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COVID-19; Objectives: To develop prognosis prediction models for COVID-19 patients attending an emer-
Chest X-Ray; gency department (ED) based on initial chest X-ray (CXR), demographics, clinical and laboratory
Prognosis; parameters.

Mortality; Methods: All symptomatic confirmed COVID-19 patients admitted to our hospital ED between
Predictive models; February 24th and April 24th 2020 were recruited. CXR features, clinical and laboratory variables
Artificial intelligence and CXR abnormality indices extracted by a convolutional neural network (CNN) diagnostic tool

were considered potential predictors on this first visit. The most serious individual outcome
defined the three severity level: 0) home discharge or hospitalization < 3 days, 1) hospital
stay >3 days and 2) intensive care requirement or death. Severity and in-hospital mortality
multivariable prediction models were developed and internally validated. The Youden index
was used for the optimal threshold selection of the classification model.

Results: A total of 440 patients were enrolled (median 64 years; 55.9% male); 13.6% patients
were discharged, 64% hospitalized, 6.6% required intensive care and 15.7% died. The sever-
ity prediction model included oxygen saturation/inspired oxygen fraction (SatO2/FiO2), age,
C-reactive protein (CRP), lymphocyte count, extent score of lung involvement on CXR
(ExtScoreCXR), lactate dehydrogenase (LDH), D-dimer level and platelets count, with AUC-ROC
= 0.94 and AUC-PRC = 0.88. The mortality prediction model included age, SatO2/FiO2, CRP,
LDH, CXR extent score, lymphocyte count and D-dimer level, with AUC-ROC = 0.97 and AUC-
PRC = 0.78. The addition of CXR CNN-based indices did not improve significantly the predictive

author. metrics.

* Please cite this article as: Calvillo-Batllés P, Cerda-Alberich L, Fonfria-Esparcia C, Carreres-Ortega A, Muioz-Nufiez CF, Trilles-Olaso L,
et al. Elaboracion de modelos predictivos de la gravedad y la mortalidad en pacientes con COVID-19 que acuden al servicio de urgencias,
incluida la radiografia toracica. Radiologia. 2022;64:214-227.

E-mail address: calvillo.mar@gva.es (P. Calvillo-Batllés).

2173-5107/© 2021 SERAM. Published by Elsevier Espafa, S.L.U. All rights reserved.


https://doi.org/10.1016/j.rxeng.2021.09.004
http://www.elsevier.es/rx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rxeng.2021.09.004&domain=pdf
mailto:calvillo_mar@gva.es

Radiologia 64 (2022) 214-227

PALABRAS CLAVE
COVID-19;
Radiografia toracica;
Pronostico;
Mortalidad;

Modelos predictivos;
Inteligencia artificial

Introduction

Conclusion: The developed and internally validated severity and mortality prediction models
could be useful as triage tools in ED for patients with COVID-19 or other virus infections with
similar behaviour.

© 2021 SERAM. Published by Elsevier Espana, S.L.U. All rights reserved.

Elaboracion de modelos predictivos de la gravedad y la mortalidad en pacientes con
COVID-19 que acuden al servicio de urgencias, incluida la radiografia toracica

Resumen

Objetivos: Desarrollar modelos de prediccion de prondstico para pacientes con COVID-19 que
acuden a urgencias, basados en la radiografia de tdrax inicial (RXT), parametros demograficos,
clinicos y de laboratorio.

Métodos: Se reclutaron todos los pacientes sintomaticos con COVID-19 confirmada, que ingre-
saron en urgencias de nuestro hospital entre el 24 de febrero y el 24 de abril de 2020. Los
parametros de la RXT, las variables clinicas y de laboratorio y los indices de hallazgos en RXT
extraidos por una herramienta diagnodstica de inteligencia artificial en esta primera visita se
consideraron potenciales predictores. El desenlace individual mas grave definio los tres niveles
de gravedad: 0) alta domiciliaria u hospitalizacion de 3 dias o inferior, 1) hospitalizacion mas
de 3 dias y 2) necesidad de cuidados intensivos o muerte. Se desarrollaron y validaron interna-
mente modelos de prediccion multivariable de gravedad y mortalidad hospitalaria. El indice de
Youden se utiliz6 para la seleccion del umbral 6ptimo del modelo de clasificacion.

Resultados: Se registraron 440 pacientes (mediana de 64 anos; 55,9% hombres); el 13,6% de
los pacientes fueron dados de alta, el 64% hospitalizo mas de 3 dias, el 6,6% requirio cuida-
dos intensivos y un 15,7% fallecié. El modelo de prediccion de gravedad incluyo saturacion de
oxigeno/fraccion de oxigeno inspirado (SatO,/FiO;), edad, proteina C reactiva (PCR), linfoc-
itos, puntuacion de la extension de la afectacion pulmonar en la RXT (ExtScoreRXT), lactato
deshidrogenasa (LDH), dimero D y plaquetas, con AUC-ROC = 0,94 y AUC-PRC = 0,88. El mod-
elo de prediccion de mortalidad incluy6 edad, SatO,/FiO,, PCR, LDH, ExtScoreRXT, linfocitos y
dimero D, con AUC-ROC = 0,97 y AUC-PRC = 0,78. La adicion de indices radiologicos obtenidos
por inteligencia artificial no mejoro significativamente las métricas predictivas.

Conclusion: Los modelos de prediccion de prondstico desarrollados podrian ser Utiles para clasi-
ficar en urgencias a los pacientes con COVID-19 u otras infecciones viricas con comportamiento
similar.

© 2021 SERAM. Publicado por Elsevier Espana, S.L.U. Todos los derechos reservados.

Considering the higher use of CXR, its larger availabil-
ity and safer use to control the spread of the virus when
compared with CT, we aimed to develop two multivariable

The COVID-19 pandemic is posing a large challenge for health
systems, forcing a balance to be found between resource
management and safe decision-making with a lower than
needed scientific evidence. Clinical presentation of the
disease varies from mild symptoms to a bilateral bronchop-
neumonia with hypoxemia. An Acute Respiratory Distress
Syndrome or the involvement of other vital organs may com-
plicate the clinical course and compromise the life of the
patient. Uncertainties make necessary the development of
specific disease models in order to identify patients by prog-
nosis and severity, requiring hospital or even intensive care.
Thoracic imaging has served as a diagnostic tool in emer-
gency department (ED) as it may reveal suggestive COVID-19
patterns of lung involvement.'-> However, studies on the
utility of the chest X-ray (CXR) for predicting health out-
comes are limited®~® and the prognostic studies have mainly
been based on chest CT."0-"2

prediction models for severity and mortality estimations in
COVID-19 taking into consideration the radiological, demo-
graphic, clinical and laboratory variables registered on the
emergency evaluation.

Material and methods

The institutional review board approved this retrospective
study. This research did not receive any specific grant from
funding agencies in the public, commercial, or not-for-profit
sectors.

It followed the Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis: the
TRIPOD statement."® The risk of bias and applicability was
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+

Symptomatic confirmed COVID-19 patients (positive RT-PCR test) visiting ED (60 days of recruitment)

Clinical data, blood analysis and chest X-ray at their first visit to ED

(N = 445)
Patients excluded due to a simultaneous
diagnosis explaining the symptoms (N =
5)
R - POTENTIALLY PROGNOSIS
IREIINASCpANERTS (N =440) PREDICTIVE VARIABLES
ﬁl Epidemiological and radiological data |
Data collection
: l. l Clinical and blood data |
from admission |
—)I Artificial Intelligence data from CXR |
MOST SERIOUS OUTCOME
Discharge at home or hospitalization < 3 days
i (N =60)
Hospitalization > 3 days Trainine-Testi Severity
g-Testing >
= (N =282) Cross-validation Prediction Model
Follow-up Intensive Care Unit stay or Death (80% N = 352)
(64-124 days (N =98)

median 91 days)

Internal Validation

(20% N = 88) Mortality

——)| No death (N =371)
—>|

Death (N =69)

K / Prediction Model

Figure 1

assessed with the Prediction model Risk of Bias Assessment
Tool (PROBAST). '

Patients

All consecutive symptomatic adult patients visiting the
ED of our university hospital between 24 February and
24 April 2020 were included if CXR was performed and
Severe Acute Respiratory Syndrome - Coronavirus 2 (SARS-
CoV-2) RNA was detected in nasopharyngeal swab or
sputum/bronchoalveolar lavage. Patients with simultaneous
final diagnosis other than COVID-19 were excluded. Emer-
gency physicians triaged these patients. Oligosymptomatic
patients with normal CXR and laboratory parameters, oxy-
gen saturation >95%, absence of chronic diseases and <65
years old were discharged at home. Patients admitted at the
hospital were treated with standard of care drugs in force at
the time and they were discharged if afebrile for at least 3
days with respiratory symptoms and laboratory parameters
improvement (Flowchart of the study in Fig. 1).

Chest X-ray review

Initial CXR readings on admission were distributed among
five radiologists with an average of 11 years of experience

Flowchart of the study.

in thoracic imaging, blinded to the rest of parameters and
outcome. The following items were described (Fig. 2):

e Absence (level 0) or presence and density of opaci-
ties: only low-density (level 1) or consolidation (+/- low
density) (level 2). Lung opacities were considered ‘‘low-
density’’ if the attenuation did not conceal the underlying
vessels and ‘‘consolidation’’ if the opacification of the
parenchyma obscured the underlying vessels.

e Distribution of opacities: peripheral (in the outer third
of the lungs) / central (in the inner two thirds of the
lungs) prevalence / both without clear prevalence; uni-
lateral / bilateral; upper (suprahillar) / medium (hilar)
/ lower fields (infrahilar). For determining the distribu-
tion and extent of involvement each lung was divided in
upper, medium and inferior field, with a maximum of six
fields. The affected lobes were not recorded since a high
percentage of the radiographs were portable (27.7%).

e Extension degree and score of lung involvement: the
extent was graded as mild (if size opacity was less than
1 field); moderate (1-2 fields involved); extensive (3-4
fields involved) and very extensive (5-6 fields involved).
A numerical value was assigned to each field depending
on the percentage with increased attenuation: 0 (0%), 1
(<50%), and 2 (>50%). A total score of the lung involve-
ment extent (ExtScoreCXR) was reached by adding up
the six field scores, obtaining a value from 0 to 12. The
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A2. Total Scorz: 2

Totel Scorz: ©

Figure 2 Chest X-ray features. Up: examples of distribution, density of opacities and extent score. Down (the same CXR): Division
of lung fields. Upper fields (suprahillar area) limited by the line that passes under the aortic arch; medium fields (hilar area)
and inferior fields (infrahilar area) separated by the line that divides the rest of the lungs into two halves (frequently this line
crosses the bifurcation of the right inferior lobar artery). A1: Unilateral central and peripheral low-density opacities (arrow),
without predominance. A2: Medium and lower right fields involved < 50%; ExtScoreCXR=2. B1: Central right low-density opacity
(arrow) and peripheral left consolidation (larger arrows). Peripheral predominance. B2: Medium right and left fields with <50%
of involvement and upper left field with >50% of involvement; ExtScoreCXR=4. C1: Bilateral low-density opacities (arrows) and
consolidations (larger arrows) without predominance. C2: Upper fields and lower left field with <50%, medium fields and right

lower right field with >50% of involvement; ExtScoreCXR=9.

ExtScoreCXR was created by the authors after consid-
ering it by consensus a simple, fast, reproducible and
optimal method of semi-quantification of the lung involve-
ment extent. The extent score from the division into lung
fields has also been used by other authors in patients with
COVID-19.678:15

e The imaging variables were agreed upon by the radi-
ologists from the X-ray of the first 80 cases detected.
House-made repository software was used to record all
the variables in a structured shared database, with
description and imaging reminders aiming to reduce vari-
ability between readers and mandatory fill-in fields to
optimize data collection.

Demographics, clinical and laboratory variables
collected on the first visit to ED

Demographics, institutionalization, comorbidities, clinical

manifestations, peripheral oxygen saturation (Sat02),
laboratory data -C reactive protein (CRP), lactate
dehydrogenase (LDH), lymphocyte count, platelet

count, and D-dimer- were recorded. We calculated
Sat02/Fi0O2 to avoid data loss from patients with SatO2

obtained under oxygen therapy. FiO2 is the fraction of
inspired oxygen and changes depending on the oxygen
flow rate delivered to each patient; for room air it
is 0.21.

Computational Imaging (Artificial Intelligence Data)

Probability indices of lung abnormal findings were extracted
from CXR by a Convolutional neural network (CNN)-based
diagnostic tool, QUIBIM Precision CXR v2.0.0 (QUIBIM S.L)
with CE mark class lla. The algorithm includes an ensem-
ble of deep learning models that estimate the probability
of different thoracic findings and the probability of abnor-
mality in CXR. A value of 0 would mean no probability
of belonging to that pathological finding and a value of 1
would mean total certainty of belonging to that pathologi-
cal group. See supplementary material about the CNN-tool
on Appendix 1. Indices for ‘‘consolidation’’, ‘‘lung opac-
ity’” and ‘‘abnormal CXR’’ were incorporated into the
final model to assess whether they improved its predictive
accuracy
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Figure 3

Outcome variables

Three severity levels were defined: home discharge or hos-
pitalization < 3 days (level 0), hospital stay >3 days (level
1), need for intensive care unit (ICU) stay or death due to
COVID-19 (level 2). Both days of hospitalization and days to
death were registered. The median of follow-up was 91 days
(range 64-124 days).

Univariable analysis

Correlations between the lung involvement extension on
CXR (degrees and score) and the days with symptoms, the
Sat02/FiO2 and the variable outcomes were investigated.
Spearman, Kendall, Rank or Point biserial tests were used
depending on the type of the studied variables. For inter-
preting the strength of a relationship based on its r-value
(using the absolute value of the r-value to make all values
positive) we applied the following rule of thumb: r < 0.1
none, 0.1<r<0.3 weak, 0.3<r<0.5 moderate, 0.5<r<0.8
strong and r > 0.8 very strong.

Spearman’s rank-order correlation matrix

I:lo
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Peripheral (only or predominantly) -
Central (only or predominantly) -

Peripheral and central (without predominance) -

for the epidemiological and radiological features.

Prognostic predictive models

Different prognostic predictive models were developed
using three types of classifiers or ensemble methods (Gra-
dient Boosting, Random Forest and Support Vector Machine)
and applying a stratified cross-validation with the 80% of the
population. These classifiers have been chosen because they
are intrinsically suited to solve classification problems with
two or more classes. For instance, Support Vector Machine is
a linear model that scales relatively well to high dimensional
data and is less prone to over-fitting. Both Random Forest
and Gradient Boosting are ensemble models that consist in
training multiple weak learners and merge their results to
build a ‘strong learner’’. They differ on two key points: the
way the training sets for each base model are defined and
the order in which the weak learners are trained. In partic-
ular, Random forest creates random train samples from the
full training set based on a random selection of both observa-
tions and features (bootstrapping). A weak learner is trained
in parallel on each of the derived training sets. In the case
of Gradient Boosting, the method consists in fitting several
weak learners sequentially, where, at each iteration, more
weight is added to the observations with the worst predic-
tion from the previous iteration. Since each weak learner is
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built upon the results from the preceding one, the compu-
tation cannot be parallelized and the computation can be
longer.

An internal validation was performed with an unseen
dataset corresponding to the remaining 20% to assess model
generalizability and robustness.

The model hyperparameters were obtained by perform-
ing a grid search strategy, a method for hyperparameters
optimization that methodically builds and evaluates a model
for each combination of algorithm parameters specified in a
grid.

In order to avoid redundant information, prevent the
models from becoming unstable in the presence of strong
feature dependencies and to improve their interpretability,
features with high correlation (>80%) were identified with
a Spearman’s rank-order correlation matrix (Fig. 3). From
each pair of high correlated features, the one with the larger
p-value in the univariate statistical test was excluded from
the models. Following this criterion, the extent degrees and
the distribution of the opacities in the medium lung field
were discarded.

Three models were developed with different predictive
variables, the first one containing the epidemiological (age,
sex, institutionalization and comorbidities) and all the above
mentioned radiological features. The clinical (symptoms and
Sat02/Fi02) and all the above mentioned laboratory param-
eters were incorporated into the first model to build the
second model, and finally the CNN-derived based data were
incorporated into the second model to build the third model.
A partial under-sampling methodology followed by a syn-
thetic minority over-sampling technique (SMOTE) was used
to address the data imbalance problem, very common in
Machine Learning environments.'® Features were standard-
ized accordingly.

As a method for dimensionality reduction and to eval-
uate the impact of each feature, the variable importance
was calculated. This importance is a measure of by how
much removing a variable decreases accuracy, and vice
versa — by how much including a variable increases accu-
racy. The default method to compute variable importance
is the mean decrease in impurity (or gini importance) mech-
anism: At each split in each tree, the improvement in the
split-criterion is the importance measure attributed to the
splitting variable, and is accumulated over all the trees in
the forest separately for each variable. Note that this mea-
sure is quite like the R2 in regression on the training set. If
a variable has very little predictive power, removing it may
lead to an increase in accuracy due to random noise.

Sensitivity, specificity, PPV, NPV, AUC-ROC and precision-
recall curves (AUC-PRC) were obtained for each model. The
Youden index was used for the optimal threshold selection of
the classification model, by maximizing the highest sensibil-
ity and NPV for critically ill (or dead) patients and the highest
specificity and PPV for the mild severity (or alive) ones.
The optimal thresholds were defined on the training data
set. A weighted micro-average statistical approach is used
to obtain the values per severity level after threshold opti-
mization of the classification model with the Youden index.
A macro-average will compute the metric independently for
each class and then take the average (hence treating all
classes equally), whereas a micro-average will aggregate the
contributions of all classes to compute the average metric,

Table 1 Characteristics of COVID-19 patients. Demo-
graphic variables and comorbidities investigated as potential
predictors. * Predictors in the final prognostic prediction
models.

DEMOGRAPHIC
INFORMATION

Age* Median (interquartile
range), (range), years
Sex* No. (% of 440)

64 (51-79), (17-100)

Male*
Female

246 (55,9)
194 (44)

COMORBIDITIES No. (% of 440)

Hypertension 191 (43,4)
Dislypemia 125 (28,4)
Diabetes 93 (21,1)
Institutionalization 75 (17)
Cardiovascular disease 56 (12,7)
Immunosuppression 46 (10,5)
Corticotherapy and other 16 (3,6)
immunosuppressors
Advanced chronic kidney 13 (2,9)
disease/Dialysis
Hematological neoplasm / disease 10 (2,3)
Solid organ trasplant 8 (1,8)
Human immunodeficiency virus 1(0,2)
Chronic kidney disease (total) 43 (9,8)
Obesity 42 (9,5)
Cerebrovascular disease 36 (8,2)
Neoplasm 32 (7,3)
Asthma 25 (5,7)
Dementia 19 (4,3)
Current smoker 16 (3,6)
Obstructive sleep apnea 16 (3,6)
Ex-smoker 15 (3,4)
Hypothyroidism 13 (2,9)
Atrial fibrillation 13 (2,9)
Chronic obstructive pulmonary 9 (2)
disease
NUMBER OF COMORBIDITIES No. (% of 440)
None 92 (20,9)
1 87 (19,8)
2 68 (15,4)
3 54 (12,3)
> 4 (4-8) 139 (31,5)

which is particularly useful when the dataset varies in size.
In order to test for a potential overestimation of the diag-
nostic model performance, the metrics were obtained by
evaluating the same thresholds on the internal validation
data set. Delong’s test for two correlated ROC curves'’ was
used to compare the performance of the models.

The following Python and Machine Learning libraries were
used to perform the data visualization and statistical analy-
sis in the study: Pandas, Numpy, SciPy, Matplotlib and Scikit
Learn.
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Table 2 Clinical presentation of COVID-19 patients.
Clinical and laboratory variables investigated as potential
predictors. Gastrointestinal symptoms: diarrhea, vomiting or
abdominal pain. SatO2/FiO2: Peripheral oxygen saturation
/inspiratory oxygen fraction (room air or oxygen therapy). *
Predictors in the definitive prognostic prediction models.

INTERVAL SINCE SYMPTOMS

Average +/- sd (range)

ONSET
Days 6,8 +/- 4,5 (0-30)
SYMPTOMS Total No. 441 No. (%)
Fever 361 (82)
Cough 287 (65,2)
Dyspnea 178 (40,4)
General dyscomphort/Asthenia 171 (38,9)
Gastrointestinal symptoms 103 (23,4)
Myalgias 72 (16,4)
Headache 47 (10,7)
Hyposmia/Dysgeusia 32 (7,3)

OXYGEN SATURATION

Sat 02 (air room)
Sat 02 /Fi 02*

Average +/- sd (range)

93,7 +/- 5,6 (55-100)
4435 +/-34,4

LABORATORY DATA Average/ Min / 25% /

Median / 75% / Max

306 / 16 / 218,2 / 265,5
/ 349,7 / 2146
81/0,3/155/ 44,6/

Lactic dehydrogenase (U/l) *

C reactive protein (mg/l) *

117,2 / 655,5
Lymphocytes count (x103w/l)* 1,2 /0,06 /0,7 /1 /1,4
/12,3
Platelets count (x103u/1) * 203,7 /32 /150 / 193 /
242 / 716

1390 / 83 / 350 / 608 /
1015 / 38282

Dimer D (ng/l) *

Results
Patients

From 445 registered patients, 5 were excluded (1 acute
appendicitis, 1 cholangitis, 1 diverticulitis, 1 ictus stoke
and 1 cardiac failure). A total final population of 440 was
enrolled in the study.

Demographics, comorbidities

The median age was 64 years (range 17-100) and 55.9% were
male. 79% suffered >1 comorbidities; the most frequent
were hypertension, dyslipidaemia and diabetes (Table 1).

Clinical and laboratory variables, SatO2/FiO2

Upon their arrival to ED the average of days with symptoms
was 6.8 (range 0-30) and the most common symptoms were
by this order fever and cough. The average oxygen saturation

Table 3 Lung involvement on CXR, distribution and
extension. CXR features investigated as potential predic-
tors. ExtScoreCXR: Extent score of lung involvement on CXR.
* Predictor in the final prognostic prediction models.

PRESENCE AND DENSITY OF LUNG

No. (%) Total 440

OPACITIES

No lung opacities (+/- other findings) 86 (19,5)
- level 0-

Low-density opacity(ies) - level 1 - 254 (57,7)
Consolidation/s +/- low-density 100 (22,7)

opacity(ies) -level 2-

DISTRIBUTION/LOCATION OF LUNG No. (%) Total 354

OPACITIES

Bilateral 212 (59,9)
Unilateral 142 (39,8)
Peripheral (only or predominantly) 182 (51,1)
Peripheral and central (without 116 (32,5)
predominance)

Central (only or predominantly) 56 (15,7)
Lower fields 290 (81,4)
Medium fields 259 (72,7)
Upper fields 178 (50)

EXTENT DEGREES OF LUNG OPACITIES No. (%) Total 440

No lung opacities (+/- other findings) 86 (19,5)
- level 0-

Mild 66 (15)
Moderate 111 (25,2)
Extensive 101 (22,9)
Very extensive 76 (17,3)

SCORE OF LUNG INVOLVEMENT
EXTENSION *

Punctuation (ExtScoreCXR)

Average +/- sd (range)

3,3 +/- 3,07 (0-12)

was 93.7% (range 55-100%). There was loss of >1 labora-
tory parameters in 67 patients because they had not been
performed (Table 2).

Outcome variables

13.6% patients were discharged at home or hospitalized <
3 days; 64% patients were hospitalized (4-54 days, average
17 days); 6.6% required intensive care (2-65 days, average
18 days in ICU) and 15.7% died (0-51 days after admission,
average 10 days).

Chest X-ray review

The median time between CXR and Real-Time reverse tran-
scription Polymerase Chain Reaction (RT-PCR) was 1 day
(range 0-30). 65.9% of patients with pending RT-PCR result
showed suggestive COVID-19 lung involvement on CXR, antic-
ipating the definitive diagnosis. The ExtScoreCXRwas 3.3 +/-
3.07 (average +/- SD) (Table 3).

From 76 patients initially discharged at home 24% were
admitted in a second visit to ED. The first CXR of these
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Figure 4

Parameter importance

Importance of model predictors obtained for the severity level (up): oxygen saturation/inspired oxygen fraction

(Sat02/Fi02) (33%), convolutional neural network (CNN)-based index for lung consolidation on chest X-ray (CXR) (13%), lactate
dehydrogenase (LDH) (12%), extent score of lung involvement on CXR (ExtScoreCXR) (9%), age (9%), lymphocyte count (9%), C-
reactive protein (CRP) (7%), CNN-based index for lung opacities on CXR (3%), D-dimer level (3%) and platelets count (2%); and
mortality (down): age (54%), SatO2/FiO2 (14%), the lymphocyte count (10%), LDH (8%), CNN-based index for lung consolidation on
CXR (7%), platelets count (4%) and D-dimer level (3%). Those with an importance of less than 0.01 are excluded from the model.

patients was normal in 7 and showed very slight or difficult
to interpret opacities in 11; in the second visit all presented
progression of the lung involvement.

Computational Imaging (Artificial Intelligence Data)

Probability indices - average +/- standard deviation (range)-
for ‘‘consolidation’’, ‘‘lung opacity’’ and ‘‘abnormal CXR’’
obtained from CXR of the population studied were 0,39 +/-
0,19 (0-0,84); 0,47 +/-0,25 (0-0,98) and 0,98 +/-0,13 (0-1)
respectively.

Univariable analysis. Lung involvement extension
in CXR

The lung involvement extent -degrees and score- showed
poor correlation with days of symptoms duration (r=0.198
and r=0.176, respectively, p-value<0.001), strong negative
correlation with SatO2/FiO2 (r=-0.53 and r=-0.57, respec-
tively, p-value<0.001), strong-moderate correlation with
the severity level (r=0.536 and r=0.491, respectively, p-
value<0.001), poor correlation with days of hospitalization
(r=0.240 and r=0.246, respectively, p-value<0.001), no sig-
nificant correlation with ICU stay days, and poor-moderate
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Figure 5

The ROC (up) and the PRC (down) curves of the internal validation performed with an unseen dataset for the severity

predictive models built with three different combinations of parameters. (A: epidemiological and radiological parameters, B:
epidemiological, radiological, clinical and laboratory parameters, C: epidemiological, radiological, clinical, laboratory and CNN-
based parameters). The curves per severity level are obtained with a one-vs-all classification methodology: home discharge or
hospitalization < 3 days (level/class 0, in light blue), need for hospital stay >3 days (level/class 1, in orange), need for ICU stay
or death due to COVID-19 (level/class 2, in blue). The dashed lines represent the micro-average (magenta) and macro-average
(dark blue) curve statistics which take into account the single level contributions. The corresponding values of AUC are shown.
Precision = true positive / (true positive +false positive). Recall (sensitivity) = true positive / (true positive + false negative).

correlation with mortality (r=0.277 and r=0.310, respec-
tively, p-value <0.001).

Prognostic prediction models

The Sat02/Fi02 (33%), the CNN-based index for lung consoli-
dation (13%), the LDH (12%), the ExtScoreCXR (9%), the age
(9%), the lymphocyte count (9%), the CRP (7%), the CNN-
based index for lung opacities (3%), the D-dimer level (3%),
and the platelets count (2%) were, in this order, the most
important predictors of severity level outcome for the most
severe group of patients (Fig. 4). The values in parenthe-
sis correspond to the variable importance in the developed
model.

The ROC and the PRC curves of the internal validation
performed with an unseen dataset for the severity level
prognostic predictive models built with three different com-
binations of features are shown in Fig. 5. The curves per
severity level are obtained after applying a one-vs-all clas-
sification methodology. An improvement of the AUC-ROC and
AUC-PRC is observed for both the most and least critically ill
patients, as more features are included in the model. In par-
ticular, the larger effect is obtained when adding the clinical
and laboratory parameters (micro-average AUC-ROC =0.94,
micro-average AUC-PRC=0.88). The addition of the CNN-
based indices increases the AUC-PRC value of the patients
belonging to the extreme severity levels but has the oppo-

site effect on the mid-severity level ones, resulting in a
worsening of the predictive metrics (micro-average AUC-
ROC=0.91, micro-average AUC-PRC=0.82) (Table 4).
Regarding the clinical outcome of mortality, the best
model is achieved with a Gradient Boosting classifier with
the inclusion of the selected epidemiological, radiologi-
cal, clinical, and laboratory parameters and the CNN-based
indices (AUC-ROC=0.97, AUC-PRC=0.83). The age (54%),
the Sat02/FiO2 (14%), the lymphocyte count (10%), the LDH
(8%), the CNN-based index for lung consolidation on CXR
(7%), the platelets count (4%) and the D-dimer level (3%)
were, in this order, the most weighted predictors of in-
hospital mortality (Fig. 4). A decrease in these metrics is
observed when the CNN-based indices are removed from
the model (AUC-ROC=0.97, AUC-PRC =0.78) but an improve-
ment on the PPV and specificity of the model is achieved
by means of threshold optimization with the Youden index
(Table 4). In this case, the age (43%), the Sat02/FiO2 (20%),
the CRP (15%), the LDH (7%), the ExtScoreCXR (6%), the lym-
phocyte count (6%) and the D-dimer level (3%) were, in this
order, the most weighted predictors. There were no sta-
tistically significant differences in terms of the AUC-ROC
between the models with and without CNN-based indices
(p-value =0.315), suggesting that the addition of the Al
parameters does not offer a significant additional improve-
ment on the model performance. Fig. 6 shows the ROC and
the PRC curves of the internal validation performed with
an unseen dataset for a selection of three classification
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Table 4 Metrics of the severity and mortality predictive models. Performance metrics of the internal validation performed with an unseen dataset for each of the selected
severity and in-hospital mortality predictive models built with three different combinations of parameters. The Youden index was used for the optimal threshold selection of

the classification models. RF: Random Forest, GB: Gradient Boosting.

SEVERITY PREDICTIVE MODELS

Combination of parameters Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC-ROC (%) AUC-PRC (%)

Epidemiological and Radiological 92.5 68.2 59.8 93.6 85.7 71.3

Epidemiological, Radiological, 83.1 87.9 77.5 95.1 93.8 87.6
Clinical and Laboratory

Epidemiological, Radiological, 86.4 84.1 72.5 96.7 91.4 82.3
Clinical, Laboratory and CNN-based

MORTALITY PREDICTIVE MODELS

Combination of parameters Model Architecture Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC-ROC (%) AUC-PRC (%)

Epidemiological and Radiological RF 71.8 90.3 59.5 92.2 86.7 69.3

Epidemiological, Radiological, GB 90.0 93.7 69.2 98.3 96.5 77.9
Clinical and Laboratory

Epidemiological, Radiological, GB 90.0 92.1 64.3 98.3 97 1 83.4

Clinical, Laboratory and CNN-based
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mortality models built with three different combinations of
features.

Discussion

In this study, the presence and extent of lung involvement
on the initial CXR of COVID-19 patients has a prognostic
value. In the univariable analysis the ExtScoreCXR showed
moderate correlation with the severity level and mortality,
and in the first developed multivariable models based on
age, gender and radiological features, the ExtScoreCXR was
the strongest predictor of severity and the second predictor
of in-hospital mortality after age. However, the addition of
other parameters usually registered at admission significan-
tly improved the predictive accuracy of the models. These
results demonstrate the greatest usefulness of CXR score
as a prognostic tool in COVID-19 when considered together
in a model with the SatO2/FiO2, the age, the LDH, the lym-
phocyte count, the CRP, the D-dimer level and the platelets.
The distribution and the density of opacities were not strong
enough to remain predictors in the definitive models and
the indices of CNN-based diagnostic tool did not improve
significantly the predictive metrics, probably because the
extension was not quantified. On the other hand, despite a
careful analysis of the imaging, overlapping of structures,
slight or indeterminate opacities and normal CXR are not
uncommon (31.8% in our series). Therefore the integra-
tion of the ExtScoreCXR into a prognostic model attempts
the safe decision-making, avoiding discharge at home of
patients requiring hospital care and unnecessary hospital-
izations or CT overuse.

We also confirmed the strong negative correlation
between lung involvement extent and SatO2/FiO2. It sup-
ports the widely accepted indication of CT pulmonary
angiography in case of oxygen desaturation or dyspnea and
normal or mild lung involvement on CXR,'® looking for
extended slight lung opacities not visible on CXR or pul-
monary thrombosis/embolism."® In concordance with this, in
both developed prognostic models the Sat02/FiO2 showed
to be a strong predictor.

In the literature, COVID-19 CXR opacification rating
scores in ED were predictive of risk for hospital admis-
sion and intubation in patients aged 21-50° and of time to
intubation, independent of comorbidities.® The extent of
lung involvement was also associated to worse outcomes in
severe acute respiratory syndrome.?%?’

The most reported predictors of severe prognosis in
patients with COVID-19 included age, sex, features derived
from CT, CRP, LDH, and lymphocyte count'"?* and the most
published predictors of mortality are older age?*~?> and D-
dimer level.?>%* These predictors coincide with most of
those we have observed in the multivariable analysis and
included in the predictive models.

Days with symptoms, clinical presentation, institutional-
ization, comorbidities and the rest of CXR features did not
show enough predictive power (variable importance <1%) to
be included in the models. The number of days with symp-
toms on arrival of patients to ED was not related to the
lung involvement extension. In other series neither a sig-
nificant difference was identified between the severe and
non-severe patients, regarding the median days from symp-

tom onset to hospital admission.?® Tobacco, comorbidities as
obesity, hypertension, diabetes, cardiovascular disease, res-
piratory diseases, cancer history and the presence of fever,
dyspnea, haemoptysis and unconsciousness, were also asso-
ciated to a worse prognosis in some publications,?>?’-%° but
not in our study. There is probably a data collection bias
from the medical records, especially obesity may be under-
reported. But apparently, the comorbidities and symptoms
have a lower relative predictor weight with respect to the
definitive variables of the models. The larger impact of the
Sat02/Fi02, the ExtScoreCXR and the laboratory parameters
raises the need of performing these tests to all COVID-19
patients with respiratory symptoms or persistent systemic
symptoms. This prognostic approach could early identify
patients who would benefit from more specific treatment
or hospitalization.

The National Early Warning Score 2 (NEWS2), based on
vital signs, is the most used score in ED. Its predictive
accuracy in COVID-19 patients is higher than other clinical
risk scores.>?3" Nevertheless, the models developed in this
study exceed this accuracy with an AUC-ROC=0.94 and an
AUC-ROC=0.97 for severity and mortality respectively, as
expected because the addition of other relevant variables.
A specific COVID-19 risk score was developed to predict clin-
ical illness at admission with ten variables including the CXR
abnormality as predictor, but without extent assessment; it
showed an AUC-ROC of 0.88.%° Another multivariable model
including CXR at admission was constructed to predict criti-
calillness in hospitalized COVID-19 patients.” The predictors
that remained in the model were male gender, obstructive
lung disease, symptom duration > 7 days, neutrophil count,
CPR, LDH, distribution of lung disease and CXR score, with an
AUC-ROC=0.77. The CPR, the LDH and the lung involvement
extension on CXR are also included in our final model but
there are no further coincidences in the rest of predictors.
This is probably explained by the different model develop-
ment methodologies including a different feature selection
strategy, as they used a univariable statistical test and we
based our selection on the correlation between parameters
and with respect to the clinical outcome. Other discrepan-
cies include the data pre-processing steps, as we included a
combination of some over- and under-sampling techniques
as well as data standardization; and the consideration of
different model architectures, as they employed a multi-
variable logistic regression, which relies on transformations
for non-linear features. In order to overcome this issue, we
tested three different model architectures: Support Vector
Machine, Random Forest and Gradient Boosting, which can
handle non-linear features as well as their interactions, and
perform well in a large feature space.

As potential sources of bias, the severity level is a
decision-based clinical outcome, unlike mortality. In order
to reduce this bias we grouped at level 0 not only home
discharge from the ED but also hospitalization < 3 days.
In addition, the follow-up of at least 2 months included
patients who returned to the hospital. In these cases all
the variables collected were also those obtained from the
first visit to the ED but the event considered as outcome
was the most severe. In fact, the proportion of the most
severe patients (22%) was within the range published in
longer series (15-36%).3%33
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Figure 6 The ROC (up) and the PRC (down) curves of the internal validation performed with an unseen dataset for the in-
hospital mortality predictive models (SVM: Support Vector Machine (blue), RF: Random Forest (green), GB: Gradient Boosting)
(orange) built with three different combinations of parameters (A: epidemiological and radiological parameters, B: epidemiological,
radiological, clinical and laboratory parameters, C: epidemiological, radiological, clinical, laboratory and CNN-based parameters).

The corresponding values of AUC are shown.

Regarding the proposed method to quantify the extent
of lung involvement (ExtScoreCXR), we have not ana-
lyzed interobserver agreement. On the other hand, a good
interobserver agreement was demonstrated with the use
of Brixia, a more complex score designed for COVID-19
patients,’ and coincidentally we have used the same score
as other authors, who have recently published its good cor-
relation with Brixia score.'

The internal validation was performed with 88 cases.
However, it has been reported that a minimum sample
size of 100 is recommended in order to achieve a robust
validation.>* An external validation with cases from other
hospitals is desirable to assess the generalizability and the
potential use of the developed models in daily clinical prac-
tice.

In conclusion, the developed multivariable prognosis pre-
diction models showed a high predictive accuracy that could
allow triage of symptomatic COVID-19 patients at ED to
improve the decision-making. The application to estimate
the severity level and the in-hospital mortality is available
on http://upv.datahub.egi.eu:30054/hulafecovid19models.
It should be validated at different ED for both COVID-19 and
other viral infections with similar behaviour.
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