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Abstract
Objectives:  To  develop  prognosis  prediction  models  for  COVID-19  patients  attending  an  emer-
gency department  (ED)  based  on  initial  chest  X-ray  (CXR),  demographics,  clinical  and  laboratory
parameters.
Methods:  All  symptomatic  confirmed  COVID-19  patients  admitted  to  our  hospital  ED  between
February  24th  and  April  24th  2020  were  recruited.  CXR  features,  clinical  and  laboratory  variables
and CXR  abnormality  indices  extracted  by  a  convolutional  neural  network  (CNN)  diagnostic  tool
were considered  potential  predictors  on  this  first  visit.  The  most  serious  individual  outcome
defined  the  three  severity  level:  0)  home  discharge  or  hospitalization  ≤  3  days,  1)  hospital
stay >3  days  and  2)  intensive  care  requirement  or  death.  Severity  and  in-hospital  mortality
multivariable  prediction  models  were  developed  and  internally  validated.  The  Youden  index
was used  for  the  optimal  threshold  selection  of  the  classification  model.
Results:  A  total  of  440  patients  were  enrolled  (median  64  years;  55.9%  male);  13.6%  patients
were discharged,  64%  hospitalized,  6.6%  required  intensive  care  and  15.7%  died.  The  sever-
ity prediction  model  included  oxygen  saturation/inspired  oxygen  fraction  (SatO2/FiO2),  age,
C-reactive  protein  (CRP),  lymphocyte  count,  extent  score  of  lung  involvement  on  CXR
(ExtScoreCXR),  lactate  dehydrogenase  (LDH),  D-dimer  level  and  platelets  count,  with  AUC-ROC

= 0.94  and  AUC-PRC  =  0.88.  The  mortality  prediction  model  included  age,  SatO2/FiO2,  CRP,
LDH, CXR  extent  score,  lymphocyte  count  and  D-dimer  level,  with  AUC-ROC  =  0.97  and  AUC-
PRC =  0.78.  The  addition  of  CXR  CNN-based  indices  did  not  improve  significantly  the  predictive
metrics.uthor.
� Please cite this article as: Calvillo-Batllés P, Cerdá-Alberich L, Fonfría-Esparcia C, Carreres-Ortega A, Muñoz-Núñez CF, Trilles-Olaso L,
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ncluida la radiografía torácica. Radiología. 2022;64:214---227.
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Conclusion:  The  developed  and  internally  validated  severity  and  mortality  prediction  models
could be  useful  as  triage  tools  in  ED  for  patients  with  COVID-19  or  other  virus  infections  with
similar behaviour.
© 2021  SERAM.  Published  by  Elsevier  España,  S.L.U.  All  rights  reserved.
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Elaboración  de  modelos  predictivos  de  la  gravedad  y  la  mortalidad  en  pacientes  con
COVID-19  que  acuden  al  servicio  de  urgencias,  incluida  la  radiografía  torácica

Resumen
Objetivos:  Desarrollar  modelos  de  predicción  de  pronóstico  para  pacientes  con  COVID-19  que
acuden a  urgencias,  basados  en  la  radiografía  de  tórax  inicial  (RXT),  parámetros  demográficos,
clínicos y  de  laboratorio.
Métodos:  Se  reclutaron  todos  los  pacientes  sintomáticos  con  COVID-19  confirmada,  que  ingre-
saron en  urgencias  de  nuestro  hospital  entre  el  24  de  febrero  y  el  24  de  abril  de  2020.  Los
parámetros  de  la  RXT,  las  variables  clínicas  y  de  laboratorio  y  los  índices  de  hallazgos  en  RXT
extraídos por  una  herramienta  diagnóstica  de  inteligencia  artificial  en  esta  primera  visita  se
consideraron  potenciales  predictores.  El  desenlace  individual  más  grave  definió  los  tres  niveles
de gravedad:  0)  alta  domiciliaria  u  hospitalización  de  3  días  o  inferior,  1)  hospitalización  más
de 3  días  y  2)  necesidad  de  cuidados  intensivos  o  muerte.  Se  desarrollaron  y  validaron  interna-
mente modelos  de  predicción  multivariable  de  gravedad  y  mortalidad  hospitalaria.  El  índice  de
Youden se  utilizó  para  la  selección  del  umbral  óptimo  del  modelo  de  clasificación.
Resultados:  Se  registraron  440  pacientes  (mediana  de  64  años;  55,9%  hombres);  el  13,6%  de
los pacientes  fueron  dados  de  alta,  el  64%  hospitalizo  más  de  3  días,  el  6,6%  requirió  cuida-
dos intensivos  y  un  15,7%  falleció.  El  modelo  de  predicción  de  gravedad  incluyó  saturación  de
oxígeno/fracción  de  oxígeno  inspirado  (SatO2/FiO2),  edad,  proteína  C  reactiva  (PCR),  linfoc-
itos, puntuación  de  la  extensión  de  la  afectación  pulmonar  en  la  RXT  (ExtScoreRXT),  lactato
deshidrogenasa  (LDH),  dímero  D  y  plaquetas,  con  AUC-ROC  =  0,94  y  AUC-PRC  =  0,88.  El  mod-
elo de  predicción  de  mortalidad  incluyó  edad,  SatO2/FiO2,  PCR,  LDH,  ExtScoreRXT,  linfocitos  y
dímero D,  con  AUC-ROC  =  0,97  y  AUC-PRC  =  0,78.  La  adición  de  índices  radiológicos  obtenidos
por inteligencia  artificial  no  mejoró  significativamente  las  métricas  predictivas.
Conclusión:  Los  modelos  de  predicción  de  pronóstico  desarrollados  podrían  ser  útiles  para  clasi-
ficar en  urgencias  a  los  pacientes  con  COVID-19  u  otras  infecciones  víricas  con  comportamiento
similar.
© 2021  SERAM.  Publicado  por  Elsevier  España,  S.L.U.  Todos  los  derechos  reservados.
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he  COVID-19  pandemic  is  posing  a  large  challenge  for  health
ystems,  forcing  a  balance  to  be  found  between  resource
anagement  and  safe  decision-making  with  a  lower  than

eeded  scientific  evidence.  Clinical  presentation  of  the
isease  varies  from  mild  symptoms  to  a  bilateral  bronchop-
eumonia  with  hypoxemia.  An  Acute  Respiratory  Distress
yndrome  or  the  involvement  of  other  vital  organs  may  com-
licate  the  clinical  course  and  compromise  the  life  of  the
atient.  Uncertainties  make  necessary  the  development  of
pecific  disease  models  in  order  to  identify  patients  by  prog-
osis  and  severity,  requiring  hospital  or  even  intensive  care.
horacic  imaging  has  served  as  a  diagnostic  tool  in  emer-
ency  department  (ED)  as  it  may  reveal  suggestive  COVID-19
atterns  of  lung  involvement.1---5 However,  studies  on  the

tility  of  the  chest  X-ray  (CXR)  for  predicting  health  out-
omes  are  limited6---9 and  the  prognostic  studies  have  mainly
een  based  on  chest  CT.10---12

p
T

21
Considering  the  higher  use  of  CXR,  its  larger  availabil-
ty  and  safer  use  to  control  the  spread  of  the  virus  when
ompared  with  CT,  we  aimed  to  develop  two  multivariable
rediction  models  for  severity  and  mortality  estimations  in
OVID-19  taking  into  consideration  the  radiological,  demo-
raphic,  clinical  and  laboratory  variables  registered  on  the
mergency  evaluation.

aterial and methods

he  institutional  review  board  approved  this  retrospective
tudy.  This  research  did  not  receive  any  specific  grant  from
unding  agencies  in  the  public,  commercial,  or  not-for-profit
It  followed  the  Transparent  Reporting  of  a  multivariable
rediction  model  for  Individual  Prognosis  or  Diagnosis:  the
RIPOD  statement.13 The  risk  of  bias  and  applicability  was
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Figure  1  Flow

ssessed  with  the  Prediction  model  Risk  of  Bias  Assessment
ool  (PROBAST).14

atients

ll  consecutive  symptomatic  adult  patients  visiting  the
D  of  our  university  hospital  between  24  February  and
4  April  2020  were  included  if  CXR  was  performed  and
evere  Acute  Respiratory  Syndrome  -  Coronavirus  2  (SARS-
oV-2)  RNA  was  detected  in  nasopharyngeal  swab  or
putum/bronchoalveolar  lavage.  Patients  with  simultaneous
nal  diagnosis  other  than  COVID-19  were  excluded.  Emer-
ency  physicians  triaged  these  patients.  Oligosymptomatic
atients  with  normal  CXR  and  laboratory  parameters,  oxy-
en  saturation  >95%,  absence  of  chronic  diseases  and  <65
ears  old  were  discharged  at  home.  Patients  admitted  at  the
ospital  were  treated  with  standard  of  care  drugs  in  force  at
he  time  and  they  were  discharged  if  afebrile  for  at  least  3
ays  with  respiratory  symptoms  and  laboratory  parameters
mprovement  (Flowchart  of  the  study  in  Fig.  1).
hest  X-ray  review

nitial  CXR  readings  on  admission  were  distributed  among
ve  radiologists  with  an  average  of  11  years  of  experience

21
rt  of  the  study.

n  thoracic  imaging,  blinded  to  the  rest  of  parameters  and
utcome.  The  following  items  were  described  (Fig.  2):

 Absence  (level  0)  or  presence  and  density  of  opaci-
ties:  only  low-density  (level  1)  or  consolidation  (+/-  low
density)  (level  2).  Lung  opacities  were  considered  ‘‘low-
density’’  if  the  attenuation  did  not  conceal  the  underlying
vessels  and  ‘‘consolidation’’  if  the  opacification  of  the
parenchyma  obscured  the  underlying  vessels.

 Distribution  of  opacities:  peripheral  (in  the  outer  third
of  the  lungs)  /  central  (in  the  inner  two  thirds  of  the
lungs)  prevalence  /  both  without  clear  prevalence;  uni-
lateral  /  bilateral;  upper  (suprahillar)  /  medium  (hilar)
/  lower  fields  (infrahilar).  For  determining  the  distribu-
tion  and  extent  of  involvement  each  lung  was  divided  in
upper,  medium  and  inferior  field,  with  a  maximum  of  six
fields.  The  affected  lobes  were  not  recorded  since  a  high
percentage  of  the  radiographs  were  portable  (27.7%).

 Extension  degree  and  score  of  lung  involvement:  the
extent  was  graded  as  mild  (if  size  opacity  was  less  than
1  field);  moderate  (1-2  fields  involved);  extensive  (3-4
fields  involved)  and  very  extensive  (5-6  fields  involved).
A  numerical  value  was  assigned  to  each  field  depending

on  the  percentage  with  increased  attenuation:  0  (0%),  1
(≤50%),  and  2  (>50%).  A  total  score  of  the  lung  involve-
ment  extent  (ExtScoreCXR)  was  reached  by  adding  up
the  six  field  scores,  obtaining  a  value  from  0  to  12.  The

6
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Figure  2  Chest  X-ray  features.  Up:  examples  of  distribution,  density  of  opacities  and  extent  score.  Down  (the  same  CXR):  Division
of lung  fields.  Upper  fields  (suprahillar  area)  limited  by  the  line  that  passes  under  the  aortic  arch;  medium  fields  (hilar  area)
and inferior  fields  (infrahilar  area)  separated  by  the  line  that  divides  the  rest  of  the  lungs  into  two  halves  (frequently  this  line
crosses the  bifurcation  of  the  right  inferior  lobar  artery).  A1: Unilateral  central  and  peripheral  low-density  opacities  (arrow),
without predominance.  A2:  Medium  and  lower  right  fields  involved  ≤  50%;  ExtScoreCXR  =  2.  B1: Central  right  low-density  opacity
(arrow) and  peripheral  left  consolidation  (larger  arrows).  Peripheral  predominance.  B2: Medium  right  and  left  fields  with  ≤50%
of involvement  and  upper  left  field  with  >50%  of  involvement;  ExtScoreCXR  =  4.  C1: Bilateral  low-density  opacities  (arrows)  and
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onsolidations  (larger  arrows)  without  predominance.  C2: Upp
ower right  field  with  >50%  of  involvement;  ExtScoreCXR  =  9.

ExtScoreCXR  was  created  by  the  authors  after  consid-
ering  it  by  consensus  a  simple,  fast,  reproducible  and
optimal  method  of  semi-quantification  of  the  lung  involve-
ment  extent.  The  extent  score  from  the  division  into  lung
fields  has  also  been  used  by  other  authors  in  patients  with
COVID-19.6---8,15

 The  imaging  variables  were  agreed  upon  by  the  radi-
ologists  from  the  X-ray  of  the  first  80  cases  detected.
House-made  repository  software  was  used  to  record  all
the  variables  in  a  structured  shared  database,  with
description  and  imaging  reminders  aiming  to  reduce  vari-
ability  between  readers  and  mandatory  fill-in  fields  to
optimize  data  collection.

emographics,  clinical  and  laboratory  variables
ollected on  the  first  visit  to  ED

emographics,  institutionalization,  comorbidities,  clinical
anifestations,  peripheral  oxygen  saturation  (SatO2),
aboratory  data  -C  reactive  protein  (CRP),  lactate
ehydrogenase  (LDH),  lymphocyte  count,  platelet
ount,  and  D-dimer-  were  recorded.  We  calculated
atO2/FiO2  to  avoid  data  loss  from  patients  with  SatO2

o
i
fi
a

21
elds  and  lower  left  field  with  ≤50%,  medium  fields  and  right

btained  under  oxygen  therapy.  FiO2  is  the  fraction  of
nspired  oxygen  and  changes  depending  on  the  oxygen
ow  rate  delivered  to  each  patient;  for  room  air  it

s  0.21.

omputational  Imaging  (Artificial  Intelligence  Data)

robability  indices  of  lung  abnormal  findings  were  extracted
rom  CXR  by  a  Convolutional  neural  network  (CNN)-based
iagnostic  tool,  QUIBIM  Precision  CXR  v2.0.0  (QUIBIM  S.L)
ith  CE  mark  class  IIa.  The  algorithm  includes  an  ensem-
le  of  deep  learning  models  that  estimate  the  probability
f  different  thoracic  findings  and  the  probability  of  abnor-
ality  in  CXR.  A  value  of  0  would  mean  no  probability

f  belonging  to  that  pathological  finding  and  a  value  of  1
ould  mean  total  certainty  of  belonging  to  that  pathologi-
al  group.  See  supplementary  material  about  the  CNN-tool

n  Appendix  1.  Indices  for  ‘‘consolidation’’,  ‘‘lung  opac-
ty’’  and  ‘‘abnormal  CXR’’  were  incorporated  into  the
nal  model  to  assess  whether  they  improved  its  predictive
ccuracy

7
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Figure  3  Spearman’s  rank-order  correlation  ma

utcome  variables

hree  severity  levels  were  defined:  home  discharge  or  hos-
italization  ≤  3  days  (level  0),  hospital  stay  >3  days  (level
),  need  for  intensive  care  unit  (ICU)  stay  or  death  due  to
OVID-19  (level  2).  Both  days  of  hospitalization  and  days  to
eath  were  registered.  The  median  of  follow-up  was  91  days
range  64-124  days).

nivariable  analysis

orrelations  between  the  lung  involvement  extension  on
XR  (degrees  and  score)  and  the  days  with  symptoms,  the
atO2/FiO2  and  the  variable  outcomes  were  investigated.
pearman,  Kendall,  Rank  or  Point  biserial  tests  were  used
epending  on  the  type  of  the  studied  variables.  For  inter-
reting  the  strength  of  a  relationship  based  on  its  r-value

using  the  absolute  value  of  the  r-value  to  make  all  values
ositive)  we  applied  the  following  rule  of  thumb:  r  <  0.1
one,  0.1  <  r  <  0.3  weak,  0.3  <  r  <  0.5  moderate,  0.5  <  r  <  0.8
trong  and  r  >  0.8  very  strong.

o
w
w
t

21
or  the  epidemiological  and  radiological  features.

rognostic  predictive  models

ifferent  prognostic  predictive  models  were  developed
sing  three  types  of  classifiers  or  ensemble  methods  (Gra-
ient  Boosting,  Random  Forest  and  Support  Vector  Machine)
nd  applying  a stratified  cross-validation  with  the  80%  of  the
opulation.  These  classifiers  have  been  chosen  because  they
re  intrinsically  suited  to  solve  classification  problems  with
wo  or  more  classes.  For  instance,  Support  Vector  Machine  is

 linear  model  that  scales  relatively  well  to  high  dimensional
ata  and  is  less  prone  to  over-fitting.  Both  Random  Forest
nd  Gradient  Boosting  are  ensemble  models  that  consist  in
raining  multiple  weak  learners  and  merge  their  results  to
uild  a  ‘‘strong  learner’’.  They  differ  on  two  key  points:  the
ay  the  training  sets  for  each  base  model  are  defined  and

he  order  in  which  the  weak  learners  are  trained.  In  partic-
lar,  Random  forest  creates  random  train  samples  from  the
ull  training  set  based  on  a  random  selection  of  both  observa-
ions  and  features  (bootstrapping).  A  weak  learner  is  trained
n  parallel  on  each  of  the  derived  training  sets.  In  the  case

f  Gradient  Boosting,  the  method  consists  in  fitting  several
eak  learners  sequentially,  where,  at  each  iteration,  more
eight  is  added  to  the  observations  with  the  worst  predic-

ion  from  the  previous  iteration.  Since  each  weak  learner  is

8
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Table  1  Characteristics  of  COVID-19  patients.  Demo-
graphic  variables  and  comorbidities  investigated  as  potential
predictors.  *  Predictors  in  the  final  prognostic  prediction
models.

DEMOGRAPHIC
INFORMATION

Age*  Median  (interquartile
range),  (range),  years

64  (51-79),  (17-100)

Sex* No.  (%  of  440) Male*  246  (55,9)
Female  194  (44)

COMORBIDITIES  No.  (%  of  440)

Hypertension  191  (43,4)
Dislypemia  125  (28,4)
Diabetes  93  (21,1)
Institutionalization  75  (17)
Cardiovascular  disease  56  (12,7)
Immunosuppression  46  (10,5)
Corticotherapy  and  other

immunosuppressors
16  (3,6)

Advanced  chronic  kidney
disease/Dialysis

13  (2,9)

Hematological  neoplasm  /  disease  10  (2,3)
Solid organ  trasplant  8  (1,8)
Human  immunodeficiency  virus  1  (0,2)
Chronic  kidney  disease  (total)  43  (9,8)
Obesity  42  (9,5)
Cerebrovascular  disease  36  (8,2)
Neoplasm  32  (7,3)
Asthma  25  (5,7)
Dementia  19  (4,3)
Current  smoker 16  (3,6)
Obstructive  sleep  apnea 16  (3,6)
Ex-smoker  15  (3,4)
Hypothyroidism  13  (2,9)
Atrial fibrillation 13  (2,9)
Chronic  obstructive  pulmonary

disease
9  (2)

NUMBER  OF  COMORBIDITIES  No.  (%  of  440)

None  92  (20,9)
1 87  (19,8)
2 68  (15,4)
3 54  (12,3)
≥ 4  (4-8)  139  (31,5)
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uilt  upon  the  results  from  the  preceding  one,  the  compu-
ation  cannot  be  parallelized  and  the  computation  can  be
onger.

An  internal  validation  was  performed  with  an  unseen
ataset  corresponding  to  the  remaining  20%  to  assess  model
eneralizability  and  robustness.

The  model  hyperparameters  were  obtained  by  perform-
ng  a  grid  search  strategy,  a  method  for  hyperparameters
ptimization  that  methodically  builds  and  evaluates  a  model
or  each  combination  of  algorithm  parameters  specified  in  a
rid.

In  order  to  avoid  redundant  information,  prevent  the
odels  from  becoming  unstable  in  the  presence  of  strong

eature  dependencies  and  to  improve  their  interpretability,
eatures  with  high  correlation  (>80%)  were  identified  with

 Spearman’s  rank-order  correlation  matrix  (Fig.  3).  From
ach  pair  of  high  correlated  features,  the  one  with  the  larger
-value  in  the  univariate  statistical  test  was  excluded  from
he  models.  Following  this  criterion,  the  extent  degrees  and
he  distribution  of  the  opacities  in  the  medium  lung  field
ere  discarded.

Three  models  were  developed  with  different  predictive
ariables,  the  first  one  containing  the  epidemiological  (age,
ex,  institutionalization  and  comorbidities)  and  all  the  above
entioned  radiological  features.  The  clinical  (symptoms  and

atO2/FiO2)  and  all  the  above  mentioned  laboratory  param-
ters  were  incorporated  into  the  first  model  to  build  the
econd  model,  and  finally  the  CNN-derived  based  data  were
ncorporated  into  the  second  model  to  build  the  third  model.

 partial  under-sampling  methodology  followed  by  a  syn-
hetic  minority  over-sampling  technique  (SMOTE)  was  used
o  address  the  data  imbalance  problem,  very  common  in
achine  Learning  environments.16 Features  were  standard-

zed  accordingly.
As  a  method  for  dimensionality  reduction  and  to  eval-

ate  the  impact  of  each  feature,  the  variable  importance
as  calculated.  This  importance  is  a  measure  of  by  how
uch  removing  a  variable  decreases  accuracy,  and  vice

ersa  ----  by  how  much  including  a  variable  increases  accu-
acy.  The  default  method  to  compute  variable  importance
s  the  mean  decrease  in  impurity  (or  gini  importance)  mech-
nism:  At  each  split  in  each  tree,  the  improvement  in  the
plit-criterion  is  the  importance  measure  attributed  to  the
plitting  variable,  and  is  accumulated  over  all  the  trees  in
he  forest  separately  for  each  variable.  Note  that  this  mea-
ure  is  quite  like  the  R2̂  in  regression  on  the  training  set.  If

 variable  has  very  little  predictive  power,  removing  it  may
ead  to  an  increase  in  accuracy  due  to  random  noise.

Sensitivity,  specificity,  PPV,  NPV,  AUC-ROC  and  precision-
ecall  curves  (AUC-PRC)  were  obtained  for  each  model.  The
ouden  index  was  used  for  the  optimal  threshold  selection  of
he  classification  model,  by  maximizing  the  highest  sensibil-
ty  and  NPV  for  critically  ill  (or  dead)  patients  and  the  highest
pecificity  and  PPV  for  the  mild  severity  (or  alive)  ones.
he  optimal  thresholds  were  defined  on  the  training  data
et.  A  weighted  micro-average  statistical  approach  is  used
o  obtain  the  values  per  severity  level  after  threshold  opti-
ization  of  the  classification  model  with  the  Youden  index.
 macro-average  will  compute  the  metric  independently  for
ach  class  and  then  take  the  average  (hence  treating  all
lasses  equally),  whereas  a  micro-average  will  aggregate  the
ontributions  of  all  classes  to  compute  the  average  metric,

u
s
L

21
hich  is  particularly  useful  when  the  dataset  varies  in  size.
n  order  to  test  for  a  potential  overestimation  of  the  diag-
ostic  model  performance,  the  metrics  were  obtained  by
valuating  the  same  thresholds  on  the  internal  validation
ata  set.  DeLong’s  test  for  two  correlated  ROC  curves17 was
sed  to  compare  the  performance  of  the  models.

The  following  Python  and  Machine  Learning  libraries  were
sed  to  perform  the  data  visualization  and  statistical  analy-
is  in  the  study:  Pandas,  Numpy,  SciPy,  Matplotlib  and  Scikit

earn.
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P.  Calvillo-Batllés,  L.  Cerdá-Alberich,  C.  Fonfría-Esparcia  et  al.

Table  2  Clinical  presentation  of  COVID-19  patients.
Clinical  and  laboratory  variables  investigated  as  potential
predictors.  Gastrointestinal  symptoms:  diarrhea,  vomiting  or
abdominal  pain.  SatO2/FiO2:  Peripheral  oxygen  saturation
/inspiratory  oxygen  fraction  (room  air  or  oxygen  therapy).  *
Predictors  in  the  definitive  prognostic  prediction  models.

INTERVAL  SINCE  SYMPTOMS
ONSET

Average  +/-  sd  (range)

Days  6,8  +/-  4,5  (0-30)

SYMPTOMS  Total  No.  441  No.  (%)

Fever  361  (82)
Cough 287  (65,2)
Dyspnea  178  (40,4)
General  dyscomphort/Asthenia 171  (38,9)
Gastrointestinal  symptoms 103  (23,4)
Myalgias  72  (16,4)
Headache  47  (10,7)
Hyposmia/Dysgeusia  32  (7,3)

OXYGEN  SATURATION  Average  +/-  sd  (range)

Sat  02  (air  room) 93,7  +/-  5,6  (55-100)
Sat  02  /Fi  O2* 443,5  +/-34,4

LABORATORY  DATA Average/  Min  /  25%  /
Median  /  75%  /  Max

Lactic  dehydrogenase  (U/l)  *  306  /  16  /  218,2  /  265,5
/ 349,7  /  2146

C reactive  protein  (mg/l)  *  81  /  0,3  /  15,5  /  44,6  /
117,2  /  655,5

Lymphocytes  count  (x103�/l)  * 1,2  /  0,06  /  0,7  /  1  /  1,4
/12,3

Platelets  count  (x103�/l)  *  203,7  /  32  /  150  /  193  /
242  /  716
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Table  3  Lung  involvement  on  CXR,  distribution  and
extension.  CXR  features  investigated  as  potential  predic-
tors. ExtScoreCXR:  Extent  score  of  lung  involvement  on  CXR.
* Predictor  in  the  final  prognostic  prediction  models.

PRESENCE  AND  DENSITY  OF  LUNG
OPACITIES

No.  (%)  Total  440

No  lung  opacities  (+/-  other  findings)
- level  0-

86  (19,5)

Low-density  opacity(ies)  -  level  1  -  254  (57,7)
Consolidation/s  +/-  low-density
opacity(ies)  -level  2-

100  (22,7)

DISTRIBUTION/LOCATION  OF  LUNG
OPACITIES

No.  (%)  Total  354

Bilateral  212  (59,9)
Unilateral  142  (39,8)
Peripheral  (only  or  predominantly) 182  (51,1)
Peripheral  and  central  (without
predominance)

116  (32,5)

Central  (only  or  predominantly) 56  (15,7)
Lower  fields  290  (81,4)
Medium  fields  259  (72,7)
Upper  fields  178  (50)

EXTENT  DEGREES  OF  LUNG  OPACITIES  No.  (%)  Total  440

No  lung  opacities  (+/-  other  findings)
- level  0-

86  (19,5)

Mild 66  (15)
Moderate  111  (25,2)
Extensive  101  (22,9)
Very  extensive  76  (17,3)

SCORE  OF  LUNG  INVOLVEMENT
EXTENSION  *

Average  +/-  sd  (range)

w
t
p

O

1
3
1
1
a

C

T
s
(
s

Dimer  D  (ng/l)  *  1390  /  83  /  350  /  608  /
1015  /  38282

esults

atients

rom  445  registered  patients,  5  were  excluded  (1  acute
ppendicitis,  1  cholangitis,  1  diverticulitis,  1  ictus  stoke
nd  1  cardiac  failure).  A  total  final  population  of  440  was
nrolled  in  the  study.

emographics,  comorbidities

he  median  age  was  64  years  (range  17-100)  and  55.9%  were
ale.  79%  suffered  ≥1  comorbidities;  the  most  frequent
ere  hypertension,  dyslipidaemia  and  diabetes  (Table  1).

linical  and  laboratory  variables,  SatO2/FiO2
pon  their  arrival  to  ED  the  average  of  days  with  symptoms
as  6.8  (range  0-30)  and  the  most  common  symptoms  were
y  this  order  fever  and  cough.  The  average  oxygen  saturation

i
3

a

22
Punctuation  (ExtScoreCXR)  3,3  +/-  3,07  (0-12)

as  93.7%  (range  55-100%).  There  was  loss  of  ≥1  labora-
ory  parameters  in  67  patients  because  they  had  not  been
erformed  (Table  2).

utcome  variables

3.6%  patients  were  discharged  at  home  or  hospitalized  ≤
 days;  64%  patients  were  hospitalized  (4-54  days,  average
7  days);  6.6%  required  intensive  care  (2-65  days,  average
8  days  in  ICU)  and  15.7%  died  (0-51  days  after  admission,
verage  10  days).

hest  X-ray  review

he  median  time  between  CXR  and  Real-Time  reverse  tran-
cription  Polymerase  Chain  Reaction  (RT-PCR)  was  1  day
range  0-30).  65.9%  of  patients  with  pending  RT-PCR  result
howed  suggestive  COVID-19  lung  involvement  on  CXR,  antic-

pating  the  definitive  diagnosis.  The  ExtScoreCXR  was  3.3  +/-
.07  (average  +/-  SD)  (Table  3).

From  76  patients  initially  discharged  at  home  24%  were
dmitted  in  a  second  visit  to  ED.  The  first  CXR  of  these

0
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Figure  4  Importance  of  model  predictors  obtained  for  the  severity  level  (up):  oxygen  saturation/inspired  oxygen  fraction
(SatO2/FiO2)  (33%),  convolutional  neural  network  (CNN)-based  index  for  lung  consolidation  on  chest  X-ray  (CXR)  (13%),  lactate
dehydrogenase  (LDH)  (12%),  extent  score  of  lung  involvement  on  CXR  (ExtScoreCXR)  (9%),  age  (9%),  lymphocyte  count  (9%),  C-
reactive protein  (CRP)  (7%),  CNN-based  index  for  lung  opacities  on  CXR  (3%),  D-dimer  level  (3%)  and  platelets  count  (2%);  and
m  cou
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ortality (down):  age  (54%),  SatO2/FiO2  (14%),  the  lymphocyte
XR (7%),  platelets  count  (4%)  and  D-dimer  level  (3%).  Those  w

atients  was  normal  in  7  and  showed  very  slight  or  difficult
o  interpret  opacities  in  11;  in  the  second  visit  all  presented
rogression  of  the  lung  involvement.

omputational  Imaging  (Artificial  Intelligence  Data)

robability  indices  -  average  +/-  standard  deviation  (range)-

or  ‘‘consolidation’’,  ‘‘lung  opacity’’  and  ‘‘abnormal  CXR’’
btained  from  CXR  of  the  population  studied  were  0,39  +/-
,19  (0-0,84);  0,47  +/-0,25  (0-0,98)  and  0,98  +/-0,13  (0-1)
espectively.

t
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nt  (10%),  LDH  (8%),  CNN-based  index  for  lung  consolidation  on
 importance  of  less  than  0.01  are  excluded  from  the  model.

nivariable  analysis.  Lung  involvement  extension
n CXR

he  lung  involvement  extent  -degrees  and  score-  showed
oor  correlation  with  days  of  symptoms  duration  (r  =  0.198
nd  r  =  0.176,  respectively,  p-value<0.001),  strong  negative
orrelation  with  SatO2/FiO2  (r=-0.53  and  r=-0.57,  respec-
ively,  p-value<0.001),  strong-moderate  correlation  with

he  severity  level  (r  =  0.536  and  r  =  0.491,  respectively,  p-
alue<0.001),  poor  correlation  with  days  of  hospitalization
r  =  0.240  and  r  =  0.246,  respectively,  p-value<0.001),  no  sig-
ificant  correlation  with  ICU  stay  days,  and  poor-moderate

1



P.  Calvillo-Batllés,  L.  Cerdá-Alberich,  C.  Fonfría-Esparcia  et  al.

Figure  5  The  ROC  (up)  and  the  PRC  (down)  curves  of  the  internal  validation  performed  with  an  unseen  dataset  for  the  severity
predictive models  built  with  three  different  combinations  of  parameters.  (A:  epidemiological  and  radiological  parameters,  B:
epidemiological,  radiological,  clinical  and  laboratory  parameters,  C:  epidemiological,  radiological,  clinical,  laboratory  and  CNN-
based parameters).  The  curves  per  severity  level  are  obtained  with  a  one-vs-all  classification  methodology:  home  discharge  or
hospitalization  ≤  3  days  (level/class  0,  in  light  blue),  need  for  hospital  stay  >3  days  (level/class  1,  in  orange),  need  for  ICU  stay
or death  due  to  COVID-19  (level/class  2,  in  blue).  The  dashed  lines  represent  the  micro-average  (magenta)  and  macro-average
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dark blue)  curve  statistics  which  take  into  account  the  single
recision =  true  positive  /  (true  positive  +  false  positive).  Recall  

orrelation  with  mortality  (r  =  0.277  and  r  =  0.310,  respec-
ively,  p-value  <0.001).

rognostic  prediction  models

he  SatO2/FiO2  (33%),  the  CNN-based  index  for  lung  consoli-
ation  (13%),  the  LDH  (12%),  the  ExtScoreCXR  (9%),  the  age
9%),  the  lymphocyte  count  (9%),  the  CRP  (7%),  the  CNN-
ased  index  for  lung  opacities  (3%),  the  D-dimer  level  (3%),
nd  the  platelets  count  (2%)  were,  in  this  order,  the  most
mportant  predictors  of  severity  level  outcome  for  the  most
evere  group  of  patients  (Fig.  4).  The  values  in  parenthe-
is  correspond  to  the  variable  importance  in  the  developed
odel.
The  ROC  and  the  PRC  curves  of  the  internal  validation

erformed  with  an  unseen  dataset  for  the  severity  level
rognostic  predictive  models  built  with  three  different  com-
inations  of  features  are  shown  in  Fig.  5. The  curves  per
everity  level  are  obtained  after  applying  a  one-vs-all  clas-
ification  methodology.  An  improvement  of  the  AUC-ROC  and
UC-PRC  is  observed  for  both  the  most  and  least  critically  ill
atients,  as  more  features  are  included  in  the  model.  In  par-
icular,  the  larger  effect  is  obtained  when  adding  the  clinical

nd  laboratory  parameters  (micro-average  AUC-ROC  =  0.94,
icro-average  AUC-PRC  =  0.88).  The  addition  of  the  CNN-
ased  indices  increases  the  AUC-PRC  value  of  the  patients
elonging  to  the  extreme  severity  levels  but  has  the  oppo-
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l  contributions.  The  corresponding  values  of  AUC  are  shown.
itivity)  =  true  positive  /  (true  positive  +  false  negative).

ite  effect  on  the  mid-severity  level  ones,  resulting  in  a
orsening  of  the  predictive  metrics  (micro-average  AUC-
OC  =  0.91,  micro-average  AUC-PRC  =  0.82)  (Table  4).

Regarding  the  clinical  outcome  of  mortality,  the  best
odel  is  achieved  with  a Gradient  Boosting  classifier  with

he  inclusion  of  the  selected  epidemiological,  radiologi-
al,  clinical,  and  laboratory  parameters  and  the  CNN-based
ndices  (AUC-ROC  =  0.97,  AUC-PRC  =  0.83).  The  age  (54%),
he  SatO2/FiO2  (14%),  the  lymphocyte  count  (10%),  the  LDH
8%),  the  CNN-based  index  for  lung  consolidation  on  CXR
7%),  the  platelets  count  (4%)  and  the  D-dimer  level  (3%)
ere,  in  this  order,  the  most  weighted  predictors  of  in-
ospital  mortality  (Fig.  4).  A  decrease  in  these  metrics  is
bserved  when  the  CNN-based  indices  are  removed  from
he  model  (AUC-ROC  =  0.97,  AUC-PRC  =  0.78)  but  an  improve-
ent  on  the  PPV  and  specificity  of  the  model  is  achieved
y  means  of  threshold  optimization  with  the  Youden  index
Table  4).  In  this  case,  the  age  (43%),  the  SatO2/FiO2  (20%),
he  CRP  (15%),  the  LDH  (7%),  the  ExtScoreCXR  (6%),  the  lym-
hocyte  count  (6%)  and  the  D-dimer  level  (3%)  were,  in  this
rder,  the  most  weighted  predictors.  There  were  no  sta-
istically  significant  differences  in  terms  of  the  AUC-ROC
etween  the  models  with  and  without  CNN-based  indices
p-value  =  0.315),  suggesting  that  the  addition  of  the  AI

arameters  does  not  offer  a  significant  additional  improve-
ent  on  the  model  performance.  Fig.  6  shows  the  ROC  and

he  PRC  curves  of  the  internal  validation  performed  with
n  unseen  dataset  for  a  selection  of  three  classification
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Table  4  Metrics  of  the  severity  and  mortality  predictive  models.  Performance  metrics  of  the  internal  validation  performed  with  an  unseen  dataset  for  each  of  the  selected
severity and  in-hospital  mortality  predictive  models  built  with  three  different  combinations  of  parameters.  The  Youden  index  was  used  for  the  optimal  threshold  selection  of
the classification  models.  RF:  Random  Forest,  GB:  Gradient  Boosting.

SEVERITY  PREDICTIVE  MODELS

Combination  of  parameters  Sensitivity  (%)  Specificity  (%)  PPV  (%)  NPV  (%)  AUC-ROC  (%)  AUC-PRC  (%)

Epidemiological  and  Radiological  92.5  68.2  59.8  93.6  85.7  71.3
Epidemiological,  Radiological,

Clinical  and  Laboratory
83.1  87.9  77.5  95.1  93.8  87.6

Epidemiological,  Radiological,
Clinical,  Laboratory  and  CNN-based

86.4  84.1  72.5  96.7  91.4  82.3

MORTALITY PREDICTIVE  MODELS

Combination  of  parameters  Model  Architecture  Sensitivity  (%)  Specificity  (%)  PPV  (%)  NPV  (%)  AUC-ROC  (%)  AUC-PRC  (%)

Epidemiological  and  Radiological  RF  71.8  90.3  59.5  92.2  86.7  69.3
Epidemiological,  Radiological,

Clinical  and  Laboratory
GB  90.0  93.7  69.2  98.3  96.5  77.9

Epidemiological,  Radiological,
Clinical,  Laboratory  and  CNN-based

GB  90.0  92.1  64.3  98.3  97.1  83.4
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P.  Calvillo-Batllés,  L.  Cerdá-A

ortality  models  built  with  three  different  combinations  of
eatures.

iscussion

n  this  study,  the  presence  and  extent  of  lung  involvement
n  the  initial  CXR  of  COVID-19  patients  has  a  prognostic
alue.  In  the  univariable  analysis  the  ExtScoreCXR  showed
oderate  correlation  with  the  severity  level  and  mortality,

nd  in  the  first  developed  multivariable  models  based  on
ge,  gender  and  radiological  features,  the  ExtScoreCXR  was
he  strongest  predictor  of  severity  and  the  second  predictor
f  in-hospital  mortality  after  age.  However,  the  addition  of
ther  parameters  usually  registered  at  admission  significan-
ly  improved  the  predictive  accuracy  of  the  models.  These
esults  demonstrate  the  greatest  usefulness  of  CXR  score
s  a  prognostic  tool  in  COVID-19  when  considered  together
n  a  model  with  the  SatO2/FiO2,  the  age,  the  LDH,  the  lym-
hocyte  count,  the  CRP,  the  D-dimer  level  and  the  platelets.
he  distribution  and  the  density  of  opacities  were  not  strong
nough  to  remain  predictors  in  the  definitive  models  and
he  indices  of  CNN-based  diagnostic  tool  did  not  improve
ignificantly  the  predictive  metrics,  probably  because  the
xtension  was  not  quantified.  On  the  other  hand,  despite  a
areful  analysis  of  the  imaging,  overlapping  of  structures,
light  or  indeterminate  opacities  and  normal  CXR  are  not
ncommon  (31.8%  in  our  series).  Therefore  the  integra-
ion  of  the  ExtScoreCXR  into  a  prognostic  model  attempts
he  safe  decision-making,  avoiding  discharge  at  home  of
atients  requiring  hospital  care  and  unnecessary  hospital-
zations  or  CT  overuse.

We  also  confirmed  the  strong  negative  correlation
etween  lung  involvement  extent  and  SatO2/FiO2.  It  sup-
orts  the  widely  accepted  indication  of  CT  pulmonary
ngiography  in  case  of  oxygen  desaturation  or  dyspnea  and
ormal  or  mild  lung  involvement  on  CXR,18 looking  for
xtended  slight  lung  opacities  not  visible  on  CXR  or  pul-
onary  thrombosis/embolism.19 In  concordance  with  this,  in
oth  developed  prognostic  models  the  SatO2/FiO2  showed
o  be  a  strong  predictor.

In  the  literature,  COVID-19  CXR  opacification  rating
cores  in  ED  were  predictive  of  risk  for  hospital  admis-
ion  and  intubation  in  patients  aged  21-506 and  of  time  to
ntubation,  independent  of  comorbidities.8 The  extent  of
ung  involvement  was  also  associated  to  worse  outcomes  in
evere  acute  respiratory  syndrome.20,21

The  most  reported  predictors  of  severe  prognosis  in
atients  with  COVID-19  included  age,  sex,  features  derived
rom  CT,  CRP,  LDH,  and  lymphocyte  count11,22 and  the  most
ublished  predictors  of  mortality  are  older  age23---25 and  D-
imer  level.22,23 These  predictors  coincide  with  most  of
hose  we  have  observed  in  the  multivariable  analysis  and
ncluded  in  the  predictive  models.

Days  with  symptoms,  clinical  presentation,  institutional-
zation,  comorbidities  and  the  rest  of  CXR  features  did  not
how  enough  predictive  power  (variable  importance  <1%)  to
e  included  in  the  models.  The  number  of  days  with  symp-

oms  on  arrival  of  patients  to  ED  was  not  related  to  the
ung  involvement  extension.  In  other  series  neither  a  sig-
ificant  difference  was  identified  between  the  severe  and
on-severe  patients,  regarding  the  median  days  from  symp-
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om  onset  to  hospital  admission.26 Tobacco,  comorbidities  as
besity,  hypertension,  diabetes,  cardiovascular  disease,  res-
iratory  diseases,  cancer  history  and  the  presence  of  fever,
yspnea,  haemoptysis  and  unconsciousness,  were  also  asso-
iated  to  a  worse  prognosis  in  some  publications,25,27---29 but
ot  in  our  study.  There  is  probably  a  data  collection  bias
rom  the  medical  records,  especially  obesity  may  be  under-
eported.  But  apparently,  the  comorbidities  and  symptoms
ave  a  lower  relative  predictor  weight  with  respect  to  the
efinitive  variables  of  the  models.  The  larger  impact  of  the
atO2/FiO2,  the  ExtScoreCXR  and  the  laboratory  parameters
aises  the  need  of  performing  these  tests  to  all  COVID-19
atients  with  respiratory  symptoms  or  persistent  systemic
ymptoms.  This  prognostic  approach  could  early  identify
atients  who  would  benefit  from  more  specific  treatment
r  hospitalization.

The  National  Early  Warning  Score  2  (NEWS2),  based  on
ital  signs,  is  the  most  used  score  in  ED.  Its  predictive
ccuracy  in  COVID-19  patients  is  higher  than  other  clinical
isk  scores.30,31 Nevertheless,  the  models  developed  in  this
tudy  exceed  this  accuracy  with  an  AUC-ROC  =  0.94  and  an
UC-ROC  =  0.97  for  severity  and  mortality  respectively,  as
xpected  because  the  addition  of  other  relevant  variables.

 specific  COVID-19  risk  score  was  developed  to  predict  clin-
cal  illness  at  admission  with  ten  variables  including  the  CXR
bnormality  as  predictor,  but  without  extent  assessment;  it
howed  an  AUC-ROC  of  0.88.29 Another  multivariable  model
ncluding  CXR  at  admission  was  constructed  to  predict  criti-
al  illness  in  hospitalized  COVID-19  patients.7 The  predictors
hat  remained  in  the  model  were  male  gender,  obstructive
ung  disease,  symptom  duration  >  7  days,  neutrophil  count,
PR,  LDH,  distribution  of  lung  disease  and  CXR  score,  with  an
UC-ROC  =  0.77.  The  CPR,  the  LDH  and  the  lung  involvement
xtension  on  CXR  are  also  included  in  our  final  model  but
here  are  no  further  coincidences  in  the  rest  of  predictors.
his  is  probably  explained  by  the  different  model  develop-
ent  methodologies  including  a  different  feature  selection

trategy,  as  they  used  a univariable  statistical  test  and  we
ased  our  selection  on  the  correlation  between  parameters
nd  with  respect  to  the  clinical  outcome.  Other  discrepan-
ies  include  the  data  pre-processing  steps,  as  we  included  a
ombination  of  some  over-  and  under-sampling  techniques
s  well  as  data  standardization;  and  the  consideration  of
ifferent  model  architectures,  as  they  employed  a  multi-
ariable  logistic  regression,  which  relies  on  transformations
or  non-linear  features.  In  order  to  overcome  this  issue,  we
ested  three  different  model  architectures:  Support  Vector
achine,  Random  Forest  and  Gradient  Boosting,  which  can
andle  non-linear  features  as  well  as  their  interactions,  and
erform  well  in  a large  feature  space.

As  potential  sources  of  bias,  the  severity  level  is  a
ecision-based  clinical  outcome,  unlike  mortality.  In  order
o  reduce  this  bias  we  grouped  at  level  0  not  only  home
ischarge  from  the  ED  but  also  hospitalization  ≤  3  days.
n  addition,  the  follow-up  of  at  least  2  months  included
atients  who  returned  to  the  hospital.  In  these  cases  all
he  variables  collected  were  also  those  obtained  from  the
rst  visit  to  the  ED  but  the  event  considered  as  outcome

as  the  most  severe.  In  fact,  the  proportion  of  the  most

evere  patients  (22%)  was  within  the  range  published  in
onger  series  (15-36%).32,33
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Figure  6  The  ROC  (up)  and  the  PRC  (down)  curves  of  the  internal  validation  performed  with  an  unseen  dataset  for  the  in-
hospital mortality  predictive  models  (SVM:  Support  Vector  Machine  (blue),  RF:  Random  Forest  (green),  GB:  Gradient  Boosting)
(orange) built  with  three  different  combinations  of  parameters  (A:  epidemiological  and  radiological  parameters,  B:  epidemiological,
r ical,
T
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he corresponding  values  of  AUC  are  shown.

Regarding  the  proposed  method  to  quantify  the  extent
f  lung  involvement  (ExtScoreCXR),  we  have  not  ana-
yzed  interobserver  agreement.  On  the  other  hand,  a  good
nterobserver  agreement  was  demonstrated  with  the  use
f  Brixia,  a  more  complex  score  designed  for  COVID-19
atients,9 and  coincidentally  we  have  used  the  same  score
s  other  authors,  who  have  recently  published  its  good  cor-
elation  with  Brixia  score.15

The  internal  validation  was  performed  with  88  cases.
owever,  it  has  been  reported  that  a  minimum  sample
ize  of  100  is  recommended  in  order  to  achieve  a robust
alidation.34 An  external  validation  with  cases  from  other
ospitals  is  desirable  to  assess  the  generalizability  and  the
otential  use  of  the  developed  models  in  daily  clinical  prac-
ice.

In  conclusion,  the  developed  multivariable  prognosis  pre-
iction  models  showed  a  high  predictive  accuracy  that  could
llow  triage  of  symptomatic  COVID-19  patients  at  ED  to
mprove  the  decision-making.  The  application  to  estimate
he  severity  level  and  the  in-hospital  mortality  is  available
n  http://upv.datahub.egi.eu:30054/hulafecovid19models.
t  should  be  validated  at  different  ED  for  both  COVID-19  and
ther  viral  infections  with  similar  behaviour.
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