made headlines in the spring of 2003 as an African disease
that sneaked into the Midwestern United States through the exotic pet trade
and generated dozens of human infections in four different states. Contrary
to popular belief, this was not the first incursion of the virus into the United
States. During the late 1950s and 1960s, six outbreaks of monkeypox were
reported among captive nonhuman primates in research facilities through-
out the United States [19,20]. In four of these cases, the origin of the
incriminated monkeys was not Africa but India and Southeast Asia.
However, subsequent serologic surveys in wild populations in South Asia
failed to identify this area as a possible niche of the virus. It is probable that
these animals were exposed at some point during their transportation or
quarantine process. Traceback investigations on the remaining two out-
breaks were not reported, and human infections did not occur on any
occasion—perhaps because vaccinia immunization provides good cross-
protection against monkeypox, and smallpox vaccination was very active
during those years.

The monkeypox virus belongs to the Orthopox genus in the family
Poxviridae and was originally isolated in 1958 from a sick cynomolgus
monkey at the Statens Seruminstitut in Copenhagen, Denmark. The term
monkeypox may be something of a misnomer, because this virus is more
frequently associated with small rodents than with primates [21]. Since the
first human report in 1970, in what is today the Democratic Republic of
Congo (DRC), numerous reintroductions to the human population have
occurred, mostly in central and western Africa, including a large outbreak
from 1996 to 1997 in the DRC involving more than 400 individuals [22,23].



831F. Torres-Vélez, C. Brown / Clin Lab Med 24 (2004) 825–838
A unifying factor in all human monkeypox clusters is the close
interaction of humans with wildlife. During African outbreaks, humans
were exposed either during seasonal hunting activities or when they were
forced to retreat deeper into the rain forest during civil turmoil [24,25].
Index cases in these outbreaks are usually associated with exposure to
rodents rather than monkeys. Close and continuous human/wildlife in-
teraction is needed to maintain monkeypox in a human population; human-
to-human transmission alone will not sustain the virus among humans.
Nevertheless, if the herd immunity of a population is low, person-to-person
transmission and repeated introductions of the virus from the wild re-
servoir can lead to more and larger clusters of human monkeypox. Several
serologic and epidemiologic studies implicate squirrels and the Gambian
giant rat as the key players in the circulation of the virus in nature
[26,27].

The introduction of monkeypox to humans in the central United States
during the 2003 outbreak provides a good example of cross-species and
cross-continental trafficking of infectious agents. The monkeypox virus,
a specifically African entity, was quiescently exported from its home con-
tinent in one of its customary hosts, a Gambian giant rat, and jumped ship,
as it were, into a previously unexplored and proximate microbial niche,
prairie dogs that had been housed with the exported Gambian rats. The
virus flourished in this new and foreign microbial habitat, creating an acute
and emerging disease problem for this North American species of rodent. It
was not long before an emerging disease of prairie dogs became a significant
public health crisis.

In the spring and early summer of 2003, there were 35 confirmed
human cases of monkeypox, scattered across four Midwestern states. All
of these individuals were infected by direct or indirect contact with
infected prairie dogs [23,26]. An unexpected finding was the relatively mild
clinical presentation of the disease when compared with outbreaks in
Africa.

Traceback investigation revealed that prairie dogs, source of the human
infection, became infected at an animal distributor facility in Illinois when
they were housed together with infected Gambian giant rats and dormice
imported from Accra, Ghana [26]. Out of 200 prairie dogs that were
estimated to have been exposed to the infected African animals in this
facility, 93 were traced forward. The remaining 107 animals either died or
were sold in informal transactions without sufficient record-keeping to allow
traceability.

With no knowledge of the fate of more than 100 potentially exposed
prairie dogs, not to mention the unknown number of African rodents in
various collections throughout the United States, we cannot predict the
future of monkeypox in the Western Hemisphere. Its impact on native
wildlife populations of rodents and its potential establishment as an
enzootic disease in the United States are worrisome.
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Ebola

Since its emergence in 1976, the Ebola virus has become a ‘‘sleeping
giant’’ in western and central Africa. Following its first documented emer-
gence, Ebola has re-emerged to be recognized on at least 18 more occasions,
mostly in the African continent. Each new outbreak tends to generate
screaming media attention, perhaps because of the gruesome and rapid
clinical course of the disease or, more likely, because of previous high-
lighting of the disease in best selling books and motion pictures. In fact,
Ebola has become a kind of poster child for the whole field of emerging
disease. In terms of human morbidity and mortality, Ebola is a bit actor in
the overall drama of emerging diseases, but its occurrence and documented
recurrences have generated considerable public consciousness-raising and
have increased funding levels for infectious diseases overall and emerging
diseases in particular.

Studies in Africa have determined that monkeys and apes are important
players in the transmission of the virus to humans [28]. In fact, most outbreaks
in humans have been preceded by primate die-offs or traced back to contact
with dead primate carcasses. Close exposure to these ape carcasses and con-
sumption of bushmeat from these primates are targeted as possible conduits
of infection to the human population. In addition, carcasses of duikers found
near dead apeswere also positive forEbola virus, indicating not only a broader
host range but also the possibility of additional sources of bushmeat for
human infection. However, neither primates nor duikers are considered the
natural host, because the virus is highly lethal in these animals [28,29].

The reservoir of Ebola remains anonymous. Many sampling surveys have
been performed but provide only limited information regarding the wild
reservoir [30,31]. More encouraging information has been obtained from
experimental infections of possible wild candidates, such as the fruit bat. In
these experiments, bats were capable of sustaining and allowing viral
replication with negligible clinical signs [32]. Recently, an ecologic niche
modeling study has suggested several characteristic features of this unknown
reservoir. The study establishes the reservoir distribution in the evergreen
broadleaf forest, mainly in the Congo Basin [33]. In addition, climate
variability may play a role in filovirus transmission and might be useful as
a predicting factor, as rainfall has proved to be a factor in ‘‘triggering’’ the
emergence of Ebola hemorrhagic fever.

It is clear that an ecological approach to pathogen transmission can
benefit our understanding of emerging diseases, and Ebola hemorrhagic
fever exemplifies this principle. The limited genetic variation between
isolates of Ebola subtype Zaire isolated 20 years apart suggests that
ecological rather than genetic factors play a central role in the initiation
of outbreaks [34].

Elucidation of the ecology of Ebola virus and definitive identification of
its natural reservoir are pivotal for the development of prevention programs.
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Such prevention programs will benefit not only the human population but
also the declining endangered monkey and ape population in the region
[28,35]. In the meantime, human disturbances of pristine ecosystems along
with the unsafe practices of the bushmeat trade will provide ideal settings for
Ebola re-emergence.

Emerging zoonotic disease—brand new agent

Perhaps the most frightening and unpredictable category of emerging
disease is that of those that are caused by a previously unknown virus or
bacterium. Of course, the agents are not really brand new, only new to our
knowledge. Recent years have seen such agents emerge in disastrous ways to
affect human populations. Although the new disease usually makes scream-
ing headlines at the moment when large numbers of humans become
infected, in fact, in many instances the ‘‘new’’ agent has surfaced just pre-
viously as an emerging disease in an animal population. It is this proximate
source that extends to infect humans.

Nipah virus

Nipah virus is a recently discovered member of the Paramyxovirus family
that was quiescent in its ecologic niche for countless years until anthropo-
genic factors allowed it to replicate in an environment that engendered
extensive human exposure. An outbreak of disease in pigs preceded the
human clinical disease. The illness in swine was originally attributed to
classical swine fever infection, but it soon became apparent that a novel
infectious agent was responsible. Extensive replication in bronchiolar
epithelium coupled with an exertional cough ensured that the infected pigs
were spewing prolific amounts of virus into the environment. In humans,
Nipah virus infection presents clinically as an acute febrile encephalitis.
Nipah virus was first isolated from the cerebrospinal fluid of a patient from
the Sungai Nipah village in Malaysia [36], 6 months after its emergence in
late September 1998. Close similarities of the new virus to another recently
discovered paramyxovirus, Hendra virus, prompted virologists to create
a new genus, Henipavirus, to include both entities. In Malaysia, the Nipah
virus outbreak came to an end after the establishment of strict control
measures and the culling of over a million pigs [37]. The outbreak extended
to Singapore, where it was halted by ceasing the importation of pigs from
Malaysia. At the end of this episode, a total of 283 human cases of viral
encephalitis with 109 deaths were reported, for a fatality rate close to 40%
[38].

Because fruit bats had been identified as the natural reservoir for Hendra
virus, several ecological surveys were undertaken to investigate the pos-
sibility that Nipah virus also had originated from fruit bats. Early studies
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were able to detect antibody titers against Nipah virus in five species of fruit
bats [39], and eventually the virus was isolated from the urine of an Island
flying fox and from a partially eaten fruit regurgitated from one of these bats
[40]. These findings implicated bats of the Pteropus species as the natural
reservoir for Nipah virus. The critical link with the human population was
made when the virus moved from fruit bats to swine. The susceptibility of
swine and the marked respiratory involvement created an outbreak
situation, with resulting spread to humans and a major public health crisis.
The proposed chain of events that enabled this interaction began around
1997 when extensive slash-and-burn deforestation produced a haze that
extended all over Southeast Asia [41]. This deforestation and haze, aggra-
vated by an El Niño Southern Oscillation drought, decreased the already
scarce quantities of fruiting forest in the region. Impelled by these an-
thropogenic factors, Pteropus bats invaded areas of fruit cultivation, like the
index farms, that were also used as piggeries.

Nipah virus elicits major public health concerns because of its high
mortality rate, ability to infect a wide range of hosts, and broad geographic
distribution of the reservoir host. This concern is accentuated by its negative
economic impact and its official listing as a critical biologic agent for public
health preparedness. During the 1998 outbreak, it was demonstrated that in
addition to pigs various domestic animals could serve as hosts, namely dogs,
cats, and horses [42]. Also, rodents have recently been experimentally and
productively infected [43]. This wide availability of potential hosts, along
with the globally limited but regionally widely distributed reservoir,
represents a potential threat of emergence beyond Southeast Asian bound-
aries. Approximately 60 species of Pteropus bats have been identified, and
all are distributed in a range that extends from the islands of Mauritius,
Madagascar, Pemba, and Comoro, along the sub-Himalayan region of
Pakistan and India, through Southeast Asia, the Philippines, Indonesia,
New Guinea, and the southwest Pacific islands as far east as the Cook
Islands and Australia. Although the distance these animals will travel, and
thus their disease-carrying capacity, is debatable, it is recognized that the
overlapping distribution of three species of flying foxes is all that is required
to form a continuous link between the east coast of Australia and Pakistan
[44]. This important ecological aspect must be taken into consideration
during epidemiologic investigations of future emergences outside Malaysia,
such as the outbreak recently (February 26, 2004) reported in Bangladesh
[45].

Severe acute respiratory syndrome

Two years after welcoming a new millennium, humanity experienced
severe acute respiratory syndrome (SARS), the first pandemic of the twenty-
first century. This event catalyzed global public health emergency responses
in a way no previous disease had. The outbreak in humans began in
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November 2002, as atypical pneumonia appeared first in the southern
Chinese province of Guangdong and subsequently spread to nine countries,
including the United States [46]. All told, there were approximately 8435
human cases and 789 deaths in 33 countries around the world [47]. A novel
coronavirus (SARS-CoV) was eventually identified as the culprit in SARS
[48].

Despite extremely rapid and sophisticated molecular characterizations,
the source of the SARS virus remains speculative. The SARS-CoV proteins
share little similarity with the proteins of any of the three major existing
serogroups of coronaviruses. Various coronaviruses are well recognized for
causing disease in animals—specifically, infectious bronchitis in chickens,
infectious peritonitis in cats, and diarrhea in piglets and calves. However,
the SARS-CoV had very little in common with any of these well-studied
pathogens. There is, however, mounting evidence to suggest that SARS-
CoV has a zoonotic origin. A promising lead arose when a SARS-CoV–like
virus was isolated from Himalayan palm civets found in the Guangdong
live-animal market, and a subsequent serosurvey study demonstrated viral
titers among asymptomatic animal traders in Guangdong, suggesting
previous infection with a SARS-CoV–like virus [49,50].

Speculation about a genetic reassortment of an animal coronavirus with
further adaptation to the human host is presently being evaluated.
Certainly, a wild animal market could provide the ideal setting for such
reshuffling of genes among different wild animals and eventually humans.

Evidence indicates that the introduction of SARS-CoV to humans was
a fairly recent event [51]. Epidemiologic studies have shown that at least
2 months before the outbreak the virus was circulating in the capital of
Guangdong, Guangzhou, a city noted for its ‘‘wet markets’’ where wild
game trade for human consumption is very popular. Food handlers made up
more than one third of the initial cases. Only half of the cases could be
attributed to contact with SARS patients, suggesting transmission from an
unknown reservoir [52].

The SARS pandemic catalyzed public health systems worldwide, and the
economic costs were staggering. Despite the most intensive epidemiologic
investigations and emergency response ever mounted against an infectious
disease, the source of the agent remains elusive, making it extremely difficult
to predict when and where the next resurgence may occur.

Summary

Wild game meat, livestock trading, pocket pets, and Arctic tapeworms—
decades ago, who would have envisioned that these disparate entities would
be threaded together in a great haiku of public health problems? Emerging
diseases have created a new kaleidoscopic lens through which we view the
world. These emerging diseases will not only continue to emerge but will
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probably do so at an ever-increasing rate. As was articulated in a recent
National Academies of Science report, myriad factors in our interconnected
global village are creating the microbial equivalent of a ‘‘perfect storm’’ [53].
However, unlike a major climatic event, where various meteorologic forces
converge to produce a tempest, this microbial perfect storm will not subside.
There will be no calm after the epidemic; rather, the forces combining to
create the perfect storm will continue to collide, and the storm itself will be
a recurring event.

Watching the steady stream of new and emerging diseases, one is re-
minded of the carnival game ‘‘Whack-a-mole.’’ In this game, the participant
is given a rubber mallet and tasked with defeating each mole that pops out
of a series of holes. The satisfaction derived from neutralizing one mole is
immediately replaced with the drive to beat back the next. The operator
must act quickly to eradicate each new surfacing mole. Perhaps today we
need an entirely different strategy. Rather than responding to each new crisis
as it arises (ie, each new mole that emerges), we need to address the
underlying factors in disease emergence seriously and expeditiously. Instead
of focusing on the next big health crisis, we need to conduct thoughtful and
thorough studies of the ecology and overall species susceptibility of disease.
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