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İzem Olcay Şahin , Yusuf Özkul and Munis Dündar *

����������
�������
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Abstract: Limb girdle muscular dystrophy type R1 disease is a progressive disease that is caused by
mutations in the CAPN3 gene and involves the extremity muscles of the hip and shoulder girdle. The
CAPN3 protein has proteolytic and non-proteolytic properties. The functions of the CAPN3 protein
that have been determined so far can be listed as remodeling and combining contractile proteins in the
sarcomere with the substrates with which it interacts, controlling the Ca2+ flow in and out through
the sarcoplasmic reticulum, and regulation of membrane repair and muscle regeneration. Even
though there are several gene therapies, cellular therapies, and drug therapies, such as glucocorticoid
treatment, AAV- mediated therapy, CRISPR-Cas9, induced pluripotent stem cells, MYO-029, and
AMBMP, which are either in preclinical or clinical phases, or have been completed, there is no final
cure. Inhibitors and small molecules (tauroursodeoxycholic acid, salubrinal, rapamycin, CDN1163,
dwarf open reading frame) targeting ER stress factors that are thought to be effective in muscle loss
can be considered potential therapy strategies. At present, little can be done to treat the progressive
muscle wasting, loss of function, and premature mortality of patients with LGMDR1, and there is a
pressing need for more research to develop potential therapies.
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1. Introduction

Calpainopathy is a progressive disease that causes weakness over time in the muscles
that affect the upper extremities, including the hip and shoulder girdle muscles [1]. This
disease, also known as limb girdle muscular dystrophy type R1 (LGMDR1; 253600 [2] or
LGMD2A, as it used to be known), which is caused by defects in the calpain-3 (CAPN3;
114240) [2] gene, which is localized on 15q15.1, is an inherited autosomal recessive con-
dition [3]. However, it was recently shown that there are autosomal dominant inherited
variants [4]. Although the onset of the disease varies, it usually occurs in adolescence
(8–15 years of age) [5]. There is a loss of ambulation in patients 10–20 years after the onset
of the disease. Loss of ambulation is seen after the age of 60 in mild forms [4]. Patients
exhibit muscle pain, cramps, fatigue, and exercise intolerance. Although muscle loss is
symmetrical, it causes a waddling gait, wing scapula, and hyperlordosis in patients [6]. In
addition, various muscle contractures are seen, especially involving the Achilles tendon [6].
According to reports in the Leiden Open Variation database as of October 2020, there are
more than 490 pathogenic variants of CAPN3 [7].

Although the function of the CAPN3 protein in cells has not been fully elucidated,
studies so far have revealed the proteolytic and non-proteolytic activities of the CAPN3
protein. The full-length form of CAPN3 is expressed mainly in skeletal muscle [8]. CAPN3
demonstrates its non-proteolytic activity by stabilizing Ca2+-handling proteins (CSQ [9],
SERCA [10], RyR1 [11], CaMKII [11], and NCX3 [12]) and maintaining Ca2+ homeosta-
sis, which is extremely important and essential for muscle structure and function [5].
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CAPN3 shows its proteolytic activity by targeting proteins (myostatin, titin, α-actinin-3,
tropomyosin, and LIM-domain binding protein 3 [13]) that play major roles in the regula-
tion of sarcomere stability/integrity and muscle contraction as substrates [14]. CAPN3 is
responsible for muscle restructuring and function, not muscle formation [15]. Interestingly,
CAPN3 also has an autodegradation property that prevents it from being detected by
biochemical tests [16]. The CAPN3 protein is important for the functionalization of many
proteins that it targets through its proteolytic feature. In addition, its relationship with
calcium and sodium makes it indispensable for muscle cells [14]. For these reasons, CAPN3
is of critical importance in the muscle cell, not only due to its primary function but also
due to its secondary functions regarding the proteins and molecules it interacts with.

2. Current Clinical and Experimental Studies

Among the hereditary diseases that are already difficult to treat, gene therapy for
hereditary muscle diseases is an especially challenging area because of the fact that muscles
make up about 40 percent of the human body. To date, mostly palliative or symptomatic
treatment strategies have been presented to LGMDR1 patients. Furthermore, few exper-
imental studies and fewer clinical study strategies have been carried out by researchers
for the development of therapies in LGMDR1. In particular, the prognosis of LMGDR1
varies widely according to the location of the mutation in the CAPN3 gene, the type of
mutation, and homozygous/heterozygous status [17], such that even siblings with identical
mutations might have different phenotypes and prognosis [18,19].

An ongoing phase II trial study involving drug therapy is focused on the effect of
weekly oral glucocorticoid steroid (prednisone) administration in LGMDR1 patients [20].
Various steroid applications have been successful in DMD in the past [21–23]. Due to
the immunosuppressive properties of glucocorticoids, it is estimated that steroids may
reduce muscle damage that may occur due to the inflammatory response in muscle dis-
eases [24,25]. In another drug treatment phase I/II study, MYO-029, an antibody that
neutralizes the myostatin protein, which has an inhibitory role in muscle growth, was
tested in patients with various types of muscular dystrophy [26]. Although the MYO-029
drug was found to be safe, it has been determined that it is incapable of increasing muscle
strength [26]. A gene therapy experimental study has also been performed concerning this
therapeutic agent [27]. In that study, by performing the inhibition of myostatin via the
AAV-mediated expression of a mutated propeptide (pAAV-CMV-mSeAPpropmyoD76A),
researchers identified an increase in absolute power, in addition to an increase in muscle
mass in CAPN3-deficient mice [27] (Figure 1). However, in a recent study, researchers who
performed the genetic inhibition of myostatin by increasing the expression of follistatin,
an endogenous inhibitor of myostatin in the C3KO model, reported that this intervention
was not effective in developing muscle strength in proximal limb muscles, finding that it
even worsened exercise intolerance and decreased the oxidative capacity of the muscle,
while only increasing muscle mass 1.5–2-fold [28]. Although myostatin inhibitors are good
therapeutic agents for muscle diseases, the lack of consensus in studies using myostatin
inhibitors as therapeutic agents for LGMDR1 shows that this strategy has poor validity
since the pathophysiology of LGMDR1 has not been completely elucidated and the exact
way in which LGMDR1 makes changes is not known [29,30]. One of the gene therapy
strategies designed to reverse the CAPN3 defect is to systemically or locally (intramus-
cularly) administer AAV-associated CAPN3 gene transfer in the murine model [31–33].
However, it has been reported that the increase in CAPN3 expression in extra-muscular
cells due to intravenous administration causes a cardiotoxic effect, which leads to cell death
and especially to heart hypertrophy [31]. In the same study, a strategy was successfully
developed to overcome this toxicity by adding cardiac-specific microRNA-208a to the
CAPN3 regulatory cassette in the heart to prevent CAPN3 expression [31]. In another
study using a strategy with the aim of overcoming this cardiac toxicity, heart damage
previously seen in the murine model was not seen in a primate model, and this strategy
led to a therapeutic effect in CAPN3 deficiency [34]. In addition, mice were thought to
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be more susceptible to cardiac toxicity due to the difference in titin (containing binding
sites of CAPN3) transcripts in the murine model compared to primates and humans [34].
Researchers have used a serotype (AAVrh74) that can target skeletal muscle and cardiac
muscle without off-target delivery in the in vivo transfer of AAV in neuromuscular dis-
eases [35,36]. A recent study tested the biodelivery and stability of this vector system in
LGMDR1 by loading the CAPN3 gene into the AAVrh74 serotype with the tMCK promoter,
which was applied intravenously. According to their results, the authors been stated that
this vector (AAVrh74.tMCK.hCAPN3) has no off-target effects and no toxic effects and has
a successful therapeutic effect even at low doses [37].
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entering the cytoplasm, is translated into the CAPN3 protein [38]. 

In LGMDR1 patients, the expression of FRZB, which prevents the translocation of β-
catenin into the nucleus, is upregulated via inhibition of the Wnt pathway [39]. Normal 
CAPN3 regulates the localization of β-catenin [40]. The WNT signal is activated by its 
ability to activate the multimerized TCF/LEF luciferase reporter structure of 2-Amino-4-
(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl) pyrimidine (AMBMP), a WNT 
agonist that activates the canonical signal [41,42]. AMBMP activates CaMKII in 
metabolically altered C3K0 muscles and reprograms the muscle towards the slow 
oxidative muscle phenotype [43]. AMBMP reversed the LGMDR1 phenotype in vivo by 
improving oxidative properties, increasing slow fiber size, and improving exercise 
performance [43]. 

The CRISPR-Cas9 system, which won the 2020 Nobel Prize in Chemistry, is a 
groundbreaking area of research for in vivo gene therapy. Using the stem cell method, a 
wide variety of diseases can be treated [44]. In a study combining these two strategies, 
muscle engenderment and increases in CAPN3 mRNA were observed in mice as a result 
of the transplantation of corrected LGMDR1 myogenic progenitors through the use of 
IPSCs, which were gene-corrected with the CRISPR-Cas9 method (Table 1) [45] (Figure 2). 

Figure 1. AAV-mediated CAPN3 gene therapy. rAAV, containing the desired CAPN3 gene, binds to the appropriate receptor
and enters the cell via the endosome. AAV enters the nucleus after escaping from the endosome in the cytoplasm. After the
AAV enters the nucleus and separates it from its capsid, the single-stranded (ss) DNA is transformed into double-stranded
DNA, and the desired CAPN3 mRNA is transcribed by the cell. The mRNA, when leaving the nucleus and entering the
cytoplasm, is translated into the CAPN3 protein [38].

In LGMDR1 patients, the expression of FRZB, which prevents the translocation of
β-catenin into the nucleus, is upregulated via inhibition of the Wnt pathway [39]. Normal
CAPN3 regulates the localization of β-catenin [40]. The WNT signal is activated by its
ability to activate the multimerized TCF/LEF luciferase reporter structure of 2-Amino-4-
(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl) pyrimidine (AMBMP), a WNT
agonist that activates the canonical signal [41,42]. AMBMP activates CaMKII in metaboli-
cally altered C3K0 muscles and reprograms the muscle towards the slow oxidative muscle
phenotype [43]. AMBMP reversed the LGMDR1 phenotype in vivo by improving oxidative
properties, increasing slow fiber size, and improving exercise performance [43].

The CRISPR-Cas9 system, which won the 2020 Nobel Prize in Chemistry, is a ground-
breaking area of research for in vivo gene therapy. Using the stem cell method, a wide
variety of diseases can be treated [44]. In a study combining these two strategies, muscle
engenderment and increases in CAPN3 mRNA were observed in mice as a result of the
transplantation of corrected LGMDR1 myogenic progenitors through the use of IPSCs,
which were gene-corrected with the CRISPR-Cas9 method (Table 1) [45] (Figure 2).
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Table 1. Current therapy strategies.

Type Administration Expectation Stage Comment Ref.

Drug Therapy

Prednisone Glucocorticoid
steroid Taking orally

Reduce
inflammatory

response

Phase I/II
study

Undesirable
situations may
occur due to

suppressing the
immune system.

[20]

MYO-029 Antibody Injected
intravenously

Neutralize
myostatin

protein

Phase I/II
study

Myostatin
inhibition resulted

in a minor
improvement in

muscle.

[26]

Anti-myostatin
antibody Antibody Injected in-

traperitoneally

Inhibition of
follistatin,

which is an
endogenous
inhibitor of
myostatin

Experimental
study on a

murine model

Increase in muscle
mass but not in

functional muscle.
[28]

AMBMP Small molecule Injected in-
traperitoneally

As a Wnt
agonist

activates
CaMKII

Experimental
study on a

murine model

Induction of slow
oxidative genes. [43]

Gene Therapy

pAAV-CMV-
mSeAPpropmyoD76A

vector
Plasmid DNA Injected intra-

muscularly
Inhibition of

myostatin

Experimental
study on a

murine model

Increase in muscle
mass and absolute

power
[27]

CAPN3 gene transfer
via AAV vector, Plasmid DNA Systemic

injection

Replacement of
functional

CAPN3 gene

Experimental
study on a

murine model

CAPN3
overexpression
caused cardiac

toxicity.

[31]

CAPN3 gene, and
cardiac-specific
microRNA-208a
transfer via AAV

Plasmid DNA Systemic
injection

Replacement of
functional

CAPN3 gene
and

overcoming
cardiac toxicity

Experimental
study on a

murine model

CAPN3 expression
and no cardiac
toxicity were

achieved.

[31]

AAVrh74.tMCK.hCAPN3
vector Plasmid DNA Injected

intravenously

Replacement of
functional

CAPN3 gene,
overcoming

off-target and
toxic effects

Experimental
study on a

primate model

CAPN3 expression,
no toxicity, and
skeletal-muscle-

specific vector were
achieved.

[37]

rAAV-C3+miRT and
rAAV-C3 Plasmid DNA

Injected
intravascularly
and intramus-

cularly

Replacement of
functional

CAPN3 gene
and

overcoming
cardiac toxicity

Experimental
study on a

primate model

In murine models,
overexpression of
CAPN3 is more
prone to cardiac
toxicity than in

primates, due to
physiological

differences.
CAPN3 expression
increased in both

applications and no
cardiac toxicity was

observed.

[34]
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Table 1. Cont.

Type Administration Expectation Stage Comment Ref.

Combined Therapy
(Cell- and Gene-Based)

IPSCs CRISPR-Cas9
and stem cell

Injected intra-
muscularly

Replacement of
functional
CAPN3 in
myogenic

progenitor and
mature muscle
cells expressing

CAPN3

Experimental
study on a

murine model

CAPN3 mRNA
levels were
increased.

[44]
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into the muscles [46]. 
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Figure 2. CAPN3 cell therapy with a combination of IPSCs and CRISPR-Cas9. In IPSCs derived from the somatic cells of
the LGMDR1 patient (renal tubular epithelial cell, peripheral blood mononuclear cell, hair follicle cell, skin fibroblast) using
reprogramming factors, the CAPN3 gene is corrected by means of the CRISPR-Cas9 method. Genetically modified IPS
cells are then stimulated with various factors (Pax3/Pax7 or MyoD) to differentiate into myogenic progenitors that can be
multiplied in number. Cellular therapy is applied to the patient by injecting the proliferated myocytes intramuscularly into
the muscles [46].

3. Future Therapy Strategies

It is known that mitochondrial damage is involved in the pathophysiology of
LGMDR1 [47,48]. A new muscle-specific protein (Mss51) has recently been identified [49].
Considering that when the gene encoding Mss51 is deleted in mice, energy production
increases and mitochondrial activity improves, researchers are investigating whether the
elimination of this protein would be a suitable target in a calpainopathy model [50]. Al-
though the pathophysiology of calpainopathy has not been fully elucidated yet, some
experimental and bioinformatic results show that CAPN3 targets the E3 ubiquitin pro-
teins MuRF1 [51] and TRIM32 [52] as substrates. In addition, a recent study reported
that LGMDR1 is associated with endoplasmic reticulum (ER) stress [5]. In the ER (called
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the sarcoplasmic reticulum in muscle cells), protein synthesis, folding, maturation and
transport, calcium storage, and lipid biosynthesis take place. ER stress is defined as the
disruption of the balance between the protein folding capacity of the ER and the processed
protein load, resulting in the accumulation of incorrectly folded or unfolded proteins [53].
Excessive synthesis of secretory proteins, mutations in proteins that play a role in protein
folding, abnormal changes in the amount of Ca+2 in the ER, and viral infections are some of
the factors that cause protein accumulation in the ER [54,55]. It would not be wrong to say
that this plays a role in the pathophysiology of LGMR1, as the deterioration of homeostasis
in the ER contributes to ER stress. Considering that the perturbation of calcium flux causes
ER stress, a study reported that the SERCA2 protein, responsible for the reuptake of calcium
into the ER, is decreased in LGMDR1 patients [56]. In this context, it should not be ignored
that targeting ER stress may be therapeutic. In order to eliminate the ER stress caused by an
imbalance between the load of unfolded proteins in the ER and the capacity of the cellular
mechanism that manages this load, cells activate three mechanisms. The first of these is
to reduce the protein load entering the ER via a temporary adaptation by reducing the
synthesis of the protein in the cell and its translocation to the ER. Secondly; the unfolded
protein response (UPR) is switched on. To this end, an increase in the capacity of the
ER emerges to overcome unfolded proteins for a longer-term adaptation, which requires
transcriptional activation of UPR target genes. Lastly, if homeostasis cannot be restored,
a cell death response occurs to protect the organism from cells displaying unfolded pro-
teins [57]. In eukaryotes, the ubiquitin-proteosome system is responsible for most of the
protein degradation in cells, aimed at maintaining protein homeostasis. UPR, pancreatic ER
kinase-like (PERK), inositol requiring enzyme 1 (IRE1), and activating transcription factor
6 (ATF6) activate three important signaling pathways, initiated by stress sensors localized
in the ER [58,59]. PERK phosphorylates and inactivates the eukaryotic initiation factor 2α
(elF2α) with the formation of the PERK oligomer in the ER membrane [60]. Thus, mRNA
transcription in the ER stops and the protein load is reduced [60]. Furthermore, when the
cell encounters ER stress, ATF6 undergoes posttranscriptional modification. ATF6 sent
to the Golgi apparatus undergoes clipping by interacting with site1 protease. Thus, an
attempt to protect it against stress is made by increasing the ER folding capacity [61]. IRE1,
which is bound to GRP78 under normal physiological conditions, becomes active through
either transphosphorylation and RNAase activation or by directly binding to unfolded
proteins. It stimulates the insertion of a 26-nucleotide segment from the mRNA of X-box
binding protein 1 (XBP1) by cutting the activated IRE1 intron. XBP1, transformed from
the spliced mRNA, eventually passes into the nucleus. XBP1 increases protein folding,
ER biogenesis, and transcription of genes involved in ER-associated protein degradation
(ERAD) to correct ER homeostasis [62]. As a result, through these pathways, unfolded
proteins or misfolded proteins are degraded by the proteasome system or the process of
cell death begins [63].

Using ER stress inhibitory agents or eliminating the causes of ER stress may be
therapeutic in LGMDR1. The chemical chaperone mimetic drug tauroursodeoxycholic acid
(TUDCA) has been reported in previous studies to have a reducing effect on ER stress-
related molecules, such as ATF6α, IRE1α, PERK, CHOP, and GRP78 [64,65]. Salubrinal,
which can be used as another therapeutic agent, can cooperate with transformational
attenuation to reduce ER protein overload by inducing degradation of non-translated ER-
targeted protein mRNAs [66]. Rapamycin, another agent that targets ER stress, provides the
inhibition of mTORC1, triggering the autophagic process that targets toxic products, and
this process provides a reduction in ER stress and a decrease in fibrosis and inflammation,
in addition to an increase in contraction and strength in dystrophic muscles [67–69]. These
results show that rapamycin may be therapeutic in muscular dystrophies.

Some small molecules targeted in various diseases are preferred due to their therapeu-
tic potential [70]. In LGMDR1, the small molecule SERCA2 activator CDN1163, which acts
on the SERCA enzyme directly through the allosteric mechanism, can be used to increase
the activity of SERCA2 to both reduce ER stress and maintain Ca+2 homeostasis [71,72].
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Another molecule in which a SERCA regulatory property was discovered is a putative
muscle-specific long non-coding RNA which is called dwarf open reading frame (DWORF)
that encodes a 34-amino-acid peptide [73]. DWORF is localized in the SR membrane and
increases SERCA activity by modifying SERCA inhibitors phospholamban, sarcolipin, and
myoregine [73]. DWORF is an endogenous peptide that is known to be effective in increas-
ing muscle contraction, and it activates the SERCA pump through a physical interaction
routine (Table 2) [73] (Figure 3).

Table 2. Future therapy strategies.

Type Application Expectation Ref.

Mss51 Muscle-specific protein Inhibition of Mss51 gene
Energy production increases
and mitochondrial activity

improves
[50]

TUDCA The chemical chaperone
mimetic drug

Different applications of
TUDCA

Reduces effects on ER
stress-related molecules [65]

Salubrinal
A small molecule for
selective inhibition of

eIF2α

Different applications of
salubrinal

Induces degradation of
non-translated ER-targeted

protein mRNAs
[66]

Rapamycin Drug Oral gavage

Provides inhibition of
mTORC1, decrease in ER stress
and inflammation, Improves

muscle strength

[67]

CDN1163 A small molecule as a
SERCA2 activator Injected intraperitoneally Reduces ER stress and

maintains Ca+2 homeostasis [71]

DWORF Muscle-specific long
non-coding RNA

Upregulate of DWORF
gene

Inhibits SERCA inhibitors and
increases SERCA activity [73]
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ER stress can be reduced by targeting the degradation of proteins at the mRNA level through salubrinal and by preventing
unfolded proteins associated with ER stress by means of TUDCA.
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4. Conclusions

In conclusion, therapy strategies for LGMDR1 disease, which is caused by CAPN3
defects, continue to be developed at both clinical and pre-clinical stages. In this article,
we have summarized potential therapy strategies, in addition to actual therapies, such
as cell therapy, gene therapy, and drug strategies. Although gene correction is the first
strategy that comes to mind in single-gene diseases, the literature offers researchers several
therapeutic agents that target many factors that are effective in the pathophysiology of
LGMDR1. These agents consist of inhibitors and small molecules that target ER stress,
which is thought to play a role in muscle loss in LGMDR1. Although several strategies
have been attempted, no definitive conclusion has yet been reached. In viral systems used
in gene therapies, failure or unexpected systemic effects may occur due to delivery and
serotype compatibility problems. In addition, the problem of off-target effects must be
overcome. Similarly, in cell therapies, the material produced for therapy should be able to
target the desired organ and perform permanent treatment there. Furthermore, the success
of a drug in a similar disease does not guarantee that it will always be effective for the
target disease. Disease pathophysiology is important in this context. Such problems have
also been observed in the drug strategies used against LGMDR1, a disease of which the
pathophysiology has not been fully clarified yet. As mentioned above, although some
strategies may seem effective in achieving goals in single-gene diseases, things do not
always go as expected in science. However, this should not be daunting for scientists.
It should not be forgotten that the tools used in science are increasing day by day and
strategies for treatment can be obtained through various combinations of tools. More
researchers need to work on LGMDR1 in order to achieve the desired end and restore the
health of people suffering from this disease.
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Clustered regularly interspaced short palindromic repeats
CRISPR-associated proteins 9

CSQ Calsequestrin
DMD Duchenne muscular dystrophy
elF2α Eukaryotic initiation factor 2α
ER Endoplasmic reticulum
ERAD ER-associated protein degradation
FRZB Frizzled-related protein
GRP78 Glucose-regulated protein
IPSC Induced pluripotent stem cell
IRE1α Inositol-requiring enzyme 1α
LGMDR1 Limb girdle muscular dystrophy R1
LIM Lin-11 Isl-1 Mec-3
Mss51 Mitochondrial translational activator
MuRF1 Muscle RING-finger protein-1
MYO-029 Stamulumab
MyoD Myogenic differentiation antigen
NCX3 Na+-Ca2+ exchanger 3

pAAV-CMV-mSeAPpropmyoD76A
Plasmid AAV-cytomegalovirus- murine-secreted alkaline
phosphatase myogenic differentiation antigen murine-secreted
alkaline phosphatase

Pax3/Pax7 Paired box gene 3/Paired box gene 7
PERK PKR-like ER kinase
RyR1 Ryanodine receptor 1
SERCA Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase
TCF/LEF T-cell factor/lymphoid enhancer factor
TRIM32 Tripartite motif-containing protein 32
TUDCA Tauroursodeoxycholic acid
UPR Unfolded protein response
WNT Wingless-related integration site
XBP1 X-box binding protein 1
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