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Genomic heritability estimates in sweet
cherry reveal non-additive genetic variance
is relevant for industry-prioritized traits
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Abstract

Background: Sweet cherry is consumed widely across the world and provides substantial economic benefits in
regions where it is grown. While cherry breeding has been conducted in the Pacific Northwest for over half a
century, little is known about the genetic architecture of important traits. We used a genome-enabled mixed model
to predict the genetic performance of 505 individuals for 32 phenological, disease response and fruit quality traits
evaluated in the RosBREED sweet cherry crop data set. Genome-wide predictions were estimated using a repeated
measures model for phenotypic data across 3 years, incorporating additive, dominance and epistatic variance
components. Genomic relationship matrices were constructed with high-density SNP data and were used to
estimate relatedness and account for incomplete replication across years.

Results: High broad-sense heritabilities of 0.83, 0.77, and 0.76 were observed for days to maturity, firmness, and fruit
weight, respectively. Epistatic variance exceeded 40% of the total genetic variance for maturing timing, firmness
and powdery mildew response. Dominance variance was the largest for fruit weight and fruit size at 34% and 27%,
respectively. Omission of non-additive sources of genetic variance from the genetic model resulted in inflation of
narrow-sense heritability but minimally influenced prediction accuracy of genetic values in validation. Predicted
genetic rankings of individuals from single-year models were inconsistent across years, likely due to incomplete
sampling of the population genetic variance.

Conclusions: Predicted breeding values and genetic values revealed many high-performing individuals for use as
parents and the most promising selections to advance for cultivar release consideration, respectively. This study
highlights the importance of using the appropriate genetic model for calculating breeding values to avoid inflation
of expected parental contribution to genetic gain. The genomic predictions obtained will enable breeders to
efficiently leverage the genetic potential of North American sweet cherry germplasm by identifying high quality
individuals more rapidly than with phenotypic data alone.
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Background
Sweet cherry (Prunus avium L.) is a lucrative fresh market
horticultural crop whose monetary worth is directly and
indirectly determined by several horticultural and fruit
traits. Worldwide, more than 2.8 million tons of sweet
cherry fruit were produced in 2014 [1]. In 2015, the U.S.
was the second largest producer of cherries, producing

338.6 kt of fruit valued at $703 million, of which 60% were
grown in Washington State [2, 3].
Sweet cherry cultivars must garner a positive critical

reception among growers, market intermediaries (a
category which includes packers, shippers, and
marketers), and consumers to succeed commercially.
The U.S. sweet cherry industry and consumers have
previously prioritized which fruit trait thresholds are
essential for a successful cultivar. Sweet cherry producers
identified fruit size, flavor, firmness, and powdery mildew
resistance as trait priorities in a survey conducted in
2011 [4]. Powdery mildew (causative agent Podosphaera
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clandestina) is a foliar and fruit disease with a high cost of
control in susceptible cultivars. Sweetness and flavor were
ranked by consumers as the most important attributes in
sweet cherry, followed by firmness, shelf life, and fruit size
[5]. Consumers are willing to pay more for sweet, firm
cherries with an ideal balance of sweetness and acidity.
Sweetness and acidity are quantified with assays for
soluble solids content (SSC) and titratable acidity (TA),
respectively [5–8]. Market intermediaries indicated a will-
ingness to pay producers more per pound for fruit greater
than 2.5 cm in diameter, firmness above 300 g/mm, and
SSC above 18 °Brix [9]. Market intermediaries also ranked
fruit size as the most important trait, followed by firmness
and external appearance [10]. The USDA Agriculture
Marketing Service evaluates skin color, fruit size, and fruit
firmness when grading sweet cherries [11], an assessment
which influences market receipts for that crop.
Many of the trait thresholds identified by consumers

and the cherry industry alike have been individually met
or exceeded through genetic improvement. Beginning
with the 1952 release of ‘Rainier’, a highly popular sweet
cherry cultivar, the Washington State University sweet
cherry program (formerly USDA-ARS) has released
several dozen cultivars with improved flavor, size, and
firmness in each subsequent release [12, 13]. This
program and others have largely relied on phenotypic
selection complemented with trait-predictive DNA tests
for high heritability traits, such as fruit skin color and self-
compatibility [13–16]. The Washington State University
breeding program has seen genetic gains in fruit dimen-
sions, firmness and other traits of breeding relevance due
to moderate heritability of those traits [17–19].
Sweet cherry has a juvenility period of three to five

years before a tree is capable of flowering and producing
fruit [20]. Therefore, the pace of cultivar release is slow,
taking 15 to 25 years between making a cross to cultivar
release [16]. Sweet cherry breeding is structured like
many other crops: an initial set of crosses is made,
followed by evaluation of a large number of offspring.
After a rapid screening, the majority of these offspring is
discarded, and the remaining selections are evaluated
more extensively in replicated trials. Selections are clon-
ally propagated in subsequent evaluations. Consequently,
the genetic potential identified in F1 seedlings remains
fixed throughout the evaluative phases of a breeding
program and is not lost during recombination and
segregation.
Understanding the genetic architecture of crop traits

can help plant geneticists and allied scientists maximize
genetic gain and elucidate the genetic potential of seed-
lings and parents. Best linear unbiased prediction
(BLUP) is an analysis tool that is used to estimate the
genetic potential of each individual from unbalanced
trials by modeling genetic effects as a random effect in a

mixed model [21]. It requires prior estimation of genetic
variance components, which are obtained through max-
imum likelihood, restricted maximum likelihood (REML)
or Bayesian approaches [22, 23]. Pedigree-based BLUPs
have been developed to leverage information from related
individuals. This is used to estimate the genetic potential
that a parent can pass to its offspring and is termed
“breeding value” [24]. Genomic BLUPs (GBLUPs) are an
extension of pedigree-based BLUPS, using DNA marker
information instead of pedigree information to construct a
realized relationship matrix between individuals in a
population. The realized relationship matrix can more
accurately estimate relatedness, particularly among full
siblings, than the pedigree-based relationship matrix
[25–27]. The resultant breeding values are expected
to more closely mirror the true genetic potentials of
individuals [28–30].
Breeding values derived from BLUPs have been used

to successfully identify superior individuals in several
rosaceous crops including apple, peach, raspberry, and
strawberry [31–37]. Extensive work has been done in
apple to estimate the breeding values from unreplicated
trials [31, 33, 38, 39]. Breeders have observed enhanced
genetic gain using both pedigree-based and genome-esti-
mated breeding values in other perennial tree crops, in-
cluding citrus, rubber and Eucalyptus [40–43]. Sweet
cherry shares many of the breeding scheme challenges
of apple and other perennial tree crops: unbalanced
trials and a long juvenility period. Hence, the same
methodologies can be utilized.
Additive effects are considered to be the largest

component of genetic variance that is passed to progeny
[44]. While many genome-wide approaches including
GBLUPs have been employed to estimate breeding values
across crops, these methods are almost solely focused on
estimating additive effects alone as a proxy for total gen-
etic effects. Few studies have examined non-additive gen-
etic variance components in rosaceous crops [45]. Kumar
et al. [45] reported on a comprehensive study estimating
sources of genetic variance for 32 traits in apple across 17
families and two locations using GBLUPs.
In cherry, there are few published accounts that utilize

BLUPs or other genome-wide DNA-enabled approaches
for estimating the genotypic value of individuals. The
only published genome-wide study in sweet cherry esti-
mated breeding values for cherry fruit size in U.S.-rele-
vant germplasm from large-effect QTLs in a Bayesian
analysis, but it did not include genetic background
effects [18]. There is no published information on the
genome-wide additive and non-additive variance compo-
nents and prediction of the genetic value of individuals
for any sweet cherry trait.
This study addresses a deficiency of published infor-

mation on genetic parameters for sweet cherry breeding-
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relevant traits beyond those influenced primarily by
large-effect QTLs by obtaining robust estimates of gen-
etic variance components. To ensure wide applicability
of the study for cherry, we used a large set of sweet
cherry breeding germplasm. These data were gathered
from germplasm in public sweet cherry breeding
programs as part of RosBREED project [46]. Our objec-
tives were to: (1) estimate variance components across a
broad spectrum of traits in sweet cherry germplasm
important to North American breeders and producers,
and (2) assess the predictive accuracy of obtained
genome-estimated breeding values (GEBVs) for a subset
of the most valuable traits. Previous studies show that
genome-estimated breeding values of individuals that are
robust across years and families can increase the pace and
efficiency of breeding. Specifically, valuable cherry parents
can be identified more quickly and with greater confi-
dence than those obtained through phenotypic data alone.

Methods
Germplasm
We used all individuals from the RosBREED sweet cherry
Crop Reference Set with genome-wide SNP data, totaling
505 individuals (Additional file 1). This set consisted of
cultivars (n = 42), wild accessions (n = 3), unreleased selec-
tions (n = 24), and unselected offspring (n = 436) from 66
families. The unselected offspring category included 77 F1
offspring derived from a wild parent and 359 F1 offspring
derived from existing cultivars. All individuals are con-
nected through pedigree or historic relationships across
six generations. Trees were grown at two sites in Wash-
ington State (U.S.A.) located approximately 0.5 km apart:
the Irrigated Agriculture Research and Extension Center
of Washington State University Roza Unit, (46 29’N and
119 73’W) and at Pear Acres (46 29’N and 119 75’W).
Each tree was planted in 2006, 2007, or 2008 and man-
aged using conventional orchard management practices.
Unselected offspring were grown on their own roots, and
the remaining germplasm were grown on Gisela 6 root-
stock [47]. A single tree was used for each individual. The
Crop Reference Set was established to represent North
American sweet cherry breeding germplasm for QTL
identification and validation and other quantitative genet-
ics endeavors [48].
Gisela 6 rootstock can impact crop performance by

decreasing tree size and increasing crop load, among
other effects [49–51]. Because only released cultivars
and wild germplasm were grown on rootstocks while all
seedlings were grown on their own roots, any effect of
rootstock was confounded with the effect of seedling
versus non-seedling in this study. However, in this study,
understanding the relative performance among seedlings
or among cultivars was the primary purpose in order to
identify possible parents and candidate cultivars.

Phenotypic data
This study used the sweet cherry phenotypic data set
previously described in Chavoshi et al. [52] obtained in
the RosBREED project. This data set consisted of 32
traits evaluated in 2010, 2011, and 2012. Standardized
phenotyping protocols for sweet cherry [52] were used.
For individual fruit traits, the five largest fruit without
blemish were measured and averaged. In the case of pit-
ting and cracking, the proportion of fruit observed with
symptoms out of 25 fruit was recorded. Bulked fruit
traits (bulked fruit weight, bulked firmness, bulked SSC,
and bulked TA) were reported as the average of
measurements over 25 fruit.
Nine traits of the 32 were focused on here because of

their importance in new sweet cherry cultivars: time to
bloom, time to maturity, pedicel-fruit retention force
(PFRF), fruit dimensions, fruit weight, firmness, SSC,
TA, and powdery mildew incidence. Time to bloom and
time to maturity were measured both in Julian calendar
days starting from January 1st of the calendar year and
in growing degree days (GDD). The force required to
pull a ripe cherry fruit from its pedicel, PFRF, and fruit
weight were both measured in grams. Firmness, SSC,
and TA were measured in units of g/mm, °Brix, and per-
centage, respectively. Foliar powdery mildew incidence
was scored in August of each year, immediately after the
fruiting season, on a 0–5 scale, where 0 is no infection
and 5 is highly infected leaves. These nine traits are
referred to as “focus traits” for the rest of the study. All
trait data were measured over three years except for
powdery mildew incidence, which was not assayed in
2010. Results from the other traits are given in the
supplementary material, but not discussed.
Several transformations of the trait data were

performed for the focus traits. “Fruit dimensions” was
determined newly here as the first component from a
principal component analysis between fruit length and
fruit width, which are both end-to-end fruit measure-
ments in millimeters. The first principal component
summarized 95.4% of total phenotypic variation for fruit
length and width. Growing degree days was calculated
for an alternative measure of phenological traits.
Climatic data was obtained from Washington State
University’s AgWeatherNet using the “Roza” station
[53], using a base temperature of 4.5 °C and maximum
of 30 °C. Daily maximum temperatures above 30 °C were
reduced to 30 °C, and negative temperatures were set to
zero, following McMaster and Wilhelm [54]. Erroneous
data points, defined as those larger than twice the next
largest value or less than one-half of the next smallest
value and having a studentized residual with an absolute
value greater than 5, were removed. Such data were as-
sumed to be data entry errors. There were 97 individuals
with no phenotypic data: 13 selections and 84 unselected
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progeny. These individuals were used in the model-
building and prediction steps for all models except for
cross validation.

SNP data
The SNP data were obtained from the RosBREED
project using the RosBREED cherry 6 K SNP array v1
(an Illumina Infinium® II array) [55]. The SNP curation
pipeline was described in Cai et al. [56]. Missing data
were imputed with Beagle as implemented in SynBreed
[57, 58] using the hidden Markov model and a minor al-
lele frequency of 0.05. Individuals or SNPs missing more
than 25% data were removed from analysis. In total, a
genome-wide set of 1615 SNPs was used.

Statistical modeling
Variance components were estimated with R-ASReml 3.
0 [59], and additional statistical analyses were conducted
in R v3.4 [60]. The following model was used for initial
estimates of genetic effects for a single trait, Y:

Y¼Xbþ Z1aþ Z2dþ Z3iþ Z4aY þ Z5dY þ Z6iY þ e

where a, d, i, aY, dY and iy are the random variables for
additive effects, dominance effects, effects from additive-
by-additive epistatic, additive-by-year effects, dominance-
by-year effects, and epistasis-by-year effects, respectively.
Variables Z1 ‐ 3 and Z4 ‐ 6 are design matrices for main ef-
fects and interaction terms, respectively. Dimensions of
Z1 ‐ 3 are nY × Y and Z4 ‐ 6 are nY × nY, where n is the
number of individuals and Y is the number of years with
trait data for an individual. Year was treated as a fixed ef-
fect, where X is the design matrix relating observations to
years and b is a vector of fixed effects due to year. In a
preliminary analysis, the effect of location was evaluated
as a fixed effect using a Wald test. Location did not have a
significant effect on the focus traits (p-value > 0.10) and
was omitted from the model. Random variables were
assumed to follow a normal distribution:

a � N 0;Gaσ
2
a

� �
;d � N 0;Dσ2

d

� �
; i � N 0;Gaaσ

2
aa

� �
;

aY � N 0; IY � Gaσ2aY
� �

;dY � N 0; IY � Dσ2dY
� �

;

iY � N 0; IY � Gaaσ2
aaY

� �
e � N 0;Rð Þ

The covariance structure for year was modeled as a
repeated measure: R = IIndividual⊗ eY where IIndividual is
an identity matrix of individuals included in the study
and eY is a 3 × 3 matrix of year error terms using a
general correlation structure implemented in ASReml.
The genomic additive relationship matrix was computed
with R/rrBLUP [61] using the VanRaden method [62]:

Ga ¼ HHT

2
X

jp jð1−pjÞ

where pj is frequency of the positive allele for a single
marker column, and H was computed as equal to
centered marker data, {H}ij = {M}ij − 2(pj − 0.5). M is an
n xm marker matrix with n individuals and m markers
expressed as (− 1,0,1) frequency. The dominance rela-
tionship matrix was computed using normalized matri-
ces described by Su et al. [63] and implemented using a
custom R program [64]:

D ¼ ZZT
P

j2pjð1−pjÞð1−2pjð1−pjÞÞ

where the Z matrix is a transformation of the marker
matrix, M:

fZgi j ¼ f −2pjð1−pjÞ i fmi j ¼ −1

1−2pjð1−pjÞ i fmij ¼ 0

−2pjð1−pjÞ i fmij ¼ 1

The epistatic relationship matrix for additive-
by-additive effects was computed by taking the Hada-
mard product between Ga, the additive genomic rela-
tionship matrix, and itself: Gaa =Ga ∘Ga.
When a relationship matrix was not positive definite, a

constant of 1e− 6 was added to the first eigenvector, and
the matrix was inverted.
The full model included additive, dominance, and

epistatic main effects and their interactions with year
and is also called the “ADI model” in this paper. Model
fit was assessed by checking for model convergence,
examining studentized residuals for each trait-by-year
combination, and examining the extended hat matrix for
influential observations. The default model convergence
criteria for ASReml were used, in which the final
iteration must satisfy the following conditions: a change
log likelihood less than 0.002 * previous log likelihood,
and the variance parameters estimates change less than
1% from the previous iteration. The extended hat matrix
for linear mixed models is:

WC−1WT

Where C ¼ WTR−1Wþ
 
0 0

0 G−1

!

and W= [X Z].

Influential data points were those with a value greater
than 2 times the average value of the diagonal of the hat
matrix excluding zeros.
The statistical significance of main effects and interac-

tions were tested by first generating reduced models and
then performing log-likelihood ratio tests between full
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and reduced models. To account for positively-bound
variance component estimates, a mixture of Chi-square
distributions as implemented in the R package asreml-
Plus [65] was used. Non-significant values from the log
likelihood ratio tests were interpreted as the reduced
models being as effective as the full model in modeling
the response variable. Heritability numerators were
estimated as σ2

a for narrow-sense heritability (h2) and as
σ2a þ σ2d þ σ2aa for broad-sense heritability (H2); both
were divided by the sum of the variance components for
final heritability estimates. Genetic values were
computed as the sum of main effects for a, d and i for
an individual, following the methodology of Kumar et al.
[45]. Genotype-by-year effects are the sum of ay, dy, and
iy when all years were used in the estimation.

Model validation
Five-fold cross validation was used where the data set
was randomly divided into 5 equal-sized parts (“folds”),
a single fold (20% of the individuals) was removed across
all years, and the remaining observations were used for
variance component estimation and prediction of genetic
values. The resultant model was used to predict genetic
values of those removed individuals. This process was
repeated for all 5 folds. Observations lacking phenotypic
information for a specific year and trait were excluded
from the model-building and validation. Because predic-
tions can be affected by sampling variance, 5-fold cross
validation was repeated 25 times using different ran-
domly generated folds for each iteration. In addition,
cross validation was performed, omitting each of the 66
full-sib families or a year as validation populations.
These latter situations were intended to reflect the situ-
ation of predicting genetic performance for previously
unphenotyped individuals that are related to the training
population, and for predicting performance for an unob-
served year. Prediction accuracy was assessed by com-
puting correlation coefficients between predicted genetic
values and observed data adjusted for fixed effects.

Other statistics
The statistical significance of year on the models was
checked with the Wald test. Genetic-by-year effects were
further explored by estimating genetic values and genetic
variance components using a single year of data.
Spearman’s rank-order correlations were conducted to
evaluate changes in rank of genetic values of individuals
across years. Pairwise Pearson (r) and Spearman (ρ) cor-
relations between traits were assessed for the multi-year
ADI model predictions. Principal component analyses
were conducted on correlation matrix of genetic values
calculated from (1) all individuals used in this study, and
(2) only the cultivars and ancestors (n = 48), using 8

independent traits: bloom time, harvest time, pedicel-
fruit retention force, fruit weight, firmness, SSC, TA, and
powdery mildew incidence. The first and second princi-
pal components were graphed on a biplot [66], where
the rotations for plotting the variables were scaled by
the first eigenvalue.

Results
Distribution of phenotypic data
All trait distributions (consisting of 600–755 data points
for each trait) were influenced by the year of data
collection (Fig. 1). Wald test results for year were
consistently highly significant for all focus traits across
all models (p < 0.001 in all cases).
The 2010 data visually differed most from the other

years, particularly for bloom date, fruit dimensions, fruit
weight, firmness, and SSC. Data in 2010 were also the
most sparse compared to data from other years
(Additional file 2). Fruit dimensions and fruit weight had
similar distributions across years. Although the distribu-
tions of bloom date and bloom time seemed to differ,
the accumulation of GDD remained relatively stable over
the three years. However, GDD accumulation was higher
in early 2010 than other years during the critical period
of flower bloom (data not shown).

Statistical assumptions and model fit
All models for the focus traits converged. Inspection of
the residual plots and quantile-quantile plots signal that
the error terms were independently and identically dis-
tributed (results not shown). The extended hat matrix
revealed no influential data points for any of the models.
Appropriate residual patterns were observed for all
models and traits (results not shown), demonstrating no
major departures from the assumption of homoscedas-
ticity. Moderate correlations were observed between the
additive, dominance and epistatic effects within a trait
for the full model (r = 0.3–0.7). Population structure was
observed among the individuals. In a principal compo-
nent analysis of the correlation matrix of the SNP data,
the first two components summarized 14% of the vari-
ation. There was distinct grouping of the wild accessions
and offspring derived from those wild accessions along
the second principal component (data not shown). Vis-
ual inspection of the diagonals and off-diagonals from
the realized relationship implies a single Gaussian distri-
bution of the matrix elements. Thus, the population
structure likely had minimal impact on the genomic
additive relationship matrix (Additional file 3).
Log likelihood ratio tests comparing reduced models

with the full ADI model demonstrated that the full
model was not necessary to describe trait variance for
any focus trait (Table 1). The main effects-only model
that included only additive, dominance, and epistatic
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effects was significantly different from the full model
(p-values < 0.05) for all focus traits, except for powdery
mildew incidence and SSC, which had notable p-values
defined as less than 0.10. Reduced models consisting of
single main effects (additive, dominance or epistatic) or
single main effects plus their year interaction term (e.g.,
additive and additive-by-year) were highly significant for
all traits. This demonstrates that the reduced models did
not adequately capture variation compared to the full
model. For most focus traits, genetic models that included
additive, epistatic, additive-by-year and epistasis-by-year
effects were not statistically different from the full model.
Thus, dominance and dominance-by-year could be
dropped from their genetic models without significant loss

of information. Traits that were exceptions to the above
were fruit weight, fruit dimensions, and bloom date, for
which optimal fit was obtained by including dominance in
the model. For all traits, dominance-by-year and epistasis-
by-year effects could be removed from the model without
much loss of information. Additive-by-year effects had a
statistically significant effect on bloom date, bloom time,
and PFRF (p < 0.01).

Genetic variance and predictive ability of full model
Variance component estimates from the full model
indicated moderate to high broad-sense heritabilities
across the focus traits, ranging from 0.47 for pedicel-
fruit retention force to 0.83 for harvest date (Table 2).

Fig. 1 Violin plots of nine traits by year, adjusted for fixed effects due to year and overlaid with the observations from each year
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Narrow-sense heritabilities ranged from 0.20 for PFRF to
0.37 for fruit dimensions. Epistasis was the single largest
genetic variance component for most traits: bloom time
(28%), harvest date (48%), harvest time (48%), firmness
(49%), SSC (27%), TA (33%), and powdery mildew
incidence (42%). Additive variance was the largest
component for bloom date (37%), PFRF (20%), and fruit
dimensions (37%). Dominance was the largest variance

component only for fruit weight (34%); in contrast, dom-
inance represented less than 1% of trait variance for
firmness, SSC, TA, and powdery mildew incidence.
Genotype-by-year effects were less than 10% for all traits
except bloom date (aY = 11%) and TA (iY = 14%).
Residual variance of most traits was less than 25% of
phenotypic variance, except for PFRF (45%) and SSC
(48%). Variances and standard errors for all components

Table 1 Log-Likelihood ratio test statistics for reduced models

Model df Bloom
Date

Bloom
Time

Harvest
Date

Harvest
Time

PFRF Fruit
Dimensions

Fruit
Weight

Firmness SSC TA Powdery
Mildew

a, d, i, aY, dY, iY 1 0.08 0.46 3.43* 0.28 0.09 2.48‡ 0.11 0.07 0.00 4.82* 0.62

a, d, i, aY, dY, iY 1 4.92* 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.70

a, d, i, aY, dY, iY 1 9.80*** 7.80** 0.58 3.36* 6.57** 1.23 1.24 4.80* 2.94* 0.94 0.35

a, d, i, aY, dY, iY 2 8.02** 16.18*** 66.80*** 64.86*** 6.48* 6.78* 6.12* 65.72*** 16.35*** 27.20*** 24.11***

a, d, i, aY, dY, iY 2 8.15** 2.18 3.67‡ 3.27‡ 3.01‡ 27.26*** 28.59** 0.10 0.00 0.00 0.70

a, d, i, aY, dY, iY 2 38.47*** 27.03*** 21.42*** 26.17*** 18.28*** 36.39*** 23.16*** 20.15*** 17.33*** 16.92*** 13.67***

a, d, i, aY, dY, iY 4 44.16*** 38.83*** 151.67*** 148.47*** 28.3*** 60.34*** 88.48*** 93.05*** 17.86*** 32.11*** 63.25***

a, d, i, aY, dY, iY 4 69.96*** 70.76*** 114.46*** 112.39*** 33.86*** 66.94*** 40.09*** 109.78*** 45.02*** 63.2*** 43.75***

a, d, i, aY, dY, iY 4 65.60*** 41.18*** 66.61*** 73.36*** 45.52*** 143.04*** 132.90*** 47.06*** 28.43*** 21.12*** 33.52***

a, d, i, aY, dY, iY 3 55.39*** 27.71*** 9.86** 7.55* 20.12*** 14.62*** 6.66* 25.72*** 5.10‡ 12.73** 4.93‡

a, d, i, aY, dY, iY 5 76.22*** 53.20*** 151.67*** 148.47*** 41.51*** 63.50*** 88.83*** 101.90*** 20.63*** 33.93*** 63.25***

a, d, i, aY, dY, iY 5 105.34*** 75.84*** 114.46*** 112.39*** 39.95*** 71.64*** 42.22*** 116.05*** 45.32*** 63.59*** 44.52***

a, d, i, aY, dY, iY 5 106.64*** 65.35*** 79.69*** 80.30*** 62.65*** 159.6*** 139.02*** 62.46*** 32.09*** 35.70*** 38.6***

Log-likelihoods are expressed relative to the full model (a, d, i, aY, dY, iY). Statistical significance is labeled as ‡ = p < 0.10, * = p < 0.05, ** = p < 0.01, *** = p < 0.001,
marking if the reduced model is statistically different from the full model using the chi-square distribution (df = degrees of freedom). The terms in the models, a,
d, i refer to effects from additive, dominance, and epistatic sources, respectively. The terms aY, dY, iY refer to additive-by-year, dominance-by-year, and epistasis-by-year
effects, respectively. The bolded terms in the column “Model” indicate components included in the reduced model, while grey terms have been excluded

Table 2 Variance components (%), narrow-sense heritability (h2), broad-sense heritability (H2), the coefficient of correlation (r), the
coefficient of correlation after cross validation (rCV), and the total number of observations for model building (N)

Bloom
Date

Bloom
Time

Harvest
Date

Harvest
Time

PFRF Fruit
Dimensions

Fruit
Weight

Firmness SSC TA Powdery
Mildew

variance component (%)

additive (A) 33.20 25.45 27.39 27.87 19.83 37.40 30.76 27.49 21.59 27.19 28.31

dominance (D) 10.80 11.48 7.73 6.68 11.10 26.80 33.61 0.42 0.00 0.00 0.00

epistasis (I) 17.47 27.84 47.66 47.90 15.62 8.36 12.08 48.96 26.76 32.81 41.52

A x Year 11.16 8.10 1.18 2.89 6.30 2.98 2.26 4.57 4.08 3.42 1.57

D x Year 4.23 0.00 0.00 0.00 0.00 0.00 0.52 0.00 0.00 0.00 1.19

I x Year 2.06 3.63 5.71 1.65 2.31 8.03 1.14 0.94 0.00 14.15 4.33

error 21.08 23.48 10.33 13.02 44.84 16.42 19.62 17.62 47.56 22.43 23.07

trait heritability and genome-estimated breeding values accuracy

h2 0.33 0.25 0.27 0.28 0.20 0.37 0.31 0.27 0.22 0.27 0.28

H2 0.61 0.65 0.83 0.82 0.47 0.73 0.76 0.77 0.48 0.60 0.70

r 0.88 0.90 0.97 0.97 0.83 0.94 0.95 0.94 0.82 0.88 0.93

rCV, 5-fold 0.56 0.48 0.78 0.79 0.59 0.78 0.77 0.69 0.46 0.42 0.68

rCV, −year 0.58 0.48 0.88 0.88 0.58 0.82 0.83 0.76 0.47 0.50 0.74

rCV, −family 0.55 0.46 0.74 0.74 0.55 0.76 0.70 0.66 0.38 0.31 0.58

N 644 644 665 665 759 774 764 763 768 577 604
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and traits, and variance percentages, are provided in
Additional files 4 and 5, respectively.
Correlations between adjusted phenotypic data and

genetic values from the ADI model were high, 0.82–0.97
for all focus traits (Table 2). Coefficients of correlation
under cross validation were very similar for 5-fold cross
validation and when a year was left out. Correlations for
cross validation that omitted full-sib families were the
lowest among the three cross validation scenarios.
Across all cross-validation scenarios, those traits with
the highest broad-sense heritabilities, fruit dimensions,
fruit weight, firmness, harvest date, and harvest time,
had the most consistently high prediction accuracies
(r > 0.65). The lowest prediction accuracies were ob-
served for SSC and TA, which never exceeded 0.50.

Heritability and predictive ability of reduced models
Broad-sense heritability was largely unchanged across
the reduced models (ADI to AI and AD) for all focus
traits (Fig. 2). Narrow-sense heritability gradually in-
creased with decreasing model complexity for all focus
traits, from the full model to the AD model and from
the AD to the A model. Narrow-sense heritability was
highly similar in the AI and ADI models for all traits
except for fruit dimensions and fruit weight, in which
the AI h2 was noticeably higher in the AI model
compared to the ADI and AD models (Fig. 2). In the
additive effects-only model (A), H2 was similar in value
to the h2 of the other models.
Predictive power, as measured by r2, was consistent

between the ADI model and the AI model for all traits
(Fig. 2). The predictive power decreased slightly for the
AD model compared to the full model and decreased
slightly more for the A model compared to the AD
model. The r2 values under 5-fold cross validation varied
little across genetic models for all traits, only decreasing
slightly in the AD and A reduced models for harvest date,
harvest time, and firmness. Spearman rank correlations
between the full and reduced models indicated minimal
changes in rankings of individuals when using the AD and
AI models (r = 0.96–1.00) and small changes in the A
model compared to ADI model (r = 0.91–0.96) for genetic
values and breeding values (Additional file 2).

Single year analysis
Variance components estimated with a single year of
data varied substantially across years for all focus traits
(Fig. 3). For all traits except harvest date and harvest
time, the percentages of additive variance differed by
10% or more across years. Additive variance for harvest
date and harvest time varied the least among the focus
traits, 37 to 44% and 37 to 47%, respectively. Dominance
variance components for SSC and TA were close to zero
(< 0.0001%) across all years, while at the other

extreme, dominance variation for fruit dimensions
was always greater than 20%. Epistatic variance con-
sistently composed a large percentage of genetic variance
for firmness (> 32%) and powdery mildew incidence (>
49%). Genotype-by-year effects were greatest for TA (18%)
, bloom date (18%), and bloom time (12%).
Rankings of individuals by genetic values estimated from

each a single year of data significantly differed from the
multi-year genetic rankings in Spearman rank correlation
tests (p < 0.001, Additional file 2). Rank correlations be-
tween the 2010-derived predictions and the multi-year
predictions were lower than the subsequent years (2010:
0.35–0.63; 2011: 0.58–0.92; 2012: 0.85–0.97). However,
correlations between breeding values estimated from a
single year and their respective phenotypes implied a bet-
ter fit within a year for each year and trait than the single-
year breeding values with their multi-year counterparts (ρ
= 0.64–1.00) (Additional file 2).

Correlations among trait genetic values
The genetic values of the focus traits had weak to mod-
erate positive correlations with each when considering
only unreleased offspring and selections, with some
exceptions (Table 3). Fruit weight and fruit dimensions,
harvest date and harvest time, and bloom date and
bloom time were all highly correlated pairs of traits
(r > 0.90, Table 3). SSC was negatively correlated with all
focus traits except TA. Titratable acidity was also nega-
tively correlated with fruit dimensions, fruit weight and
powdery mildew incidence. In a biplot of the correlation
matrix of the named cultivars using eight independent
traits, the first two principal components summarized
55% of the variance (Fig. 4). All variables but SSC and TA
skewed to the left, corresponding to the negative correla-
tions between SSC and all variables except TA. Wild
ancestors and wild offspring were on the right side of the
biplot corresponding to their high SSC, low powdery
mildew incidence, and low fruit weight. Additional file 6
further separates the sweet cherry founders and derived
cultivars by fruit weight and SSC content.

Discussion
Results indicated high broad-sense heritability for all of
the focus traits and also illuminated the importance of
non-additive variation in the sweet cherry traits studied.
A poorly-fitting genetic prediction model can mispresent
the genetic variances of traits and the potential for gen-
etic gain.

Importance of model fit and consequences for predictive
ability
This study demonstrated that for most traits, non-additive
sources of variation comprised an equal or larger portion
of the genetic variance than additive variance. A genetic

Piaskowski et al. BMC Genetics  (2018) 19:23 Page 8 of 16



model including additive, epistatic, additive-by-year and
epistasis-by-year effects was usually the most parsimoni-
ous approach for capturing major sources of variation. Ex-
ceptions were fruit dimensions and fruit weight, which
instead were best described by a model with additive,
dominance and additive-by-year effects, and harvest date,
best described by a main effects-only model.
Using an incorrect model to determine genome-wide

breeding values can provide misleading information for
making breeding decisions. Table 4 illustrates the conse-
quences of using a poorly-fitting reduced model for

estimating breeding values. Breeding values were often lar-
ger in relative magnitude in the reduced models compared
to the full model, which can exaggerate genetic gains pos-
sible in the population. For example, days to maturity in
an Ambrunes/Sweetheart cross would be overestimated
by twice as many days in the additive-only model com-
pared to the ADI model. Likewise, crosses with the wild
accession MIM 23 were predicted to result in midparent
values of fruit size twice as small in the A model com-
pared to the ADI model (Table 4). The inflation of additive
variance when non-additive sources are omitted has been

Fig. 2 Heritability and prediction accuracy of four genetic models for each of nine focus traits
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Fig. 3 Variance components by each year and across years for the full (ADI) model

Table 3 Pairwise trait correlations and covariances between genetic values for sweet cherry selections and unselected offspring

Bloom
Date

Bloom
Time

Harvest
Date

Harvest
Time

PFRF Fruit
Dimensions

Fruit
Weight

Firmness SSC TA Powdery
Mildew

Bloom Date 3.507 0.897*** 0.317*** 0.314*** 0.301*** 0.136* 0.196*** 0.223*** −0.101 0.133* 0.184**

Bloom Time 18.17 117.1 0.213*** 0.208*** 0.198*** 0.087 0.130* 0.134‡ −0.071 0.064 0.218***

Harvest Date 3.446 13.38 33.72 0.998*** 0.255*** 0.340*** 0.346*** 0.547*** −0.364*** 0.107 0.220***

Harvest Time 50.93 195.4 502.2 7508 0.251*** 0.334*** 0.341*** 0.549*** −0.355*** 0.106 0.225***

PFRF 74.88 283.9 196.2 2883 17,630 0.566*** 0.603*** 0.465*** −0.161*** 0.173‡ 0.185***

Fruit Dimensions 0.3082 1.142 2.394 35.10 91.09 1.468 0.946*** 0.511*** −0.507*** −0.210*** 0.462***

Fruit Weight 0.9209 3.695 5.042 74.33 201.1 2.880 6.311 0.514*** −0.435*** −
0.208***

0.505***

Firmness 17.26 59.91 131.1 1964 2546 25.55 53.26 1702 −0.392*** 0.065 0.387***

SSC −0.3403 −1.387 −3.793 −55.10 −38.44 −1.101 −1.958 −28.99 3.214 0.267*** −0.340***

TA 0.02486 0.06856 0.06204 0.9132 2.295 −0.02541 −0.05219 0.2668 0.04778 0.009934 −0.215**

Powdery Mildew 0.3509 2.409 1.304 19.91 25.11 0.5707 1.295 16.28 −0.6215 −0.02181 1.041

Correlations and covariances are given in the upper triangle and lower triangle, respectively, and trait variances are bolded on the diagonal. Statistical significance
is labeled as ‡ = p < 0.10, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, signaling if the correlations are different from zero
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documented in several other species including apple, lob-
lolly pine, white spruce cassava, cattle, pigs, Coho salmon,
and rainbow trout [27, 45, 63, 67–71].
If genetic values are used to select individuals to be

clonally propagated for further trialing or cultivar release,
then the genetic model has a lower, perhaps negligible, in-
fluence on prediction of total genetic performance. Cebal-
los et al. [72] argued that using total genetic values from

additive and non-additive variance components provides
greater potential for genetic gain under clonal selection.
However, our results showed that the estimated broad-
sense heritability and the genetic values of sweet cherry
individuals are largely unchanged across the different
genetic models. This demonstrates that there is effectively
no change in genetic gain if a more complex model
is used for identifying high-performing individuals
(Fig. 2, Additional file 2).
Including year as a main effect was warranted in this

study, given the statistically significant effect of year on
all traits. However, the effect of including genotype-by-
year interactions varied by the trait and genetic variance
component. Genotype-by-year interactions were gener-
ally of much smaller magnitude than the main genetics
effects and largely absent for dominance effects (Table 1,
Fig. 3). Nevertheless, year had a major effect on genetic
effects estimates and was included as a fixed variable to
obtain robust predictions across years. Year often has a
statistically significant effect on the traits of sweet cherry
and other rosaceous crops, including sweet cherry
pedicel-fruit retention force [73], apple fruit texture [74],
sugar content in peach and nectarine [75], and several
phenological and fruit quality traits in strawberry [76].
This study also demonstrated the need for a training

population to fully capture variation of the target popu-
lation in order to maximize prediction accuracy. The
single year analysis showed that although a model built
using a single year of data could be used accurately to

Fig. 4 Biplot of genetic values among the RosBREED sweet cherry
Crop Reference Set using the correlation matrix of eight traits. Trait
rotations were scaled by the first eigenvalue

Table 4 Breeding values and midparent values under different genetic models demonstrated with several individuals and traits

Trait Model Parental values Midparent values

Ambrunes Sweetheart MIM 23 Ambrunes/Sweetheart Ambrunes/MIM 23 Sweetheart/MIM 23

Harvest Date (− 15.82, 16.35) A 14.64 8.43 −9.93 11.53 2.36 −0.75

AD 8.79 5.57 −6.34 7.18 1.23 −0.38

AI 7.36 4.76 −6.60 6.06 0.38 −0.92

ADI 6.48 4.05 −5.73 5.27 0.38 −0.84

Fruit Weight (−11.45, 5.06) A −1.86 1.64 −10.67 −0.11 −6.26 −4.51

AD −0.87 0.95 −4.58 0.04 −2.73 −1.82

AI −2.55 1.98 −8.80 −0.28 −5.67 −3.41

ADI −1.11 1.06 −4.72 −0.03 −2.91 −1.83

SSC (−3.77, 5.61) A −1.07 −1.98 3.38 −1.53 1.15 0.70

AD −0.84 −2.00 2.93 −1.42 1.05 0.47

AI 0.10 −1.81 2.53 −0.86 1.31 0.36

ADI 0.10 −1.83 2.48 −0.86 1.29 0.33

Powdery Mildew Incidence (−2.72, 1.99) A 0.13 1.28 −2.38 0.70 −1.13 −0.55

AD 0.39 0.83 −1.67 0.61 −0.64 −0.42

AI −0.31 0.89 −1.78 0.29 −1.05 −0.45

ADI −0.28 0.87 −1.74 0.29 −1.01 −0.44

Intervals given below each trait are the range of values in the additive-only model observed across all individuals. In the column “Model”, A, D, and I refer to
additive, dominance, and epistatic effects, respectively, and their accompanying genotype-by-year interactions
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predict individuals evaluated in that year, it could not be
easily extrapolated to individuals whose genetic values
were outside the distribution of the training data (Table
2, Additional file 2). The GBLUP approach relies on in-
formation from relatives to improve the accuracy of the
estimates [77]. Because there were often sparse observa-
tions for a single year, sampling error biased the single-
year estimates and resulted in models that fit the data
within each year, but not across years. These effects were
likely exacerbated with wild accessions, distantly related
cultivars and derivatives from both groups. However, the
true pairwise genetic covariance between the distantly
related germplasm is estimated with less reliability with
the realized relationship matrix than more closely
related germplasm [78].

Genetic architecture of focus traits in sweet cherry
This study confirmed the extensive opportunity in North
American sweet cherry germplasm for genetic improve-
ment of the phenological traits of harvest timing and, to
lesser extent, bloom timing. Previous QTL studies for
fruit maturity date across several Prunus species deter-
mined bloom timing and harvest timing to be highly
heritable with a large-effect QTL on LG4 [79]. Our find-
ings also demonstrate the large broad-sense heritability
for these traits – reaching a ceiling of 0.83 for harvest
time and 0.65 for bloom date (Fig. 2). There appears to
be little advantage to using GDD to Julian days, since
pairs of phenological traits for bloom and harvest timing
displayed highly similar genetic architecture and predict-
ive accuracy. The data were all gathered from a single
location, in which GDD did not vary dramatically during
the years of evaluation. This may explain why GDD did
not improve the model predictive ability over Julian days
(Fig. 2, Table 2). Bloom timing has become increasingly
important as a trait relevant to productivity, since vari-
able climatic patterns in temperate regions can result in
earlier flowering and an increased risk of floral freeze
damage [80]. Furthermore, since sweet cherries are a
fresh market product that is subject to rapid postharvest
deterioration, it is crucial to for sweet cherry breeders
and producers to understand the expected time frame
for fruit maturation [79]. These results may help sweet
cherry breeders identify the best parents in order to
target a harvest timing window.
Moderate prospects were observed for genetic

improvement of pedicel-fruit retention force (h2 = 0.20,
H2 = 0.46, Table 2), where a low PFRF value is sought for
mechanical harvest systems. Positive correlations
observed between PFRF and fruit dimensions, fruit
weight, and firmness (Table 3) contrasted with findings by
Zhao et al. [73], in which PFRF was largely uncorrelated
with firmness, fruit diameter, or fruit length. However,

that study was smaller in scope, using only 30 named
cultivars and 26 unselected F1 progeny.
The potential for genetic gain in fruit dimensions and

fruit weight, two highly correlated measurements of fruit
size, was perhaps the highest among all focus traits due
to large additive and dominance effects (Table 2). These
results are consistent with previous sweet cherry studies
that showed high correlations between fruit size mea-
surements and high H2 [18, 81–83]. In those studies, six
putative QTLs influencing fruit size in cherry were
identified and together accounted for 76–88% of the
phenotypic variance. Because fruit weight was highly
correlated with fruit dimensions in the present study
(Table 3, Fig. 4) and can be evaluated rapidly, we
considered it an effective proxy for fruit dimensions and
general fruit size.
The high broad-sense heritability for firmness (0.77)

(Table 2) was consistent with estimates from a study
conducted on a biparental population in which H2 was
estimated at 0.78 to 0.85 [83]. In our study, the
moderate positive correlations (r = 0.51) between fruit
firmness and fruit dimensions among the unreleased
progeny suggests genetic linkage among loci influencing
these traits. This outcome was in contrast to that of a
multi-year QTL study, in which the Pearson correlations
between fruit firmness and fruit weight ranged from − 0.
64 to − 0.67 for Regina × Lapins and − 0.40 to − 0.15 for
Regina × Garnet F1 families [83]. Those correlations are
likely due to unique genetic linkage in Regina, Garnet
and Lapins. The correlations reported here may have
also been influenced by the 77 progeny derived from the
three wild parents: MIM 17, MIM 23, and NY54. These
individuals all had high SSC, small fruit size, and low
fruit firmness in their estimated genetic values relative
to the population mean (Additional file 7).
Expectations for genetic improvement in SSC were

moderately positive. Narrow-sense heritability was
estimated at 0.22, typical of the other focus traits in this
study, where h2 was most often between 0.2 and 0.3
(Table 2). Broad-sense heritability of SSC (H2 = 0.48) was
similar to that of other stone fruit: approximately 0.50 for
apricot [84], 0.72 for peach [85], and 0.49 to 0.55 for apple
[33]. Previous results confirm SSC had moderately
negative correlation with fruit dimensions and fruit weight
(− 0.55 and − 0.48, respectively). Our results are consistent
with previous research, suggesting that SSC is directly
related to photoassimilate partitioning and hence inversely
correlated with fruit size [86, 87]. Titratable acidity, the
second most important contributor to fruit flavor after
SSC, had similar variance component proportions and
predictive accuracy to SSC. Major QTLs for TA have been
detected on linkage groups 1, 5, and 6, explaining 99% of
phenotypic variation in an F1 biparental peach population
that was segregating for a large-effect locus [88]. These
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QTLs have not been reported in cherry. The broad-sense
heritability of sweet cherry TA was lower in this study at
H2 = 0.60 and h2 = 0.27. However, the population used in
Dirlewanger et al. [88] was created expressly to detect
QTLs associated with TA, which might explain its very
high H2.
The large H2 and h2 estimated for foliar powdery

mildew incidence indicated excellent potential for
genetic improvement, but the lack of genome-wide dom-
inance effects was surprising (Table 2). Powdery mildew
resistance in U.S. sweet cherry germplasm was first
traced to a single dominant allele in the ancestor PMR-1
[89, 90]. There may be evidence for other sources of
powdery mildew resistance among Pacific Northwest-
adapted germplasm (Zhao et al., In Prep). Haploblock
analysis might be required to detect dominance
effects, which appeared to be absorbed by the other
relationship matrices. The large epistatic component
(42%) determined for this trait in sweet cherry was
consistent with resistance to other plant diseases such
as soybean to sudden death disease (causative agent
Fusarium virguliforme) and rice to rice blast disease
(Pyricularia oryzae) [91–93].

Implications for sweet cherry genetic improvement
The improvement in prediction accuracy when incorpor-
ating epistasis into the genetic model is consistent with
studies on apple, Eucalyptus, wheat, cassava and maize
[45, 71, 94–99]. Additive-by-additive epistasis is difficult
to untangle from additive main effects due to selection,
assortative mating and nongenetic covariances [44], all
common facets of many breeding programs. The
genomic relationship matrix for epistasis used here is
considered to be an approximation since the assumption
of random mating is not met [63, 100]. The additive and
dominance genomic relationship matrices used in this
study were not necessarily orthogonal due to linkage dis-
equilibrium between SNPs [27], and the modest correla-
tions between the additive dominance, and epistatic
values were evidence of covariance between the different
genetic effects.
Epistasis has not typically been targeted for parental

selection in genetic improvement programs, although it
can be captured indirectly with additive effects if
epistatic alleles are fixed through inbreeding or drift
[71, 101]. Allele fixation is challenging in predomin-
antly heterozygous crop such as sweet cherry whose
high heterozygosity is maintained by a self-incompati-
bility mechanism [102]. However, knowledge of allele
phasing, a feature of the RosBREED sweet cherry Crop
Reference Set, could enable the capture of valuable epi-
static interactions through known allelic interactions for
both clonal performance and breeding parent utility.

Distributions of genome-estimated breeding values
from the ADI model (Additional file 7) reveals a broad
base of genetic diversity and opportunity for cherry
improvement. This study confirmed that the cultivar
Moreau has lowest breeding values for harvest date,
denoting earliness. Early Burlat and several unreleased
offspring mature several days after Moreau. The highest
breeding values for harvest date, designating late-season
maturation, included many unreleased offspring with
higher breeding values than the highest-value cultivar
(Ambrunes), particularly among the families Fam35 and
Fam30 that might be useful as parents. There are also
many unreleased offspring with desirable breeding values
for certain traits. Families Fam1 and Fam21 have high
breeding values for SSC and TA. Families Fam35 and
Fam16have high fruit weight and firmness breeding
values, in addition to the cultivars Cowiche, Sweetheart,
and Selah. The breeding values reported here will enable
breeders to identify valuable parents earlier in the breed-
ing program than through phenotyping alone. Identifica-
tion of parents earlier in a breeding program is a major
application of genomic selection [103] and has been
widely used for many crops including long-lived peren-
nial trees [40, 45, 70, 104–106].
Using genomic selection to skip a breeding phase has

also been proposed or implemented in several crops
including apple, loblolly pine, Eucalyptus, and several
self-pollinated and hybrid crops [29, 105, 107–110]. The
genetic values among unreleased progeny and selections
described here revealed several promising individuals
with commercial potential (Additional file 7, results not
shown for selections). Because sweet cherry maintains
the same genetic composition and genetic potential
through the breeding phases, genetic values obtained
early in the breeding process will not change due to re-
combination. Knowing the genetic potential of an indi-
vidual will help cherry breeders discard low-performing
individuals and advance selections to the next phase
with strong evidence. Knowledge of the genetic potential
of a candidate selection may enable breeders to skip a
cycle of field evaluation, thus increasing the pace of cul-
tivar release and saving resources that can be diverted
elsewhere. Given the lengthy time period for developing
a sweet cherry cultivar, shortening this process can
represent considerable savings.

Conclusions
The genetic values and the improved understanding of
the genetic architecture of important traits in sweet
cherry obtained from this multi-year data set of a large
pedigree-connected population represent a clear oppor-
tunity for genetic improvement. This application – esti-
mating genetic variance components and genome-
estimated genetic values – extended the original purpose
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of the RosBREED sweet cherry Crop Reference Set: QTL
detection and validation. We plan to update the genetic
models by incorporating new phenotypic data on exist-
ing germplasm, adding new individuals, and expanding
the genome-wide SNP set for denser genome coverage.
Further research is needed to validate the accuracy of
genetic predictions on an independent data set and to
understand the extent of genotype-by-environment ef-
fects for obtained breeding values and genetic values.
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