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Introduction: The assessment of fluid responsiveness is important in the management
of shock but conventional methods of assessing fluid responsiveness are often
inaccurate. Our study aims to evaluate changes in objective hemodynamic parameters
as measured using electrical cardiometry (ICON R© monitor) following the fluid bolus in
children presenting with shock and to evaluate whether any specific hemodynamic
parameter can best predict fluid responsiveness among children with shock.

Materials and Methods: We conducted a prospective observational study in children
presenting with shock to our emergency department between June 2020 and March
2021. We collected the parameters such as heart rate (HR), respiratory rate (RR),
systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure
(MAP), and hemodynamic data such as cardiac output CO), cardiac index (CI), index
of contractility (ICON), stroke volume (SV), stroke index (SI), corrected flow time (FTC),
systolic time ratio (STR), variation of index of contractility (VIC), stroke volume variation
(SVV), systemic vascular resistance (SVR), and thoracic fluid content (TFC) using the
ICON monitor before and after fluid bolus (FB). We assessed percent change (1)
and used paired-sample Student’s t-test to compare pre- and post-hemodynamic
data and Mann–Whitney U-test to compare fluid responders and non-responders.
P-Values < 0.05 were considered statistically significant.

Results: We recorded 42 fluid interventions in 40 patients during our study period. The
median IQR age was 10.56 (4.8, 14.8) years with male/female ratio (1.2:1). There was
a significant decrease in 1RR [−1.61 (−14.8, 0); p = 0.012], 1DBP [−5.5 (−14.4, 8);
p = 0.027], 1MAP [−2.2 (−11, 2); p = 0.018], 1SVR [−5.8 (−20, 5.2); p = 0.025], and
1STR [−8.39 (−21, 3); p = 0.001] and significant increase in 1TFC [6.2 (3.5, 11.4);
p = 0.01] following FB. We defined fluid responders by an increase in SV by ≥10%
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after a single FB of 20 ml/kg crystalloid. Receiver operating curve analysis revealed that
among all the parameters, 15% change in ICON had an excellent AUC (0.85) for the
fluid responsiveness.

Conclusion: Our study showed significant changes in objective hemodynamic
parameters, such as SVR, STR, and TFC following FB in children presenting with
shock. A 15% change in ICON had an excellent predictive performance for the fluid
responsiveness among our cohort of pediatric shock.

Keywords: fluid responsiveness, shock, children, hemodynamic monitoring, electrical cardiometry

INTRODUCTION

Shock is a leading cause of morbidity and mortality in the
pediatric patients worldwide (1, 2). The prevalence of sepsis and
septic shock has been reported to be around 1–26% of shock
cases with mortality rates ranging from 5 to 35% in hospitalized
children globally (3, 4). Appropriate fluid resuscitation is crucial
in the management of children with shock (5). The current
American College of Critical Care Medicine (ACCM), Pediatric
Advanced Life Support (PALS), and Surviving Sepsis Campaign
Guidelines have focused on the implementation of early and
goal-directed fluid therapy (6, 7). Many studies have shown
that mortality in pediatric patients with septic shock has been
significantly decreased with aggressive fluid administration (8, 9).
However, overzealous fluid administration can also lead to fluid
overload (FO) and has been associated with complications such
as acute respiratory distress syndrome (ARDS), which results in
poor outcomes including increased hospital length of stay and
mechanical ventilator days (10–13). As a result, in the recent
decades, a more restrictive approach for fluid resuscitation has
emerged in adults and children vs. the usual aggressive fluid
therapy (14–16).

Despite ongoing extensive research related to fluid
management in septic shock, the optimal amount of fluid
to administer in early resuscitation of pediatric shock remains
uncertain (17). Therefore, it is imperative to assess the clinical
and hemodynamic responses before and after each fluid bolus
(FB) to guide resuscitation and to determine the presence or
absence of FO. Traditional use of subjective findings such
as pulse volume, capillary refill time, and clinical signs of
hydration status to predict fluid responsiveness (FR) has been
proven to be unreliable (18, 19). In the recent decades, objective
hemodynamic parameters have gained popularity and have been
shown to reliably predict FR in adults (20, 21). While there is a
growing body of the literature on the use of non-invasive devices
for objective hemodynamic monitoring, there is a paucity of the
literature related to the assessment of FR using these measures in
children with shock (22).

ICON monitor, which is based on a novel technology
of electrical cardiometry (EC), is one such non-invasive
hemodynamic monitoring device and has been studied for the
assessment of FR in adult patients with the promising results (23,
24). EC technique uses signals generated by the surface electrodes
to measure the alterations in thoracic impedance. The changes
in bio-impedance to the flow of erythrocytes in the aorta are

computed into an algorithm allowing continuous hemodynamic
monitoring (25). In our pilot study, we aim to determine changes
in subjective and objective measures of hemodynamic status
before and after FB in children with shock using ICON monitor.
We also sought to assess whether changes in objective parameters
could predict FR in these children.

MATERIALS AND METHODS

Study Design and Selection of
Participants
We conducted a prospective observational pilot study in
children presenting with shock to our emergency department
(ED) from June 2020 to March 2021. We conducted the
study at the Children’s Hospital of San Antonio (CHofSA),
a freestanding, 200-bed, tertiary care children’s hospital. The
Baylor College of Medicine Institutional Review Board and
CHofSA feasibility committee approved the study. Due to the
prospective observational nature of the study, a waiver of
informed consent was obtained.

In our study, we used ICON R© non-invasive hemodynamic
monitor to measure objective hemodynamic parameters before
and after FBs in children with shock in the ED. ICON R© monitor
has been utilized to monitor patient hemodynamics in our
pediatric intensive care unit (PICU) since 2018. Hence, we were
interested to determine whether it may be feasible to expand
the use of ICON R© monitor to the ED. After a short training
period for the research team and ED staff, we began using the
monitor on ED patients with shock to explore the workflow and
obtain fluid resuscitation responses by measuring subjective and
objective parameters.

Inclusion Criteria
1. Children aged 0–17 years who presented in shock or

presumed shock and required FB in our ED.
2. Children in whom all the hemodynamic parameters were

available and feasible using ICON R© monitor.

Exclusion Criteria
1. Children with suspected infection with SARS CoV-2 who

were designated as patients under investigation (PUI).
2. Children in whom any hemodynamic data using ICON R©

monitor were not feasible or not available.

Frontiers in Pediatrics | www.frontiersin.org 2 April 2022 | Volume 10 | Article 857106

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pediatrics#articles


fped-10-857106 April 1, 2022 Time: 15:35 # 3

Awadhare et al. Non-invasive Hemodynamic Monitoring in Children

Unfortunately, during the study period, we were facing the
COVID-19 pandemic wave. During the study period, our hospital
policies required all PUI to be considered as suspected COVID 19
and did not allow trainees to be involved with the care of PUI and
patients with COVID-19. We therefore excluded the PUI.

We defined shock a priori based on a combination of
clinical and/or laboratory parameters such as hypothermia or
hyperthermia, tachycardia or tachycardia out of proportion to
the degree of fever, tachypnea, hypotension, delayed capillary
refill time, dry mucosa, and elevated lactate levels which
warranted fluid resuscitation. In our ED, it is a standard
protocol for the triage nurse to alert the ED attending about
any patient presenting in shock or presumed shock. The
ED attending then decides about the administration of FB
based on his/her assessment of the patient’s clinical status
suggestive of shock or presumed shock. Therefore, in our
study, we included pediatric patients presenting with shock
or presumed shock who were administered FB. In our ED,
it is a routine practice to monitor the patients’ clinical and
hemodynamic parameters obtained via standard monitoring
before and after FB interventions. We expanded the current
standard of care with an application of the ICON R© monitor to
obtain additional hemodynamic parameters after the decision
to administer fluid was made. The providers were blinded to
the information collected by the monitor to reduce the risk

of introducing bias into the treatment of the patients. We did
not initiate or change real-time clinical management of the
patient based on hemodynamic parameters obtained using the
ICON R© monitor.

Non-invasive Monitoring
ICON R© monitor measurements require the placement of four
skin sensors on the left side of the body as shown in Figure 1.
After attaching the four sensors (two upper and two lower), we
confirmed 100% signal strength before capturing hemodynamic
parameters for accuracy. The upper sensors apply a harmless
low amplitude, high-frequency alternating current. The changes
in pulsatile red blood cell flow and change of thoracic electrical
bio-impedance during the cardiac cycle are captured between
the pair of the sensors. The complex mathematical algorithm
built into the device calculates beat-to-beat parameters such as
cardiac output, stroke volume, and many other hemodynamic
parameters (25).

Hemodynamic Measurements
We collected hemodynamic variables before and within 10 min
after each FB in children with shock. We obtained demographic
characteristics such as age and gender, clinical parameters such
as heart rate (HR), respiratory rate (RR), systolic blood pressure
(SBP), diastolic blood pressure (DBP), mean arterial pressure

FIGURE 1 | The figure shows placement of ICON four sensors. One sensor placed on forehead, second sensor placed on left base of neck, third sensor placed on
left thorax at the level of xiphoid, and fourth sensor placed on left thigh. Adopted from ICON user manual with due permission from Markus Osypka, Osypka Medical
Inc., Germany.
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(MAP), and hemodynamic parameters from ICON device such
as cardiac output (CO), cardiac index (CI), index of contractility
(ICON), stroke volume (SV), stroke index (SI), corrected flow
time (FTC), systolic time ratio (STR), variation of index of
contractility (VIC), stroke volume variation (SVV), systemic
vascular resistance (SVR), and thoracic fluid content (TFC).

Similar to the prior studies in adults, we defined the fluid
responders a priori as those who exhibited an increase in SV by
≥10% after a single FB of 20 ml/kg crystalloid (18).

Statistical Analysis
We conducted a statistical analysis using R–project (R Core
Team, Vienna, Austria). We presented numeric data in median
interquartile range (IQR) values. We calculated percent change
(1) for pre- and post-hemodynamic data and compared the
data using paired-sample Student’s t-test. We used Mann–
Whitney U-test to compare hemodynamic parameters between
fluid responders and non-responders. Furthermore, we plotted
sensitivity and specificity for the cut-off points 5, 10, 15, and 20%
for all variables to create receiver operating characteristic (ROC)
curves to assess their predictive performances. p-values < 0.05
were considered statistically significant.

RESULTS

During the study period between June 2020 and March 2021,
total number of ED visits in our children’s hospital was 23,060.

Out of these patients, 1,792 presented with shock. During the
Coronavirus disease 2019 (COVID-19) pandemic, the ICON
device was not used in many patients who visited our ED during
the study period. Therefore, in total, we were able to record 42
fluid interventions in 40 patients out of these 1,792 during our
pilot study (Figure 2).

Patient’s Characteristics
The median (IQR) patient age was 10.56 (4.8, 14.8) years with
male/female ratio 1.2:1. Out of 40 patients included in our
study, 32 (80%) had clinical findings and the remaining 8 (20%)
had clinical and laboratory findings suggestive of shock. The
hypovolemic shock was present to some degrees in 72% and
septic shock in 28% of patients. The most common underlying
etiology of shock was hypovolemia due to gastrointestinal
condition (48%) (Table 1). All patients received FBs with
crystalloids via infusion pump. The preferred crystalloid was
normal saline in 32/42 (76%) and ringer’s lactate in 10/42 (24%).
The mean weight-based volume of fluid administration was
16.24 ml/kg (standard deviation 5.6) with a mean duration of
47.26 min (standard deviation 15.8) to bolus completion.

Effects of Fluid Therapy and Fluid
Responsiveness
We observed a significant decrease in 1RR [−1.61 (−14.8, 0);
p = 0.012], 1DBP [−5.5 (−14.4, 8); p = 0.027], 1MAP [−2.2
(−11, 2); p = 0.018], 1SVR [−5.8 (−20, 5.2); p = 0.025], and

FIGURE 2 | Consort patient flow diagram showing the total number of ED visits in our study period and number of patients who were included and excluded in the
study. PUI, patients under investigation, COVID, coronavirus disease.
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TABLE 1 | Demographic data and clinical characteristics.

Patient’s characteristics Percentage (%) or Median (IQR)

Age (years) 10.56 (4.8, 14.8)

Gender (male: female) 1.2:1

Type of shock

Hypovolemic 30 (72%)

Septic 12 (28%)

Underlying etiology/Primary diagnosis/System involved

Gastrointestinal 20 (48%)

Endocrine/Metabolic 9 (22%)

Neurological 7 (16%)

Genitourinary 2 (6%)

Respiratory 1 (2%)

Musculoskeletal 1 (2%)

Hematology/Oncology 2 (4%)

IQR, interquartile range.

1STR [−8.39 (−21, 3); p = 0.001] and a significant increase in
1TFC [6.2 (3.5, 11.4); p = 0.01] following FB. About 35% of
FBs led to > / = 10% change in TFC. There were no significant
differences in HR, SBP, SV, SI, CO, CI, SVV, FTC, ICON, and VIC
post-FB (Table 2).

Fluid responsiveness was seen in 15/42 interventions. Between
responders vs. non-responders, fluid responders had a significant
decrease in 1HR [−3.7 (−16.6, −0.72) vs. 1.32 (−5.1, 9.9);
p = 0.002], 1SVV [−34 (−50, −2.9) vs. 25 (−19.5, 83.7);
p = 0.002], 1SVR [−12.8 (−22.7, −7.7) vs. 0 (−12.8, 9.2);
p = 0.31], and 1STR [−19.3 (−24.6, −12) vs. −5 (−14.8, 8.8);
p = 0.03]. Furthermore, fluid responders had a significant increase
in 1SI [16 (15.8, 24.2) vs. −3 (−9, 0.91); p = 0.00000011], 1CO
[14.2 (4, 23) vs. −2.2 (−12.9, 6.2); p = 0.006], 1CI [14.5 (5.2,

23) vs. −3.5 (−12.8, 5.6); p = 0.003], 1FTC [7.65 (2.6, 9.4) vs.
0 (−6, 3.8); p = 0.002], and 1ICON [16.7 (13.5, 25) vs. −9 (−23,
5.1), p = 0.003] as compared to non-responders. There were no
significant differences between age, 1RR, 1SBP, 1DBP, 1MAP,
1TFC, and 1VIC between these two groups (Table 3).

Receiver Operating Characteristic Curve
Analysis
We compared areas under ROC curves (AUCs) after fluid
expansion for 1HR, 1SVR, 1SVV, 1STR, 1SI, 1CO, 1CI,
1FTC, and 1ICON. The AUC denoted better classifiers for 1SI
(AUC–0.99), 1ICON (AUC–0.85), and 1CI (AUC–0.73). The
optimal threshold value for CI, SI, and ICON calculated by the
ROC curve analysis was 15% (Figure 3).

DISCUSSION

Our prospective observational pilot study focused on subjective
and objective methods of assessing hemodynamic status and FR
in children presenting to the ED in shock. To our knowledge, this
is the first pediatric report of the use of electrical cardiography
which demonstrated a significant change in objective indices
of hemodynamic status following FB in children with shock.
Additionally, the study demonstrated the changes in specific
hemodynamic indices such as CI, SI, and ICON as measured
by electrical cardiography best-predicted FR in children with
shock. The overall goal of fluid administration in patients
with shock is to increase cardiac preload and subsequently
stroke volume (15, 17). However, the studies in critically ill
patients that examined FR demonstrated only 40–50% of patients
responded to volume expansion (19, 26, 27). Furthermore,

TABLE 2 | Comparison between pre- and post-FB hemodynamic variables.

Parameters Pre-FB median (IQR) Post-FB median (IQR) 1 Median (IQR) p-values

HR (bpm) 107 (92, 131) 103.5 (85, 127) −0.72 (−8, 4.2) 0.453

RR (/min) 22 (19, 24) 20 (18, 24) −1.61 (−14.8, 0) 0.012

SBP (mmHg) 116 (105, 125) 112.5 (100, 123) −5 (−14.5, 7) 0.104

DBP (mmHg) 73 (64, 84) 69 (55, 80) −5.5 (−14.4, 8) 0.027

MAP (mmHg) 88 (83, 96) 84.5 (73, 93) −2.2 (−11, 2) 0.018

SV (ml) 51.5 (27, 77) 54.5 (35, 72) 0.7 (−9, 15) 0.814

SI (BSA) 38 (35, 48) 41 (34, 48) 2.16 (−7.5, 16) 0.242

CO (l/min) 5 (3.5, 7.3) 4.7 (3.8, 6.3) 2.4 (−8.4, 16) 0.858

CI (BSA) 4.2 (3.2, 4.8) 4.2 (3.3, 5) 1.1 (−8, 16) 0.2577

SVV (%) 12.5 (8, 17) 13 (8, 17) 0.0 (−5, 4) 0.509

FTC (ms) 312 (298, 327) 323.5 (302, 333) 2.31 (−0.8, 8) 0.282

TFC 28.5 (20, 34) 31 (23, 37) 6.2 (3.5, 11.4) 0.005

SVR (dyn.s/cm5) 1387 (958, 1913) 1374 (942, 1704) −5.8 (−20, 5.2) 0.025

STR 0.37 (0.33, 0.45) 0.34 (0.3, 0.38) −8.39 (−21, 3) 0.001

ICON 72.8 (56.6, 96.3) 71 (51, 103) 4 (−21.6, 16.6) 0.858

VIC (%) 13.5 (9, 27) 16.5 (11, 26) 0.0 (−33, 57) 0.433

FB, fluid bolus; HR, heart rate; RR, respiratory rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; SV, stroke volume; SI, stroke
index; CO, cardiac output; CI, cardiac index; SVV, stroke volume variation; FTC, corrected flow time; TFC, thoracic fluid content; SVR, systemic vascular resistance; STR,
systolic time ratio; ICON, index of contractility; VIC, variation of index of contractility; 1, percentage change; bpm, beats per minute;/min = per minute; ml, milliliters; BSA,
body surface area; %, percentage; ms, milliseconds; dyn.s/cm5, dynes/sec/cm5; significant value, p < 0.05. (Paired-sample Student’s t-test). Bold values correspond to
significant p-values.
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the conventional subjective parameters such as vital signs and
physical examination pose several limitations and alone are
not reliable in assessing FR, especially in children (28, 29).
On the other hand, objective parameters such as CO, CI, SV,
SI, and SVR may provide much more accurate hemodynamic
status (30). More recently, non-invasive cardiac output monitors
are also being utilized to provide continuous data of patients’
hemodynamic status that could help in guiding fluid therapy
and to predict FR (22, 31). Several studies have demonstrated
the usefulness of these non-invasive devices in adults (23, 24,
32), yet the effectiveness of such devices remains controversial
in pediatric patients. Some studies support the use of these
newer non-invasive techniques in children. A study by Norozi
et al. demonstrated a good correlation (r = 0.84) between CO
measurements obtained by non-invasive cardiac output monitor
and invasive direct Fick oxygen method in children with various
congenital heart conditions (33). However, in another study
that compares SVV measured by NICOM (non-invasive cardiac
output monitor), traditional transesophageal echocardiography
reported its ineffectiveness to predict FR in children undergoing
cardiac surgery (34). In another study by Ballestero Yolanda
et al. on a pediatric animal model with hemorrhagic shock, CI
measured by bioreactance technique did not show significant
changes after volume expansion (35).

TABLE 3 | Changes in hemodynamic variables in responders vs. non-responders.

Parameters Responders
n = 15 median

(IQR)

Non-responders
n = 27 median

(IQR)

p-values

Age (years) 7.9 (2, 11) 12.3 (5.6, 15.6) 0.15

1HR (bpm) −3.7 (−16.6,
−0.72)

1.32 (−5.1, 9.9) 0.002

1RR (/min) −6.2 (−15.5, 0) 0 (−12.7, 4.5) 0.169

1SBP (mmHg) −0.85 (−4.9, 4.9) −6.6 (−12, 7.5) 0.293

1DBP (mmHg) −2.4 (−5.8, 8.9) −9.8 (−16.2, 6.43) 0.253

1MAP (mmHg) −1,1 (−4.6, 1.8) −6.5 (−12.8, −0.6) 0.100

1SI (BSA) 16 (15.8, 24.2) −3 (−9, 0.91) 0.00000011

1CO (l/min) 14.2 (4, 23) −2.2 (−12.9, 6.2) 0.006

1CI (BSA) 14.5 (5.2, 23) −3.5 (−12.8, 5.6) 0.003

1SVV (%) −34 (−50, −2.9) 25 (−19.5, 83.7) 0.002

1FTC (ms) 7.65 (2.6, 9.4) 0 (−6, 3.8) 0.002

1TFC 6.6 (5.4, 12) 5.8 (1.5, 10.5) 0.216

1SVR (dyn.s/cm5) −12.8 (−22.7,
−7.7)

0 (−12.8, 9.2) 0.031

1STR −19.3 (−24.6,
−12)

−5 (−14.8, 8.8) 0.003

1ICON 16.7 (13.5, 25) −9 (−23, 5.1) 0.0003

1VIC (%) 0 (−39, 44) 0 (−23, 71) 0.617

HR, heart rate; RR, respiratory rate; SBP, systolic blood pressure; DBP, diastolic
blood pressure; MAP, mean arterial pressure; SV, stroke volume; SI, stroke index;
CO, cardiac output; CI, cardiac index; SVV, stroke volume variation; FTC, corrected
flow time; TFC, thoracic fluid content; SVR, systemic vascular resistance; STR,
systolic time ratio; ICON, index of contractility; VIC, variation of index of contractility;
1, percentage change; bpm = beats per minute;/min = per minute; millimeters
of mercury, mmHg; ml, milliliters; BSA, body surface area; %, percentage; ms,
milliseconds; dyn.s/cm5, dynes/sec/cm5; significant value, p < 0.05. Bold values
correspond to significant p-values.

In our study, we observed a significant decrease in RR, MAP,
SVR, and STR and an increase in TFC, while CO, CI, SV, and
SI remained unchanged. TFC is a newer objective parameter
that has shown to identify pulmonary congestion which might
not be evident on chest x-rays (36, 37). One study in critically
ill children with respiratory failure and shock demonstrated
that high TFC values correlate with pulmonary plethora and
predicted patient outcomes (37). Another study in patients with
heart failure suggested that TFC may identify patients at risk
for decompensation (38). TFC measurements using EC have
shown to be correlated with the presence of respiratory distress in
infants (39). Hence, our pilot study that determined a significant
increase in TFC may identify this as an important area of
future study. A significant increase in TFC following FB in
our study may be related to increased pulmonary interstitial
edema following FB.

Predicting FR in children can be challenging. The predictive
abilities of various hemodynamic parameters have previously
been evaluated in a systematic review (40). Our results show
that 1CI, 1SI, and 1ICON had good predictability for FR in
children. In our study, AUCs of CI, SI, and ICON were 0.73, 0.99,
and 0.85, respectively. In a study on adult patients undergoing
laparoscopic cholecystectomy, AUCs for CI and SI for FR were
0.83 and 0.90, respectively (41). In a study on post-operative
pediatric patients, AUC for SI was 0.88 (42). Our findings of AUC
for HR for FR correlate with the prior similar results (43, 44).
Though commonly used as a parameter to assess fluid status, HR
is a worse predictor of FR. In our study, changes in CI and ICON
showed a high predictive performance for FR. It is possible that
FB improved myocardial contractility through Frank–Starling
mechanism, and therefore, CI and ICON showed an excellent
predictive performance.

Limitations
Our study had several limitations. It is a prospective
observational pilot study conducted in a single center, and
our sample size is small. A major challenge we encountered
that led to a smaller sample size was the necessary exclusion
of patients with COVID-19 or PUI during the unprecedented
pandemic due to PPE restrictions and institutional guidelines
to protect students from potential exposure. In addition, this
cohort does not represent consecutive patients due to the
limitations of availability and feasibility to perform monitoring
in the unpredictable ED setting. Furthermore, considering
these limitations in patient recruitment, our sample included
most patients with mild-to-moderate shock and may not be
representative of the most critically ill patients. Additionally,
this may have impacted the rate of fluid administration with
the mean bolus duration longer than optimum for shock
resuscitation guidelines. Therefore, the results of this study
cannot be generalized to all patients with pediatrics with
shock. Despite the limitations of our pilot, the parameters we
found to be statistically significant demonstrate the promising
results that using a non-invasive monitor to assess objective
hemodynamic changes in children with shock has the potential
to aid ED physicians in predicting FR and better guide
fluid management.
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FIGURE 3 | Comparison of AUCs for prediction of FR after fluid expansion. 1HR [0.64 (95% CI 0.55–0.72)], 1SVR [0.71 (95% CI 0.62–0.79)], 1SVV [0.74 (95% CI
0.65–0.82)], 1STR [0.73 (95% CI 0.64–0.81)], 1SI [0.99 (95% CI 0.97–1)], 1CO [0.68 (95% CI 0.59–0.76)], 1CI [0.73 (95% CI 0.64–0.81)], 1FTC [0.65 (95% CI
0.56–0.73)], and 1ICON [0.85 (95% CI 0.78–0.91)]. HR, heart rate; RR, respiratory rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean
arterial pressure; SV, stroke volume; SI, stroke index; CO, cardiac output; CI, cardiac index; SVV, stroke volume variation; FTC, corrected flow time; TFC, thoracic
fluid content; SVR, systemic vascular resistance; STR, systolic time ratio; ICON, index of contractility; VIC, variation of index of contractility; 1, percentage change.

CONCLUSION

The results of our pilot study suggest that integration of objective
assessment with subjective data using advanced non-invasive
monitoring could help to evaluate patients’ hemodynamic status
and FR in children with shock in ED settings. The findings
of excellent predictive performance (AUC 0.85) of changes
in ICON for FR could potentially aid treating physicians in
avoiding fluid overload, developing optimal management plans,
and using objective clinical decision-making for children with
shock. Larger, multi-center, prospective, randomized studies are
needed to further evaluate the validity of non-invasive devices in
predicting FR in children.
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