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Introduction
Cell fusion is an important developmental event, from sperm–

egg fusion during fertilization to syncytium formation in the 

 development of placenta, muscle, and certain hematopoietic 

cell types. Although detailed mechanistic characterizations have 

been performed for virus–cell fusion and vesicle– organelle 

 fusion, the molecular events mediating cell–cell fusion are poorly 

understood. In virus and vesicle fusion, a protein  machine—

a fusase—assembles between the fusing bilayers such that it 

spans both membranes (Hernandez et al., 1996). For infl uenza 

virus, the fusase is the hemagglutinin protein, which is an-

chored in the viral membrane and inserts itself into the target 

membrane (Ramalho-Santos and de Lima, 1998; Skehel and 

Wiley, 2000), whereas for vesicle–organelle fusion, the inter-

action of cognate SNARE family transmembrane proteins 

 results in the assembly of a multiprotein complex anchored 

in both vesicle and target membranes (Weber et al., 1998). 

Hemagglutinin and the SNARE complex each adopt a coiled-coil 

structure that undergoes a series of conformational changes 

to winch the two bilayers into close proximity (Wilson et al., 

1981; Sutton et al., 1998). During this process, the bilayer 

structure becomes distorted, and water separating the apposing 

membranes is squeezed out, initiating fusion (Hughson, 1995; 

Harbury, 1998).

A similar fusase mediates cell fusion during placental 

 development: syncytin, a protein encoded by a retrovirus-derived 

gene, is necessary and suffi cient for placental cell fusion 

(Mi et al., 2000). However, no analogous fusases have been identi-

fi ed in muscle precursors, sperm or egg, or other cells that fuse. 

Over a dozen proteins required for myoblast or osteoclast/macro-

phage fusion have been identifi ed, but many of these proteins 

promote early steps, including cell migration and adhesion, 

rather than the later step of cell fusion (Han et al., 2000; Dworak 

and Sink, 2002). Likewise, in sperm–egg fusion, the fertilin 

complex was initially recognized as bearing hallmarks of a 

fusase (it contains a hydrophobic peptide capable of inserting 

into a membrane, and experimentally blocking fertilin function 

prevents fusion), yet fertilin knockout mice are primarily defec-

tive in sperm migration into the oviduct and binding to the 

zona pellucida that surrounds the egg, with a much weaker 

 defect at the fi nal step of cell fusion (Blobel et al., 1992; Cho 

et al., 1998, 2000).
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A few proteins likely to act late in cell fusion, possibly at 

the ultimate step of membrane fusion, have been identifi ed. 

EFF-1, a single-pass transmembrane protein, is required for 

syncytia formation in the hypodermal cells of Caenorhabditis 
elegans (Mohler et al., 2002) and, when ectopically expressed, 

is suffi cient to fuse cells that do not normally fuse (Shemer 

et al., 2004; del Campo et al., 2005; Podbilewicz et al., 2006), 

thus making it an excellent candidate fusase. Two proteins, 

CD9 and CRISP-1, are important for sperm–egg fusion and 

seem to act after the initial steps of cell adhesion. CD9 is a 

multispanning membrane protein in the oocyte plasma mem-

brane, and oocytes from mice lacking CD9 adhere normally to 

sperm but do not fuse with them (Kaji et al., 2000; Le Naour 

et al., 2000; Miyado et al., 2000). CRISP-1 is a peripherally 

 associated membrane protein on the surface of sperm that, 

when blocked, prevents sperm–egg fusion but not adhesion 

(Cuasnicu et al., 2001).

Yeast mating offers a genetically powerful system in 

which to identify factors controlling the late steps of cell fusion. 

During yeast mating, haploid cells of mating types MATa 

and MATα secrete pheromone (MATa cells make a-factor, 

and MATα cells make α-factor), which is detected by a 

G- protein–coupled receptor on the complementary cell type, 

initiating a MAPK signaling cascade that results in G1 cell 

cycle arrest, polarized growth in the direction of highest phero-

mone concentration, and transcriptional up-regulation of �100 

genes (Herskowitz, 1995). The mating partners adhere to one 

 another through interactions in the cell wall to produce a mating 

pair. Finally, in a process whose molecular details have only 

begun to come to light, a small region of the cell wall at the 

interface between the mating partners is degraded, the mating 

partners’ plasma membranes become apposed, and, fi nally, cell 

fusion occurs.

Numerous attempts to identify the cell fusion machinery 

have identifi ed factors that are required for cell wall degrada-

tion at multiple steps, from regulating cell wall remodeling and 

secretory vesicle traffi cking to the maintenance of osmotic 

 integrity (Trueheart et al., 1987; Kurihara et al., 1994; Philips 

and Herskowitz, 1997, 1998; Brizzio et al., 1998). However, 

none of these genetic screens have identifi ed genes that seem 

to act at the fi nal step in cell fusion: the merging of plasma 

membrane bilayers. Previously, we designed a reverse genetic 

approach aimed at uncovering the fusion machinery (Heiman 

and Walter, 2000). We reasoned that the cell fusion machinery 

that acts during mating probably includes a transmembrane 

protein expressed specifi cally in response to mating phero-

mone. We began studying pheromone-regulated membrane 

proteins (PRMs), and, using the data-mining program Web-

miner (http://genome-www.stanford.edu/webminer), we iden-

tifi ed the membrane protein most induced by pheromone, 

Prm1, and characterized its role in membrane fusion (Heiman 

and Walter, 2000).

Prm1 is a multispanning membrane protein that is not 

 expressed under standard growth conditions but is induced in both 

mating types in response to pheromone (Heiman and Walter, 

2000). It localizes to the site of cell fusion. If either mating part-

ner lacks Prm1, �10% of mating pairs fail to fuse, but if both 

mating partners lack Prm1, �50% of mating pairs fail to fuse 

(Heiman and Walter, 2000). When we examined ∆prm1 × 

∆prm1 mating pairs by electron microscopy, we observed a 

morphology never before seen. In some mating pairs, the cell 

wall had been degraded, and the plasma membranes had become 

apposed yet failed to fuse (Heiman and Walter, 2000). This 

 result indicates that Prm1 facilitates the fi nal step in cell fusion, 

that of plasma membrane fusion (White and Rose, 2001).

However, Prm1 cannot constitute the complete machinery. 

Even in its absence, about half of all mating pairs still 

fuse, indicating that Prm1 either facilitates the action of a yet 

unidentifi ed fusase or that Prm1 is itself a fusase and one or 

more alternative fusases exist. Intriguingly, ∆prm1 mating pairs 

frequently lyse when attempting to fuse, suggesting the remain-

ing presence of an active but dysregulated fusase (Jin et al., 

2004). Among ∆prm1 mating pairs that are capable of fusion, 

the initial permeance and expansion rate of the fusion pore are 

slightly decreased, indicating a role for Prm1 in fusion pore 

opening; however, the subtlety of this defect again points to the 

presence of a redundant fusion activity (Nolan et al., 2006). The 

notion of an additional fusion machinery that is regulated by or 

acts in parallel to Prm1 implies that the disruption of additional 

components should create more severe blocks to membrane 

 fusion than can be achieved by disrupting PRM1 alone. In this 

study, we have exploited this prediction to design a genetic 

screen that led to the identifi cation of a gene acting in conjunc-

tion with PRM1 to promote cell fusion.

Results
A genetic screen for enhancers 
of the 𝚫prm1 mating defect identifi es 
mutations in KEX2
To identify factors required for Prm1-independent cell fusion, 

we screened for mutants that enhance the ∆prm1 × ∆prm1 

 mating defect. We performed random mutagenesis of a ∆prm1 

MATa strain bearing a selectable marker. We then plated the 

mutants, allowed them to form small colonies, and replica 

plated them to a lawn of ∆prm1 MATα cells bearing a different 

selectable marker. We allowed mating to occur and replica 

plated to a medium selective for auxotrophic markers of both 

parent strains, thus allowing the growth only of diploids that 

arose during mating. Each mutant colony from the original plate 

resulted on the fi nal selective plate in a small patch with many 

diploid microcolonies emerging from it as papillae (Fig. 1 A). 

The density of diploid papillae within each patch refl ected the 

mating effi ciency of the mutant that gave rise to it. Using this 

replica mating assay, we screened for mutants in the ∆prm1 

background that mated poorly to a ∆prm1 partner.

In addition to mutants in the PRM1-independent fusion 

pathway, we expected to fi nd sterile mutants not relevant to 

this study. To distinguish these classes, we tested the ability 

of each mutant to mate to a wild-type (WT) partner. Mutants 

that mated poorly to a WT partner were considered sterile and 

were discarded.

To further characterize the remaining mutants, we per-

formed a backcross to ensure that the observed phenotypes 
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segregated as single mutations. To our surprise, 4/10 mutants 

revealed a new phenotype after backcrossing. MATα progeny 

bearing these mutations, but not MATa progeny, displayed 

complete sterility whether mated to a WT or ∆prm1 partner. 

Therefore, we assumed that a set of mutations enhancing the 

∆prm1 phenotype in MATa cells causes sterility in MATα 
cells. Because sterility was easier to score, we used comple-

mentation cloning to isolate the gene responsible for the 

MATα-specifi c sterility in one of the mutants. The remaining 

mutants were not characterized further. We recovered four 

 genomic fragments that restored mating to this mutant. These 

fragments overlapped in a region containing the coding 

 sequence of KEX2.

Kex2 functions as a protease in the Golgi apparatus that 

processes several proteins traversing the secretory pathway, 

 including the α-factor mating pheromone (Julius et al., 1983; 

Fuller et al., 1989). This essential role of Kex2 in the processing 

of prepro–α-factor readily explains why MATα ∆kex2 mutants 

are sterile. In contrast, Kex2 does not process the a-factor 

 mating pheromone, and MATa ∆kex2 mutants do not display 

pheromone response defects, making it unlikely that the 

 observed mating defect results from impairment of the phero-

mone signaling pathway (Leibowitz and Wickner, 1976).

As expected, a MATα ∆kex2 ∆prm1 mutant was sterile in 

our assay (unpublished data). In contrast, a MATa ∆kex2 ∆prm1 

mutant mated effi ciently to a WT partner but poorly to a ∆prm1 

partner. Although we could not detect the weakly penetrant 

∆prm1 × ∆prm1 phenotype by replica mating, the more severe 

phenotype of a ∆prm1 ∆kex2 × ∆prm1 mating was readily 

 apparent (Fig. 1 B).

Loss of Kex2 synergizes with the loss 
of Prm1 to impair mating at the cell 
fusion step
To learn whether Kex2 acts in cell fusion, we used a quantitative 

cell fusion assay as previously described (Heiman and Walter, 

2000). Mating partners carrying deletions in PRM1, KEX2, 

both, or neither were mixed and allowed to mate. One partner 

expressed soluble cytoplasmic GFP to serve as a marker for cy-

toplasmic mixing. Mating pairs were examined by fl uorescence 

microscopy. Mating pairs with GFP throughout their volume 

were scored as fused, whereas mating pairs in which GFP 

 remained restricted to one partner were scored as unfused 

(Fig. 2). By counting the ratio of fused to total mating pairs, we 

quantitated the effi ciency of cell fusion. This assay differs from 

replica mating in that it scores only the cell fusion step of 

 mating rather than the entire mating process.

In agreement with our previous results (Heiman and Walter, 

2000), we observed in control mating reactions that the deletion 

of PRM1 from both mating partners creates a substantial block to 

cell fusion compared with WT (Fig. 2, compare bar 1 with 7), 

whereas the deletion of PRM1 from either mating partner alone 

produces a barely perceptible decrease in fusion effi ciency 

(Fig. 2, compare bars 1, 3, and 5; Heiman and Walter, 2000).

Interestingly, the loss of KEX2 in the MATa partner alone 

decreases fusion by 15% compared with WT (Fig. 2, bars 1 and 2), 

Figure 1. Replica mating strategy to isolate enhancers of 𝚫prm1. (A) A 
∆prm1 MATa strain was mutagenized and plated to form colonies. Colo-
nies were replica plated to a lawn of ∆prm1 MATα mating partner on a 
YPD plate and incubated at 30° for 8 h. The mating was then replica 
plated to medium selective for diploids. Mutant colonies yielding a low 
density of diploid papillae (arrow in right panel) were identifi ed. (B) 
Patches of WT, ∆prm1, and ∆prm1 ∆kex2 MATa haploids were replica 
mated as in A to a lawn of ∆prm1 MATα mating partner. The resulting dip-
loid papillae are shown.

Figure 2. 𝚫kex2 enhances the 𝚫prm1 cell fusion defect. (top) ∆kex2 
MATa cells were mixed with WT MATα cells expressing soluble cytosolic 
GFP as a reporter of cytoplasmic mixing between mating partners. This 
mixture was applied to a nitrocellulose fi lter and incubated at 30°C for 3 h 
on a YPD plate. Fluorescent micrographs showing the GFP-stained cyto-
plasm were superpositioned over brightfi eld images of the mating pairs. 
(bottom) Mating mixes in which mating partners carried deletions of PRM1, 
KEX2, both, or neither were prepared as described for the top panel. In all 
cases, the MATα partner carried soluble cytosolic GFP. Mating pairs were 
visually identifi ed and scored with regard to cell fusion by microscopy. 
Bars represent the mean percentages of mating pairs that scored as fused 
in three independent experiments. Error bars represent SD. During each 
experiment, 300 mating pairs per mating mix were counted. All matings 
are written in the form MATa × MATα: WT × WT, 98.2 ± 0.6%; ∆kex2 × 
WT, 83.2 ± 2.3%; WT × ∆prm1, 94.8 ± 1.4%; ∆kex2 × ∆prm1, 43.6 ± 
4.6%; ∆prm1 × WT, 95.9 ± 1.6%; ∆prm1 ∆kex2 × WT, 86.3 ± 
1.6%; ∆prm1 × ∆prm1, 62.4 ± 6.8%; and ∆prm1 ∆kex2 × ∆prm1, 
18.5 ± 1.2%.
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thereby demonstrating a role for Kex2 in MATa cells in cell 

 fusion. Although the defect was small, it was highly reproducible. 

Because of the role of Kex2 in α-factor processing, we could 

not reciprocally assay MATα ∆kex2 mutants.

 We observed a markedly greater Kex2 dependency of cell 

fusion in mating reactions in which both partners lacked Prm1. 

The effi ciency of cell fusion in ∆kex2 ∆prm1 × ∆prm1 mating 

pairs is 70% lower than that in ∆prm1 × ∆prm1 mating pairs 

(Fig. 2, bars 7 and 8). Thus, the ∆kex2 mutation unilaterally and 

potently enhances the otherwise weakly penetrant ∆prm1 

 fusion phenotype.

The Kex2 dependency of mating reactions in which only 

one partner expresses Prm1 proved more complicated. Mating 

pairs in ∆kex2 × ∆prm1 mating reactions fuse with a much re-

duced effi ciency compared with WT × ∆prm1 mating reactions 

(Fig. 2, bars 3 and 4). In contrast, ∆kex2 ∆prm1 × WT mating 

reactions do not differ greatly from ∆prm1 × WT matings (Fig. 

2, bars 5 and 6). In other words, the ∆kex2 mutation produces a 

much stronger effect when placed in trans rather than in cis to 

the ∆prm1 mutation.

Processing by Kex2 and Kex1 but not 
Ste13 synergizes with Prm1 in cell fusion
The Kex2 protease has been extensively characterized (Rock-

well et al., 2002). In brief, Kex2 acts as a furin-type endopepti-

dase that cleaves substrate proteins at dibasic sequence LysArg 

sites as the proteins traverse the Golgi apparatus. For many sub-

strates such as α-factor, the initial Kex2 cleavage is followed by 

the action of two exopeptidases, which trim the newly exposed 

ends: Kex1, a carboxypeptidase, removes the LysArg sequence 

from the C terminus of the N-terminal fragments, whereas 

Ste13, an aminopeptidase, removes pairs of residues (preferring 

X-Ala sequences) from the N terminus of the C-terminal 

fragments.

To test whether Kex1 or Ste13 also affects cell fusion, 

we subjected ∆kex1 and ∆ste13 mutants to the same genetic 

analysis we used with ∆kex2 mutants. We conducted mating 

 reactions in which the partners lacked either Prm1 or Kex1 in 

all combinations or Prm1 or Ste13 in all combinations and 

 assayed the resulting mating pairs for fusion using the GFP 

mixing assay.

As shown in Fig. 3, a ∆kex1 mutant displays a slight but 

reproducible fusion defect when crossed to a WT partner (Fig. 

3 A, bars 1 and 2). This defect was enhanced when we intro-

duced a ∆prm1 mutation in trans but not in cis (Fig. 3 A, bars 3 

and 4 and bars 5 and 6, respectively). Finally, the most severe 

defect occurred when we introduced a ∆kex1 mutation into a 

∆prm1 × ∆prm1 cross, which reduced the number of success-

ful fusions by more than half (Fig. 3 A, bars 7 and 8). Thus, the 

effects of the ∆kex1 mutation qualitatively phenocopy those of 

the ∆kex2 mutation, although the ∆kex1 mutation produces 

slightly milder fusion defects.

In contrast, the deletion of STE13 from a WT × WT mat-

ing reaction produced no substantial difference in cell fusion 

(Fig. 3 B, bars 1 and 2). Furthermore, ∆ste13 did not enhance 

the ∆prm1 fusion phenotype when placed in trans or in cis (Fig. 

3 B, bars 3 and 4 and bars 5 and 6, respectively). Finally, when 

introduced into a ∆prm1 × ∆prm1 mating, the ∆ste13 mutation 

did not appreciably reduce mating (Fig. 3 B, bars 7 and 8). 

These results demonstrate that the complement of proteases 

 required to promote cell fusion in MATa cells is distinguishable 

from that required for α-factor processing.

The 𝚫kex2 fusion defect is not caused 
by inactivation of a previously known 
substrate or either of two novel substrates
The dependency of cell fusion on Kex2 and Kex1 suggests the 

existence of a proteolytically activated protein that facilitates 

fusion. To try to identify such a protein, we generated strains 

carrying deletions of known Kex2 substrates and assayed their 

fusion effi ciencies.

Among known Kex2 substrates are cell wall glucosidases 

such as Scw4 and Scw10 (Basco et al., 1990; Mrsa et al., 1997; 

Cappellaro et al., 1998) and cell wall structural components such 

as Hsp150 (Russo et al., 1992). We systematically generated 

deletions in eight known Kex2 substrates and mated each  mutant 

to a WT or ∆prm1 mating partner (Fig. 4 A). If proteolytic 

Figure 3. 𝚫kex1 but not 𝚫ste13 enhances the 𝚫prm1 cell fusion defect. 
Mating mixes in which mating partners carried deletions of PRM1, KEX1, 
or STE13 singly or in combination were subjected to fi lter matings followed 
by microscopic inspection of mating pairs, and fusion effi ciencies were 
quantitated using the GFP mixing assay as described in Fig. 2. All matings 
presented in this fi gure were conducted in parallel, and three independent 
trials were performed, with 300 mating pairs per mating mix counted each 
time. All matings are written in the form MATa × MATα. (A) Matings with 
deletions of KEX1: WT × WT, 92.9 ± 2.3%; ∆kex1 × WT, 78.8 ± 8.6%; 
WT × ∆prm1, 91.5 ± 2.8%; ∆kex1 × ∆prm1, 64.5 ± 7.7%; ∆prm1 × 
WT, 90 ± 4.2%; ∆prm1 ∆kex1 × WT, 81.3 ± 6.9%; ∆prm1 × ∆prm1, 
68.7 ± 1.6%; and ∆prm1 ∆kex1 × ∆prm1, 30.4 × 3.0%. (B) Matings 
with deletions of STE13: WT × WT, 92.9 ± 2.3%; ∆ste13 × WT, 90.1 ± 
4.5%; WT × ∆prm1, 91.5 ± 2.8%; ∆ste13 × ∆prm1, 90.1 ± 4.5%; 
∆prm1 × WT, 90 ± 4.2%; ∆prm1 ∆ste13 × WT, 86.1 ± 5.2%; ∆prm1 × 
∆prm1, 68.7 ± 1.6%; and ∆prm1 ∆ste13 × ∆prm1, 59.7 ± 5.6%. Error 
bars represent SD.
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 activation of a given substrate is required for fusion, we ex-

pected the loss of that substrate to phenocopy the loss of Kex2; 

it should display a mild decrease in fusion when crossed to a 

WT partner and a more severe decrease when crossed to a 

∆prm1 partner. As shown in Fig. 4 A, none of the mutants 

displayed such a fusion defect. Thus, the ∆kex2 fusion defect 

does not result from the inactivation of any one of these 

 substrates singly.

Some of these Kex2 substrates may act redundantly and 

only show a phenotype when removed in combination. For ex-

ample, it has been shown that the lack of Scw4 or Scw10 alone 

causes a very mild cell wall defect, but the loss of both results 

in extreme weakening of the cell wall and a mating defect 

(Cappellaro et al., 1998). We tested the ∆scw4 ∆scw10 double 

mutant in our fusion assays and saw no effect with a WT or 

∆prm1 mating partner (Fig. 4 A) or with a ∆scw4 ∆scw10 mat-

ing partner (unpublished data). It remains possible that inactiva-

tion of some other combination of known Kex2 substrates 

would recapitulate the ∆kex2 fusion defect.

We hypothesized that there might be an additional, un-

identifi ed Kex2 substrate that mediates Kex2-dependent fusion. 

We designed a bioinformatics screen to attempt to identify such 

a substrate. In brief, we developed a scoring matrix based on the 

cleavage site sequences of known substrates and used it to rank 

potential cleavage sites in all other Saccharomyces cerevisiae 

proteins, discarding high-scoring candidate sites that are not 

conserved among closely related yeasts or that are predicted to 

be cytoplasmic (Table S1, available at http://www.jcb.org/cgi/

content/full/jcb.200609182/DC1). We tested 11 proteins with 

the highest ranked candidate sites by generating epitope-tagged 

alleles of each in WT and ∆kex2 backgrounds and performing 

SDS-PAGE and Western blotting of cell lysates. With this ap-

proach, we identifi ed two new Kex2 substrates, Prm2 and 

Ykl077w (Fig. 4 B).

Prm2 is predicted to be a pheromone-regulated multispan-

ning membrane protein with a topology similar to Prm1 and 

was identifi ed in the bioinformatics screen that led to the char-

acterization of Prm1 (Heiman and Walter, 2000). Ykl077w is an 

uncharacterized protein predicted to have a large (�300 amino 

acid) extracellular/lumenal domain and a single transmembrane 

segment. Both proteins showed a shift in apparent molecular 

weight in a ∆kex2 mutant background that is consistent with 

Kex2-dependent proteolysis (Fig. 4 B).

We generated ∆prm2 and ∆ykl077w mutants and tested 

them in our fusion assays. Neither mutant showed a defect with 

WT or ∆prm1 mating partners (Fig. 4 A). Thus, although we 

were able to identify two novel Kex2 substrates, neither appears 

to be the hypothetical substrate relevant to fusion. It may be that 

another, currently unidentifi ed substrate or a combination of 

 redundant Kex2 substrates acts during cell fusion.

𝚫kex2 shares a spectrum of phenotypes 
with other cell wall mutants but uniquely 
enhances the 𝚫prm1 cell fusion defect
We asked whether the sum of physiological effects resulting 

from a lack of processing of Kex2 substrates might explain the 

∆kex2 fusion defect. For example, cells lacking Kex2 display a 

weakened cell wall phenotype, as assayed by the up-regulation 

of cell integrity pathway target genes and hypersensitivity to the 

cell wall–binding dye Congo red (Tomishige et al., 2003). Cell 

wall stress is known to induce the PKC signaling pathway, 

which can inhibit cell fusion (Philips and Herskowitz, 1997). 

Thus we next asked whether cell wall stress could explain the 

cell fusion defect caused by the loss of Kex2.

To this end, we fi rst established whether the PKC cell in-

tegrity pathway is activated in ∆kex2, ∆kex1, and ∆prm1 mutant 

cells. Cell wall stress and low osmolarity signals activate Pkc1 

through the Bck1 MAPK module, eventually leading to activa-

tion of the transcription factor Rlm1, which activates the tran-

scription of many genes, including MPK1 (Banuett, 1998). 

Thus, an MPK1-lacZ reporter gene has been used to detect acti-

vation of the PKC cell integrity pathway (Jung and Levin, 1999; 

Muller et al., 2003). We grew strains bearing the MPK1-lacZ 

reporter overnight with or without the addition of 1 M sorbitol 

as osmotic support, harvested cultures in exponential phase, and 

assayed for reporter activity during vegetative growth or after 

exposure to α-factor pheromone (Fig. 5 A). 

WT cells show enhanced MPK1 activation upon α-factor 

treatment, as expected from the cell wall remodeling that ac-

companies the pheromone response. The presence of osmotic 

Figure 4. Deletion of known Kex2 substrates fails to enhance the 𝚫prm1 
fusion defect in trans. (A) MATa strains bearing deletions of genes for 
known Kex2 substrates were crossed to WT or ∆prm1 MATα strains. After 
fi lter mating and fi xation, 100 mating pairs per experiment were scored 
for cytoplasmic mixing; data shown are derived from three independent 
experiments. (B) Kex2-dependent mobility shift of Ykl077w and Prm2 was 
assayed by Western blotting. Protein was prepared from whole cell lysates 
of vegetatively growing cultures (Ykl077w-HA strains) or α-factor–induced 
cultures (Prm2-HA strains; 10 μg/ml α-factor for 30 min). A likely degrada-
tion product of Ykl077w-HA (asterisk) is independent of Kex2.
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support slightly decreased MPK1 activation in WT cells (Fig. 

5 A, black bars). Note that ∆prm1 mutant cells were indistin-

guishable from WT in the absence and presence of α-factor, 

strongly suggesting that the deletion of PRM1 does not affect 

cell wall structure (Fig. 5 A). In contrast, ∆kex1 and ∆kex2 

 mutants showed enhanced baseline MPK1 activation (2.5- and 

6-fold greater than WT levels, respectively), which is consistent 

with a cell wall structural defect. The enhanced MPK1 activa-

tion was exacerbated by pheromone treatment and weakly miti-

gated by the presence of osmotic support (Fig. 5 A). ∆ste13 

mutants did not show these effects (unpublished data).

As a further measure of cell wall integrity, we assayed 

each mutant for Congo red sensitivity. Mutants with compro-

mised cell walls generally do not grow on media containing 

Congo red. Consistent with previously reported results, ∆kex2 

growth was severely inhibited on plates containing 100 μg/ml 

Congo red (Fig. 5 B; Tomishige et al., 2003), which is similar 

to the phenotype of the Kex2 substrate mutant ∆scw4 ∆scw10 

(Fig. 5 B; Cappellaro et al., 1998). In contrast, the viability of 

neither ∆kex1 nor ∆prm1 was affected by Congo red. Thus, as 

assayed by MPK1 activation and Congo red sensitivity, cell wall 

defects are severe in ∆kex2 mutant cells, mild in ∆kex1 mutant 

cells, and undetectable in ∆prm1 mutant cells.

Most cell wall defects manifest themselves as a result of a 

failure of the cell wall to provide a rigid support counteracting 

the outward force on the cell membrane caused by the osmotic 

imbalance between cytoplasm and the growth medium. Thus, 

we next asked whether osmotically stabilized medium (i.e., 

growth medium formulated at an osmolarity closer to that of 

cytoplasm), which relieves many phenotypes resulting from cell 

wall defects, could suppress the ∆kex2 cell fusion defect. Mat-

ing reactions were performed under standard conditions with or 

without 1 M sorbitol, and fused mating pairs were counted in 

the quantitative cell fusion assay. As controls, we showed that 

bilateral crosses of the classical cell wall remodeling mutants 

∆fus1 and ∆fus2 were partially suppressed by mating on os-

motic support (Fig. 5 C). Surprisingly, we found that ∆prm1 

cells displayed a decreased fusion effi ciency in the presence of 

osmotic support (Fig. 5 C; a similar observation was reported 

by Jin et al. [2004]). The explanation for this decrease is not 

clear, but it suggests that the ∆prm1 defect is distinct from cell 

wall stress. In contrast, the mild ∆kex2 × WT defect was sup-

pressed by osmotic support (Fig. 5 C), as was the ∆kex1 × WT 

defect (not depicted). The strongly defi cient ∆kex2 × ∆prm1 

mating was partially suppressed, but, importantly, fusion was 

not restored to WT levels. Thus, ∆kex2 and ∆kex1 behave simi-

larly to other fusion mutants known to affect cell wall degrada-

tion, whereas ∆prm1 does not.

If cell wall defects caused by the loss of Kex2 are respon-

sible for strongly enhancing the ∆prm1 fusion defect, we expect 

other mutants with similar cell wall defects also to synergize 

with ∆prm1 in a fusion assay; alternatively, if the failure to pro-

cess Kex2 substrates that act specifi cally with Prm1 causes the 

enhanced fusion defect, other cell wall mutants will not syner-

gize with ∆prm1. To distinguish these possibilities, we mated 

strains bearing a ∆fus1, ∆fus2, or PKC1-R398P (a gain of func-

tion allele that mimics constitutive cell wall stress; Nonaka et al., 

1995) mutation to a ∆prm1 partner and scored mating pairs with 

the cell fusion assay. Unlike ∆kex2 × ∆prm1, no combination of 

mutants in these mating reactions showed a synergistic defect 

(Fig. 5 D). Mating reactions with the cell wall structure mutant 

∆scw4 ∆scw10 × ∆prm1 (Fig. 4 B) similarly did not produce a 

synergistic defect. Thus, collectively, ∆kex2 mutant cells experi-

ence cell wall stress and concomitantly increase MPK1 activa-

tion. However, those defects are not suffi cient to explain the 

unique synergy we observe between ∆kex2 and ∆prm1 mating 

partners. Therefore, these results strongly suggest that the syner-

gistic effect of the ∆kex2 and ∆prm1 mutations on cell fusion 

 results from combined defects in the cell fusion machinery.

𝚫kex2 mutants produce cytoplasmic blebs 
embedded in the cell wall
To characterize ultrastructurally the cell fusion intermediate 

at  which ∆kex2 × WT mating reactions arrest, we examined 

Figure 5. 𝚫kex1 and 𝚫kex2 mutants exhibit 
cell wall phenotypes similar to other mutants 
but are unique in synergizing with 𝚫prm1. (A) 
To assay activation of the cell integrity path-
way, WT, ∆prm1, ∆kex1, and ∆kex2 strains 
bearing an MPK1-lacZ reporter were grown to 
log phase without pheromone (– α-factor) or 
were treated with 10 μg/ml α-factor (+ α-factor) 
for 2 h, and β-galactosidase activity was 
quantifi ed. Values were normalized to that of 
uninduced WT. (B) Cells were grown to OD 
1.0 and spotted onto YPD plates with or with-
out 100 μg/ml Congo red in 1:5 serial dilu-
tions and were cultured for 2 d at 30°C. (C) 
Indicated crosses were performed by fi ltering 
mating mixtures onto nitrocellulose fi lters and 
incubating for 3 h on YPD or YPD supple-
mented with 1 M sorbitol. (A and C) Bars rep-
resent the mean ± SD (error bars) of three 
experiments. (D) Strains bearing deletions of 
FUS1 or FUS2 or expressing an activated 
 allele of PKC1 (PKC1-R398P) were mated to a 
∆prm1 partner for 3 h and assayed for cyto-
plasmic mixing.
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fusion-arrested mating pairs using electron microscopy. In the 

majority (80%) of unfused ∆kex2 × WT mating pairs, we ob-

served novel bleblike structures in the cell wall separating the 

two mating partners. Such cell wall–embedded blebs appear 

disconnected from both cells (Figs. 6 and 7). The blebs are 

bounded by a visible lipid bilayer (Figs. 6 E and 7, F and M; in 

other views, the bilayer is harder to discern because of the an-

gle of the section relative to the plane of the bilayer). A gap of 

a relatively consistent width of �8 nm separates the blebs 

from the plasma membrane that they appear adhered to (Figs. 

6, A, C, and E; and 7, F, J, and M). About 90% of the blebs ap-

pear preferentially linked to one mating partner, but �10% of 

the blebs closely approach the plasma membrane of the other 

mating partner as well (Figs. 6, B and C; and 7, F and M). In 

any given section, we observed numbers ranging from one 

bleb (Fig. 6, A and C) to one primary bleb with others clearly 

above or below it (Fig. 6, B and E), to two blebs side by side 

with their surfaces tightly apposed (Fig. 6 D), to a cascade of 

blebs spread out across the diameter of the cell–cell interface 

(Fig. 6 F). About 75% of unfused mating pairs have one to fi ve 

blebs, with 5% having more and 20% having none. In serial 

sections, we never detected a clear cytoplasmic continuity be-

tween a bleb and either mating partner. The texture of the 

staining inside the blebs often appears fi brous, unlike the regu-

lar punctate staining of ribosomes observed in normal cyto-

plasm (Fig. 6 D).

We examined the 3D structure and arrangement of blebs 

in more detail by serial section analysis. A representative set of 

serial sections is shown in Fig. 7. At one end of the series, the 

cell–cell interface appears restricted, and secretory vesicles are 

sparse, indicating the sections come from a region where the 

cells are just beginning to make contact off center of the long 

axis of the mating pair (Fig. 7, A and B). As the sections ap-

proach the center of the mating pair, the contact zone widens, 

the number of secretory vesicles in the cytoplasm increases, 

and a cell wall–embedded bleb appears (Fig. 7, C and D). 

Moving more to the center of the cell–cell interface, the bleb 

broadens and appears to push slightly into the mating partner 

on the left (Fig. 7, E and F) before disappearing from view 

(Fig. 7 G). A second bleb appears in a lower section and widens 

Figure 6. 𝚫kex2 × WT mating pairs fail to fuse and develop cell wall–embedded blebs. Mating mixes of ∆kex2 × WT partners were prepared on fi lters 
as described in Materials and methods and were incubated for �3 h at ambient temperature. The cells were then subjected to high-pressure freezing and 
were fi xed, stained, and imaged by transmission electron microscopy. Two different magnifi cations are shown for each image. (A–F) Mating pairs showing 
one, two, or more blebs trapped within the cell wall near the center of the cell–cell interface. 
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(Fig. 7, G–K); a third and possibly a fourth bleb appear still far-

ther along the stack of sections (Fig. 7, J and K). The bleb in 

Fig. 7 (C–F) almost contacts both plasma membranes; in Fig. 7 F 

(magnifi ed in Fig. 7 M), it appears only �10 nm from the part-

ner on the right.

Other structures of unknown function are also frequently 

observed in these images. A dark, unclosed circle reminiscent 

of the formation of autophagic structures by the fusion of small 

vesicles (Kim and Klionsky, 2000) appears to begin enclosing 

a region of cytoplasm (Fig. 7 G; magnifi ed in N). Similarly, a 

Figure 7. Serial section analysis of a 𝚫kex2 × WT mating pair. (A–K) Transmission electron micrographs of serial sections through the cell–cell interface 
of a ∆kex2 × WT mating pair prepared as in Fig. 6. (L) Low magnifi cation view of the mating pair. (M) High magnifi cation view of the bleb seen in F. 
(N) High magnifi cation view of an intracellular structure from G. (O) High magnifi cation view of an intracellular structure from I. 
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spherical lipid bilayer enclosed in a second, equidistant bilayer 

contains dark-staining cytoplasm (Fig. 7 I; magnifi ed in O) and 

suggests a mature form of the fi rst structure. Both structures are 

surrounded by a zone of ribosome exclusion. Similar structures 

appear often in sections of ∆kex2 mutant–derived mating pairs 

(Fig. 6 D).

𝚫prm1 𝚫kex2 × 𝚫prm1 mating pairs 
exhibit blebs, bubbles, and enormous 
barren bubbles
We have previously described the formation of bubbles as char-

acteristic features of fusion-arrested ∆prm1 × ∆prm1 mating 

pairs (Heiman and Walter, 2000). Bubble formation appeared to 

result from a block in fusion of the mating partners after the in-

tervening cell wall had been removed and plasma membranes 

had tightly adhered to each other, often buckling as a double 

membrane into either cell. Based on the morphologically distin-

guishable phenotypes of the ∆kex2 × WT and ∆prm1 × 

∆prm1–derived mating pairs, we wished to explore whether the 

ultrastructure of ∆prm1 ∆kex2 × ∆prm1 mating pairs would 

refl ect the order of KEX2 and PRM1 function in the fusion 

pathway. Rather than observing a single epistatic phenotype, 

however, we saw a more complex heterogeneous mixture of 

three classes of structures.

First, we observed bubbles in ∆prm1 ∆kex2 × ∆prm1 

mating pairs similar to those seen in ∆prm1 × ∆prm1 mating 

reactions. A characteristic bubble in such mating pairs is shown 

in Fig. 8 (A and B). In this example, the mating partner on the 

bottom forms an extension past the midline of the mating pair 

and well into the space previously occupied by the mating part-

ner on the top. The plasma membranes appear tightly apposed 

but unfused. The cytoplasmic continuity between the bubble 

and the bottom cell is obvious, and the texture of the staining 

within the bubble matches that of normal cytoplasm.

Second, we observed cell wall–embedded blebs similar to 

∆kex2 × WT mating reactions. Serial sections of a ∆prm1 
∆kex2 × ∆prm1 bleb are shown in Fig. 9. Several blebs extend 

over the full width of the cell–cell interface. No cytoplasmic 

continuity between the blebs and either mating partner can be 

found. Additionally, a double bilayer-bound structure appears 

in the upper mating partner of this pair. In some mating pairs, 

blebs of an enormous size accumulated (both mating pairs in 

Fig. 8 C; magnifi ed in D and E).

Third, some ∆prm1 ∆kex2 × ∆prm1 mating pairs display 

a unique morphology that was not previously observed, which 

is referred to here as enormous barren bubbles. Enormous bar-

ren bubbles appear similar to ∆prm1 × ∆prm1 bubbles but are 

essentially devoid of the staining of ribosomes and vesicles that 

populate normal cytoplasm (serial sections; Fig. 8, F–I). These 

structures also lack the fi brous pattern typical of ∆kex2 blebs. 

Instead, they present the appearance of empty, organelle-free 

cytoplasm despite the presence of clear continuities to one mat-

ing partner (Fig. 8 H). One section shows an enormous barren 

bubble that may be folded back onto itself, thus giving the ap-

pearance of two separate structures (Fig. 8 I). The lack of cyto-

sol might refl ect a lysis event, which a fraction of ∆prm1 mating 

pairs undergo (Jin et al., 2004). Similarly, barren areas have 

been observed in ultrastructural studies of myoblast fusion 

pores and within membrane sacs subsequent to cell–cell fusion 

(see Fig. 2 in Doberstein et al., 1997). It remains an intriguing 

Figure 8. 𝚫prm1 𝚫kex2 × 𝚫prm1 mating pairs fail to fuse and develop a variety of structures. Mating mixes were prepared as in Fig. 6. (A and B) A 
mating pair in low and high magnifi cation views with a region of cytoplasm extending across the midline from one partner to the other. (C–E) Two mating 
pairs in low and high magnifi cation views containing membrane-bounded inclusions with staining textures consistent with that of cytoplasm. (F–I) A mating 
pair in low magnifi cation view and three serial sections in high magnifi cation view with a membrane-bounded structure that extends across the midline from 
one partner to the other and that has a staining texture different from the cytoplasm. 
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mystery how a portion of the cytoplasm could become so 

distinctly different without a visibly delimiting barrier.

Discussion
The molecular machine that fuses cells during yeast mating has 

remained elusive. In this study, we describe the discovery of a 

role of Kex2 during cell fusion. To date, Kex2’s only known 

function in mating involved an earlier step, namely the pro-

teolytic processing of the pheromone α-factor in MATα cells 

(Rockwell et al., 2002). In contrast, Kex2 is not required in 

MATa cells for pheromone processing, which allowed the dis-

covery of its role in cell fusion. This duality mirrors the Axl1 

protease, which processes a-factor pheromone in MATa cells 

and is required in MATα cells for effi cient fusion (Adames 

et al., 1995; Elia and Marsh, 1998). However, as Axl1 activity 

is cytoplasmic and Kex2 activity is lumenal/extracellular, it is 

unlikely that this curious parallel refl ects a shared mechanism. 

MATa cells lacking the exopeptidase Kex1 display a cell fusion 

defect similar to that of cells lacking Kex2, strongly suggesting 

that it is the lumenal/extracellular proteolytic activities of Kex2 

and Kex1 that are required in this process. Therefore, we pro-

pose that Kex2 and Kex1 proteolytically activate at least one 

(yet to be identifi ed) substrate protein that comprises part of the 

fusion machinery. By analogy, furin, a Kex2 family protease, 

proteolytically activates the fusases of several viruses. Mecha-

nistically, the postulated Kex2 substrate could form a complex 

with Prm1 and possibly other components to constitute the 

membrane fusion machine. Alternatively, the Kex2 substrate 

and Prm1 could act at distinct yet mechanistically coupled sites 

in the membrane to promote fusion.

Genetic analysis of KEX2 and PRM1 shows a synergistic 

interaction between these genes. To achieve effi cient cell 

fusion, at least one mating partner must carry active KEX2 

and PRM1. Cell fusion suffers greatly in mating effi ciency 

when both mating partners lack one or both of the two genes 

Figure 9. Serial section analysis of a 𝚫prm1 𝚫kex2 × 𝚫prm1 mating pair. (A) Low magnifi cation transmission electron micrograph of a ∆prm1 ∆kex2 × 
∆prm1 mating pair prepared as in Fig. 6. (B–F) High magnifi cation serial sections across the cell–cell interface of the mating pair shown in A. 
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(∆prm1 × ∆prm1, ∆kex2 × ∆prm1, and ∆prm1 ∆kex2 × ∆prm1), 

whereas only mild defects are observed whenever one mating 

partner is WT (WT × WT, ∆prm1 × WT, WT × ∆prm1, 

∆kex2 × WT, and ∆kex2 ∆prm1 × WT). Thus, a simple model 

emerges from the genetic data: (1) Prm1 and Kex2 (the latter 

likely acting by proxy through a substrate) are both important 

for the same step in cell fusion, and (2) this step can be per-

formed by either mating partner. This model also accounts for 

the  fi nding that ∆prm1 and ∆kex2 mutations synergize in trans 

but not in cis.

Therefore, this defi nition of KEX2’s role in cell fusion 

 illuminates another layer of genetic redundancy in the process. 

Originally, PRM1 eluded detection in traditional screens be-

cause a ∆prm1 mutant only displays a cell fusion phenotype 

when mated to a partner also lacking PRM1. A ∆kex2 mutant 

likewise displays a strong cell fusion phenotype only when 

mated to a ∆prm1 partner. Consequently, kex2 mutants would 

be isolated for their cell fusion phenotype only in a sensitized 

screen, such as the one described here. This strategy can now be 

extended to identify other genes in the pathway, including, but 

by no means limited to, the postulated and eagerly sought-after 

Kex2 substrate.

Although the Kex2 substrate relevant to cell fusion re-

mains unknown, one especially interesting candidate is Prm2. 

Prm2, a protein of unknown function, is topologically similar to 

Prm1, is expressed only during mating, and is a Kex2 substrate. 

However, the deletion of Prm2 causes no fusion defect. It is 

 possible that Prm2 acts redundantly with another Kex2 substrate 

or that the deletion of Prm2 fails to mimic the presence of 

 unprocessed Prm2. On the other hand, it also remains possible 

that Kex2 acts indirectly during fusion (for example, through 

general effects on the stability of the cell wall). Consistent 

with this hypothesis, the magnitude of the ∆kex2 fusion defect 

is reduced by osmotic support. However, other mutants that 

 affect cell wall integrity (∆scw4 ∆scw10), cell wall remodeling 

(∆fus1 and ∆fus2), or hyperactivate the cell wall stress path-

way (PKC1-R398P) do not synergize with ∆prm1, arguing that 

the ∆kex2 defect is uniquely linked to the Prm1-dependent 

step of membrane fusion. Likewise, the electron microscopy 

phenotype of unfused zygotes resulting from matings of ∆kex2 

MATa cells suggests a specifi c and novel defect resulting from 

attempted fusion.

Although it is unlikely that the morphological features ob-

served in arrested mating pairs refl ect bona fi de intermediates in 

the fusion pathway, the morphological consequences of block-

ing the fusion reaction are nevertheless intriguing. Rather than 

arresting at the same end point as one might naively expect, 

∆kex2 and ∆prm1 mating pairs show unique morphologies at 

the electron microscope level. However, in many respects, the 

blebs observed here resemble bubbles seen previously in ∆prm1 × 

∆prm1 matings, which is consistent with the notion that 

KEX2 and PRM1 act at similar steps. Like bubbles, blebs are 

membrane-bounded structures that are often found apposed to a 

nearby plasma membrane separated by a regular gap of �8 nm, 

and both bubbles and blebs appear to push into the space occu-

pied by one mating partner. In contrast to bubbles, however, 

blebs are extracellular entities that show no continuity to either 

parent cell. This difference shows that the loss of Prm1 and the 

loss of Kex2 are not equivalent. If both Prm1 and the postulated 

Kex2 substrate are components of a single fusion machine, 

which becomes partially inactivated when either component is 

compromised, the residual machines in the respective mutant 

cells preferentially stall in the pathway at different points, thus 

leading to the characteristic and distinct morphological pheno-

types. Consistent with this notion, stalling can occur at either 

end point when both Prm1 and Kex2 are missing in mating 

cells. Unfortunately, the effects of KEX2 disruption can cur-

rently only be observed in MATa cells because of the require-

ment for the Kex2 processing of α-factor.

One possible mechanism for the formation of blebs is that 

a ∆prm1-like bubble forms fi rst but then becomes severed from 

the partner that forms it (Fig. 10 A); an intermediate suggesting 

this state is seen in mutants defi cient in the a-factor transporter 

Ste6 (Elia and Marsh, 1996). Alternatively, the delivery of exo-

cytic vesicles may be misregulated, thus producing the blebs 

(Fig. 10 B), or blebs could derive from the unusual circular 

structures observed (Fig. 10 C). According to both of these lat-

ter possibilities, ∆kex2 blebs would not be derived from ∆prm1 

bubbles because in either case, the membrane surrounding the 

bleb would come from the same cell that provides the apposing 

plasma membrane. Precedence for the mechanism shown in 

Fig. 10 B comes from our knowledge of the sperm acrosome 

 reaction. In this system, a repository of fusogenic material is 

delivered to the sperm surface in a burst of exocytosis. As part 

of this process, membrane-bounded cytoplasmic fragments are 

excised from the sperm as a result of rapid exocytosis at many 

points along the plasma membrane (Talbot et al., 2003). To dis-

tinguish between these models, it will be helpful to determine 

in future studies from which of the two parental cells the 

blebs originate.

Materials and methods
Yeast strains, plasmids, and growth media
Strains used in this study are listed in Table I. Gene replacements were 
generated with the PCR transformation technique (Longtine et al., 1998). 
Strains MHY398 and MHY427 were derived from KRY18 (a gift from 

Figure 10. Possible models for the mechanism of bleb formation. Three 
possibilities of how defective attempts at cell fusion could produce cell 
wall–embedded blebs at the cell–cell interface. (A) A cytoplasmic extension 
reaches across the midline and is severed. (B) Extensive fusion of vesicles 
to each other and to the plasma membrane excises a pocket of cytoplasm. 
(C) An intracellular inclusion forms and is delivered to the surface.
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R. Fuller, University of Michigan Medical School, Ann Arbor, MI; Komano 
and Fuller, 1995). The plasmid pDN291 was used to express soluble cyto-
solic GFP and contains the URA3 gene as previously described (Ng and 
Walter, 1996). The plasmid pRS314 is a standard vector containing the 
TRP1 gene and was used in conjunction with pDN291 to create a set of 
mating type–specifi c selectable markers (Sikorski and Hieter, 1989). The 
plasmid pJP67 is used to express the hyperactive allele PKC1(R398P) 
(Nonaka et al., 1995; Philips and Herskowitz, 1997). Congo red plates 
were prepared as previously described (Tomishige et al., 2003) by adding 
a 20-mg/ml stock solution of Congo red to <70°C autoclaved YPD (yeast 
extract/peptone/glucose) agar to a fi nal concentration of 100 μg/ml. The 
MPK1-lacZ plasmid was a gift from K. Cunningham (Johns Hopkins University, 
Baltimore, MD).

Genetic screen for enhancers of 𝚫prm1
∆prm1 TRP1 MATa cells were grown to log phase, and 4 A600U were 
washed once in a buffer of 10 mM potassium phosphate, pH 7.4 (10 ml; 
Sigma-Aldrich), and resuspended in the same solution. 300 μl of the muta-
gen ethyl methane sulfonate (Sigma-Aldrich) was added. Cells were vor-
texed and incubated for 30 min at 30°C. At that point, a 15-ml solution of 
10% sodium thiosulfate (Sigma-Aldrich) was added to quench the reaction. 
Cells were washed twice in YPD medium and allowed to recover in YPD for 

90 min at 30°C to fi x any mutations that were induced. Serial dilutions of 
this stock were plated to medium lacking tryptophan, and the titer of 
colony-forming units was calculated; meanwhile, the stock was kept at 4°C. 
For screening, the stock was plated to 100 plates lacking tryptophan at a 
density of �120 colonies/plate. Colonies were allowed to grow for 40 h 
at 30°C. After �25 h, a stationary overnight culture of ∆prm1 URA3 MATα 
was plated to 100 plates of YPD at 100 μl/plate and was incubated at 
room temperature for the remaining 15 h to form lawns. These lawns were 
respread with 100 μl/plate of water to a dull matte appearance indicative 
of homogeneity. Colonies of the mutagenized MATa cells were replica 
plated to mating lawns and incubated for 8 h at 30°C. The plates were 
then replica plated to medium lacking tryptophan and uracil to select for 
diploids. Phenotypes were scored on plates incubated for 2 d at 30°C. The 
clarity of the phenotypes critically depended on having homogeneous 
lawns of the proper density.

Complementation of the 𝚫prm1 enhancer mutation
MATα-specifi c sterility appeared in several of the enhancer mutants. We 
aimed for complementation of this phenotype because it was easier to 
score. After backcross to a ∆prm1 strain, the sterile ∆prm1 MATα was 
transformed with a pRS316-based library (a gift from S. O’Rourke, Univer-
sity of Oregon Institute of Molecular Biology, Eugene, OR; O’Rourke and 

Table I. Strains used in this study

Strain Genotype

MHY425 MATa, his3-∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

MHY189 MATα, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pDN291

MHY426 MATa, ∆prm1::S. kluyveri HIS3+, his3-∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

MHY191 MATα, ∆prm1::S. kluyveri HIS3+, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pDN291

MHY398 MATa, ∆kex2::TRP1, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre

MHY461 MATa, ∆kex1::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

MHY462 MATa, ∆ste13::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

MHY427 MATa, ∆prm1::S. kluyveri HIS3+, ∆kex2::TRP1, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre

MHY445 MATa, ∆prm1::S. kluyveri HIS3+, ∆kex1::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

MHY447 MATa, ∆prm1::S. kluyveri HIS3+, ∆ste13::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochr e, pRS314

MHY189 MATα, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pDN291

MHY387 MATa, ∆scw4::S. kluyveri HIS3+, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

MHY388 MATα, ∆scw10::S. kluyveri HIS3+, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pDN291

MHY389 MATa, ∆scw4::S. kluyveri HIS3+, ∆scw10::S.kluyveri HIS3+, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

MHY390 MATα, ∆scw10::S. kluyveri HIS3+, ∆scw10::S.kluyveri HIS3+, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pDN291

AEY142 MATa, ∆pir3::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre

AEY143 MATa, ∆hsp150::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

AEY144 MATa, ∆sun4::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

AEY145 MATa, ∆ccw11::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

AEY146 MATa, ∆exg1::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre

AEY147 MATa, ∆scw11::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

AEY148 MATa, ∆pir1::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

AEY14 MATa, ∆ykl077w::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

MHY524 MATa, ∆prm2::S. kluyveri HIS3+, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2101ochre, pRS314

AEY7 MATa, YKL077W-HA::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

AEY8 MATa, YKL077W-HA::kanR, ∆kex2::TRP1, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

MHY546 MATa, PRM2-HA::S. kluyveri HIS3+, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2101ochre, pRS316

MHY548 MATa, PRM2-HA: S. kluyveri HIS3+, ∆kex2::TRP1, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2101ochre, pRS316

AEY67 MATa, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pMPK1-LacZ::URA3

AEY69 MATa, ∆kex2::TRP1, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pMPK1-LacZ::URA3

AEY71 MATa, ∆kex1::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pMPK1-LacZ::URA3

AEY72 MATa, ∆prm1:S. kluyveri HIS3+, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pMPK1-LacZ::URA3

AEY92 MATa, ∆ste13::kanR, his3−∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pMPK1-LacZ::URA3

AEY1 MATα, ∆fus1::kanR, his3-∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pDN291

AEY17 MATa, ∆fus1::kanR, his3-∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

AEY2 MATα, ∆fus2::kanR, his3-∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pDN291

AEY18 MATa, ∆fus2::kanR, his3-∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pRS314

AEY58 MATa, his3-∆200, ura3-∆99, leu2-∆1, trp1-∆99, ade2-101ochre, pJP67

All strains were constructed in the W303 background.
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Herskowitz, 2002). 15,000 transformants were subjected to a replica 
 mating assay as described in Fig. 1 A with a tester strain as partner.

Quantitative assay of cell fusion
The cell fusion assay was performed as described previously (Philips and 
Herskowitz, 1997). Cells of opposite mating types with the MATα strain 
expressing soluble cytosolic GFP were grown overnight to log phase, and 
1 A600U of each were mixed and vacuumed to a nitrocellulose fi lter. The fi l-
ter was placed cell-side up on a YPD plate, and the plate was incubated 
for 3 h at 30°C. Cells were then scraped off the fi lter, fi xed in 4% PFA, and 
incubated at 4°C overnight. This mixture was then spotted on a slide and 
observed with a fl uorescent microscope (Axiovert 200M; Carl Zeiss Micro-
Imaging, Inc.) using a 63× plan-Apochromat oil-immersion objective (Carl 
Zeiss MicroImaging, Inc.). First, a fi eld was selected randomly using trans-
mission optics. Then, groups of zygotes and mating pairs within that fi eld 
were identifi ed by brightfi eld microscopy and were subsequently scored as 
fused zygotes or unfused mating pairs by switching between brightfi eld 
and fl uorescence. This procedure was continued until all the zygotes and 
mating pairs in the fi eld were scored, at which point a new fi eld was cho-
sen and the procedure was repeated. To capture images, a single optical 
section was taken by both brightfi eld and fl uorescence microscopy using a 
confocal microscope (TCS NT; Leica) with a 100× oil-immersion objective 
(Leica), a 150-mW, 488-nm argon excitation laser (Uniphase), and a 510–
550-nm band-pass emission fi lter to visualize GFP. These images were then 
superimposed and contrast enhanced.

𝛃-Galactosidase assays
Yeast strains containing the MPK1-lacZ reporter were grown to log phase 
in SC-URA with or without 1 M sorbitol. For pheromone induction, log-
phase cultures were incubated with 10 μg/ml α-factor for 2 h. Reporter 
activity was quantifi ed as previously described (Papa et al., 2003) using 
0.8 mg/ml o-nitrophenol β-D-galactoside (Sigma-Aldrich). Reactions were 
incubated at 32°C for 10 min and stopped by adding an equal volume of 
1 M NaCO3.

Bioinformatic search for novel Kex2 substrates
A scoring matrix to predict Kex2 cleavage sites was generated based 
on previously reported Kex2 substrates (Kex2 [Rockwell et al., 2002]; 
Mfα1 and Mfα2 [Kurjan and Herskowitz, 1982; Singh et al., 1983]; 
Ccw6/Pir1 and Ccw7/Hsp150 [Russo et al., 1992]; Ccw8/Pir2, 
Ccw11, Scw3/Sun4, and Scw4 [Cappellaro et al., 1998]; Scw6/Exg1 
[Basco et al., 1990]; and Scw10, Scw11, and killer toxin [Bostian 
et al., 1984; Zhu et al., 1992]). The scoring matrix consisted of 10 pro-
tein sequence positions centered on the cleavage site, with the score 
for each residue at each position refl ecting its prevalence among the 
known substrates at that position (Table S1). To obtain an overall score 
for a candidate sequence, the scores at each position were multiplied. 
For comparison purposes, we took the negative natural log of this value. 
Using a perl script, we searched the yeast genome for high-scoring po-
tential cleavage sites. From the list of proteins that contained high-scoring 
sites, we discarded those that did not have a predicted transmembrane 
domain or signal sequence. Finally, candidates were selected that had 
high-scoring sites and in which the P2 and P1 positions were conserved 
among fungal homologues.

Electron microscopy
Mating reactions were performed identically to the method described for 
quantitative fusion assays but at room temperature. During the mating, 
plates were taken to the University of California, Berkeley, electron micros-
copy labaratory and subjected to high-pressure freezing after �3 h of total 
incubation (McDonald, 1999; McDonald and Müller-Reichert, 2002). 
Samples were fi xed, stained, and embedded (McDonald, 1999). High-
pressure freezing was found to yield superior contrast between membranes 
and surrounding areas and a smoother curvature to membranes than we 
had observed by conventional fi xation (Heiman and Walter, 2000; 
 McDonald and Müller-Reichert, 2002). Sections of �60-nm thickness were 
cut, poststained with uranyl acetate and lead citrate (Ted Pella Inc.), and 
imaged with an electron microscope (Tecnai-F20; Philips) equipped with a 
200-kV LaB6 cathode and a bottom-mounted four-quadrant 16 million–
pixel CCD camera (UltraScan 4000; Gatan).

Online supplemental material
The scoring matrix used in the bioinformatic screen for potential Kex2 sub-
strates is available as Table S1. Online supplemental material is available 
at http://www.jcb.org/cgi/content/full/jcb.200609182/DC1.
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Note added in proof. Fig1 has recently been shown to act at a step simi-
lar to Prm1, after cell wall degradation but before membrane fusion (Aguilar, 
P.S., A. Engel, and P. Walter. 2006. Mol. Biol. Cell. doi:10.1091/mbc.
E06-09-0776).
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