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Abstract: Integrating transcriptional profiles results in identifying gene expression signatures that
are more robust than those obtained for individual datasets. However, a direct comparison of
datasets derived from heterogeneous experimental conditions is problematic, hence their integration
requires applying of specific meta-analysis techniques. The transcriptional response to hypoxia
has been the focus of intense research due to its central role in tissue homeostasis and prevalent
diseases. Accordingly, many studies have determined the gene expression profile of hypoxic cells.
Yet, despite this wealth of information, little effort has been made to integrate these datasets to
produce a robust hypoxic signature. We applied a formal meta-analysis procedure to datasets
comprising 430 RNA-seq samples from 43 individual studies including 34 different cell types, to
derive a pooled estimate of the effect of hypoxia on gene expression in human cell lines grown
ingin vitro. This approach revealed that a large proportion of the transcriptome is significantly
regulated by hypoxia (8556 out of 20,888 genes identified across studies). However, only a small
fraction of the differentially expressed genes (1265 genes, 15%) show an effect size that, according
to comparisons to gene pathways known to be regulated by hypoxia, is likely to be biologically
relevant. By focusing on genes ubiquitously expressed, we identified a signature of 291 genes robustly
and consistently regulated by hypoxia. Overall, we have developed a robust gene signature that
characterizes the transcriptomic response of human cell lines exposed to hypoxia in vitro by applying
a formal meta-analysis to gene expression profiles.

Keywords: transcription; hypoxia; RNAseq; meta-analysis

1. Introduction

Oxygen homeostasis is essential to sustain cellular metabolism in eukaryotes. Hypoxia
triggers multiple adaptive mechanisms, from metabolism reprogramming to tissue restruc-
turing, aimed to re-balancing oxygen supply and demand [1]. In multicellular organisms
this response can be very diverse, depending on cell type, extension and degree of the
oxygen deprivation, or pathological state.

Most of these responses are orchestrated at the transcriptional level, with the Hypoxia
Inducible Factors (HIFs) being the main drivers of the hypoxic gene expression pattern [2].
The heterodimeric HIF transcription factor consists on a β subunit (ARNT), constitutively
expressed, and an α subunit (HIF1A, EPAS1, HIF3A) which, in normoxic conditions, is
marked for degradation by the concerted action of a family of oxygen-dependent enzymes
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(EGLN family) and the von Hippel-Lindau (VHL) ubiquitylation complex [3–5]. When
oxygen concentration decreases, the α subunits escape degradation due to the reduced
activity of the EGLNs, translocate to the nucleus and bind to Hypoxia Response Elements
along the β subunit. Transcriptional activity of HIFs depends also on interaction with
co-activators such as CREB-binding protein or p300, whose binding is also regulated in an
oxygen-dependent manner [6,7].

Given the importance of the transcriptional response for tissue oxygen homeostasis
and its alteration in disease, a large number of works have attempted to identify the full
set of genes regulated by hypoxia through gene profiling experiments. Since these studies
were performed in a wide variety of experimental conditions (cell types, oxygen tension,
exposure time) integrating their results could lead to identify a set of genes ubiquitously
regulated by hypoxia, as well as genes whose alteration is restricted to specific situations in
addition to hypoxia. However, little effort has been done in this regard and, to the best of
our knowledge, only two attempts to integrate all the hypoxic gene profiling experiments
have been done [8,9]. The first analysis of this type, based on the analysis of gene profiles
generated by means of DNA microarrays, produced the first list of genes universally
induced by hypoxia and revealed that the set of genes induced by hypoxia were more
conserved than those repressed [8]. A second, more recent study, exploited the information
derived from RNA-seq experiments producing a more comprehensive list of hypoxia-
regulated genes and characterized HIF-isoform common and specific targets [9]. In spite of
their merit, none of these works employed formal meta-analysis approach for their analysis
which, given the heterogeneous nature of the data, is critical to draw statistically sound
conclusions [10].

Among the various meta-analysis methods applicable to transcriptomic data [11], we
employed a model that combines the effect sizes (log fold change of the ratio of the gene
expression under hypoxia and normoxia) on gene expression across the individual studies.
This allowed us, not only to identify the set of genes differentially regulated in response to
hypoxia, but also to estimate the magnitude of change for each gene. Instead of assuming a
fixed effect of hypoxia on any given gene across the different studies, we used a random
effects model that considers that the true effect could vary from study to study to reflect,
for example, the different response in distinct cell types. In this study we aim to define
core components of the transcriptional response to hypoxia taking advantage of the wider
public availability of next generation sequencing data, RNA-seq in particular. Applying a
random effects model to the expression data gathered we were able to define a molecular
signature representing the early (≤48 h) transcriptional response to hypoxia, independently
of cell type.

2. Materials and Methods
2.1. RNA-seq Data Download and Processing

Raw reads of the RNA-seq experiments were downloaded from Sequence Read
Archive [12]. Pseudocounts for each gene were obtained with salmon [13] using RefSeq [14]
mRNA sequences for human genome assembly GRCh38/hg38 as reference.

Differential expression in individual subsets was calculated with the R package DE-
Seq2 [15] using local dispersion fit and apeglm [16] method for effect size shrinkage.

2.2. Meta-Analysis

The meta-analysis intended to identify the effect of sustained hypoxia on early gene
expression in human cells compared to normoxic controls. To identify studies to be included
in the meta-analysis Gene Expression Ommibus (GEO) repository was searched with the
terms ‘hypoxia[Description] AND “expression profiling by high throughput sequencing”
[DataSet Type]’ on 11 February 2021. The search resulted in a total of 394 studies. We only
kept studies performed in human cells that determined steady-state RNA levels in total
(poly-A) RNA samples and excluded analysis that did not include replicates, employed
treatments other than reduced oxygen tension (e.g., chemical inhibitors or other hypoxia
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mimetics) or those where gene expression was analyzed after 48 h. We also excluded
studies that used cycling/intermittent hypoxia or that were performed in non-human cell
lines. A total of 46 studies (independent GSE entries) remained after application of the
inclusion/exclusion criteria and were used for the meta-analyses (Suplementary Table S1).
A pooled estimate of the size effect of hypoxia on expression was determined for each
gene using the R packages metafor [17] and meta [18] using as input the log2-Fold change
value and its associated standard error computed for each individual RNA-seq experiment
using the R package DESeq2 [15]. Given that the individual estimates derive from an
heterogeneous group of experiments, including different cell types and experimental
conditions, we assumed that these individual estimates derive from a distribution of
true effect sizes rather than a single one and thus applied a random-effects model for
the meta-analysis. Since some of the selected studies included several cell types and/or
experimental conditions (see results for details), we fitted a 3-level model [19] that, in
addition to sampling error and between-study heterogeneity, takes into account possible
dependencies between data subsets derived from a single study.

2.3. Functional Enrichment Analysis

Enrichment of Gene Ontology terms was performed with the Bioconductor’s cluster-
Profiler package [20] using a q cut-off value of 0.05. The list of background genes included
those expressed in at least 90% of the datasets and as foreground list the subset of genes
significantly regulated by hypoxia (FDR < 0.01) with abs(Log2FC) ≥ 0.7. As background
genes. To reduce the redundancy, highly similar GO terms were removed keeping a single
representative by using the “simplify” function using a cut-off value of 0.6 (up-regulated
genes) or 0.7 (down-regulated genes). The much larger number of enriched terms found for
up-regulated genes justified the use of a slightly more lenient cutoff value for the simplify
function. Gene Set Enrichment Analysis [21] was performed using the preranked tool
of the Broad Institute’s application for Linux (version v4.2.3) . The Canonical pathways
subset was used as gene set database and gene list was ranked according to the pooled LFC
estimate derived from the meta-analysis. Genes expressed in less than 5% of the studies’
subsets were removed from the list. Pathways with an FDR < 0.01 were considered
significantly enriched.

3. Results
3.1. Hypoxia-Induced Transcriptional Profiles Show Limited Overlap

In order to identify genes consistently regulated by hypoxia across a wide range of cell
types and experimental conditions, we compared the results from 46 studies analyzing the
transcriptional response to hypoxia by means of RNA-seq (Supplementary Table S1). Since
some studies included several cell types, oxygen tensions or times of exposure to hypoxia,
we took subsets of the study’s data so that each one included a single cell line and set of
experimental conditions (Figure 1). Thus, our initial data set included a total of 81 subsets
of normoxia-hypoxia paired samples, each one comprising a single cell line, exposure time
and oxygen tension (Table 1).

For each of these 81 subsets, we identified the genes significantly regulated (FDR < 0.01)
in response to hypoxia and recorded the number of times each gene was found to be down-
or up-regulated across the 81 subsets (Figure 1A). This analysis revealed that the majority of
genes showed significant changes in a small number of datasets (Figure 1B). Thus, of a total
of 15,362 genes found significantly (FDR < 0.01) repressed by hypoxia across all the 81
analyzed datasets, over 50% of them were found in a maximum of five datasets (Figure 1B,
first red bar). Similarly, a total of 16,872 genes were significantly (FDR < 0.01) induced in
at least one dataset, but 60% of them were shared in a maximum of five datasets (Figure 1B,
first blue bar). Conversely, not a single gene was found consistently down- or up-regulated
across all the datasets, but induced genes tend to be more consistently regulated (Figure 1B).
The most frequently repressed genes were present in at most 50–55 datasets while several
genes were found significantly up-regulated in 65–70 of them (Figure 1B and Supplementary
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Tables S2 and S3). These results suggested a reduced overlap of the analyzed transcriptional
profiles. Next, we performed all possible pair-wise comparisons between the 81 lists of
DEGs (Figure 1A, bottom right panel). As shown in Figure 1C, the overlap between lists
of DEGs was below 10% in the vast majority of pair-wise comparisons with a median
value of 3.6% of shared genes between lists of repressed genes and a median value of
6.8% in the case of the induced genes. Altogether these results indicate a considerable
heterogeneity in the transcriptional response to hypoxia, which is more pronounced in the
case of repressed genes.

Table 1. Datasets used in the meta-analysis. The number of independent GEO entries (Series IDs,
GSE) that met the criteria described under methods is shown (“Studies”). For each study, only
those samples corresponding to normoxic and hypoxic conditions were retrieved ignoring any other
treatment that the study could have included. The total number of samples meeting these criteria is
shown (“Samples”). In those cases were a study included more than one cell line, different degrees of
hypoxia or different exposure times, the samples were divided into subsets including a single level
for each one of these variables. The total number of subsets generated is shown (“Subsets”). The
column “Cell lines” indicates the number of different cell lines included in the dataset. The rows
contain values corresponding to the dataset prior (“Initial”) and after (“Filtered”) filtering to remove
outlier studies.

Dataset Studies Samples Subsets Cell Lines

Initial 46 472 81 38
Filtered 43 430 70 34

3.2. Identification of Robust Transcriptional Responses to Hypoxia

Given the heterogeneity in the transcriptional response to hypoxia, we decided to
apply a formal meta-analysis to identify genes significantly regulated by hypoxia across all
the datasets and estimate the magnitude of the change in their expression. To this end, for
each of these 81 subsets we estimated the difference in expression levels between normoxic
and hypoxic conditions for all genes (“LFC”, Figure 2). From these analyses we extracted
the statistics (Effect size, “LFC”, and standard error associated to this estimate, “SE”) for
individual genes across the different studies and performed a meta-analysis on each one of
these gene-specific datasets to estimate the pooled effect of hypoxia (Figure 2 Meta-analysis).
Thus, an independent meta-analysis was performed for each individual gene by integrating
the effects of hypoxia on that particular gene across the different studies and conditions.
The results provide a pooled estimate of the effect of hypoxia on the expression of the gene
under analysis and its statistical significance. As an example, the results of the meta-analysis
for the EGLN3 gene, encoding a cellular oxygen sensor known to be directly regulated
by HIF in response to hypoxia [22], are shown in Supplementary Figure S1. Finally, we
compiled the pooled estimates for all genes detected in more than one subset, together
with the statistical significance value, to produce a table representing the overall effect of
hypoxia on gene expression (Figure 2 “Compiled MA results”).

The quality of the meta-analyses’ results is critically dependent on the original data
fed to the model. In this regard, correlation analyses revealed a few incoherent datasets
(Supplementary Figure S2). In those cases where the lack of positive correlation was clearly
due to a mistake in the labeling of samples in public databases, as indicated by a large
negative correlation coefficients (Supplementary Figure S2, subsets “S42” and “S58”), the
treatment labels were correctly set and the study was kept. The remaining incoherent
studies, having a correlation coefficient not significantly different to zero (p > 0.01), were
discarded. After these data sanity check procedures, the whole analysis strategy (Figure 2)
was repeated on this corrected and filtered dataset. Table 1 shows the statistics of the data
set after filtering and Supplementary Table S4, the full description of each of the samples
included in the final analysis.
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Figure 1. Hypoxic transcriptomes show limited overlap. (A) Diagram depicting the process used to
compare hypoxic transcriptomes. Normoxic (Nx samples) and hypoxic (Hyp samples) replicates from
the relevant studies (“GSE1”, “GSE2”, . . . “GSEn”) were processed to identify genes whose expression
was significantly affected by hypoxia (Differentially Expressed Genes, “DEGs”). In those studies
analyzing more than a single cell line, time of exposure to hypoxia, or oxygen tension, samples were
grouped to generate homogeneous subsets and the effect of hypoxia on gene expression was analyzed
in each individual subset. The figure represents this situation in the case of GSE2 (shaded in red color),
an hypothetical study that analyzed the effect of hypoxia in two different cell types. The number
of datasets were a gene was found to be a DEG was recorded (see panel B). In addition, pairwise
comparisons (“PW1”, “PW2”, . . . “PWk”) between the 81 individual lists of DEGs were performed
(lower right) to calculate the fraction of shared DEGs by each pair (see panel C). (B) Histogram
showing the distribution of the number of down- (“DN”) or up-regulated (“UP”) genes binned by the
number of datasets were the gene was found to be significantly regulated. In order to show the whole
range, the y-axis is log10 scale. (C) Violin and overlaid boxplot showing the distribution of the fraction
of down- (“DN”) or up-regulated (“UP”) genes shared in all 3240 possible pair-wise comparisons of
the 81 datasets. For each pair of datasets A and B fraction of shared DEG was calculated as |A∩B|

|A∪B| .
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Figure 2. Integration of studies and gene-level meta-analysis. Normoxic (Nx samples) and hypoxic
(Hyp samples) replicates from the relevant studies (“GSE1”, “GSE2”, . . . “GSEn”) were processed to
produce a table recording the effect of hypoxia on the expression of each gene (Log2 fold-change,
labeled as “LFC”) and the standard error associated to this estimation (“SE”). Complex studies were
subdivided to produce minimal subsets of data (see Figure 1). Then, the results obtained for each
individual gene (represented by gene “gg” in the figure) were integrated into a random-effects model
meta-analysis to produce a pooled estimate of the effect of hypoxia on each gene. Note that a meta-
analysis is performed for each individual gene. Finally, the results of the gene-level meta-analyses
were integrated into a single list (“Compiled MA results”). p-values from individual meta-analyses
were corrected for multiple-testing.

3.3. Identification of a Universal Core of Hypoxia-Inducible Genes

The results of the meta-analysis on the clean dataset, after filtering out the outlier
subsets and removing genes detected in less than 5% of the subsets, revealed 6242 genes
(out of a total of 20,918) whose expression was significantly (FDR < 0.01) altered in
response to hypoxia (Figure 3A and Supplementary Table S5), with similar number of
genes being induced (3043) and repressed (3199). These numbers are larger than the typical
values obtained in individual experiments, with median values of 1294 and 1442 genes
significantly down- and up-regulated respectively (Figure 3B). The large number of DEGs
identified by the meta-analyses is probably a consequence of the increased power to detect
small effect sizes due to the integration of a large number of samples. In agreement, the
median effect size (LFC) observed for the genes differentially expressed (DE) according
to the meta-analyses are −0.31 and 0.42 for down- and up-regulated genes respectively,
contrasting with the median effect size observed in individual studies of −0.76 and 0.86 for
down- and up-regulated genes respectively (Figure 3C). Accordingly, the identification of
DEGs based only on statistical significance yields a large number of genes barely changing
in response to hypoxia (Figure 3A, genes labelled “FDR” in blue colour). As an example,
the smallest effect size found among significantly up-regulated genes is 0.11 corresponding
to fold induction over normoxia of about 1.1 times.

In view of these results we tried to identify a minimum effect size likely to represent
biologically relevant changes in gene expression. To this end we explored the relationship
between effect size and belonging to biological processes known to be regulated by hypoxia,
testing whether increasing the Log2FC cut-off would also increase the proportion of genes
with hypoxia related annotations. As shown in Supplementary Figure S3, the p-value for
the association of biological function and regulation by hypoxia reached a minimum at
effect size (Log2FC) values between 0.3 and 1.7. Since the choice of effect size values only
affects the distribution of genes into categories (i.e., differentially expressed versus not
altered) but does not change their total number, the minimum p-value corresponds to the
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least likely distribution expected by chance. Thus, we decided to take these values as the
lower boundary required to produce a biological response to hypoxia. The median value of
the effect sizes is 0.7, corresponding to an induction of 1.6 times over basal levels (0.6 times
the normoxic level for repressed genes).

Thus, in response to hypoxia a total of 926 genes, 167 repressed and 759 induced, show
a statistically significant change in expression (FDR < 0.01) of a magnitude likely to be
biologically meaningful (|Log2FC| > 0.7) (Figure 3A labeled in green and red colours).

The difference in the number of repressed and induced genes is a consequence of the
distribution of effect size values having a longer tail in the latter case (rug plot of the x-axis
in Figure 3A,D left panel). The different shapes of the distribution of effect size values
also suggest that hypoxia has a relatively weak effect on gene repression. In fact, while
the number of significantly induced genes is about four times higher that of repressed
genes (759 vs. 167) for an effect size higher than 0.7, the ratio increases to seventeen times
more up-regulated than down-regulated genes (424 vs. 25) for effect sizes larger than
1. Since the meta-analyses included experiments done at relatively short exposure times
(27% of the subsets correspond to exposure times ranging from 1–12 h), it could be argued
that the smaller effect size observed for repressed genes is a consequence of short-time
experiments failing to detect the effect on mRNA levels due to the relatively long half-life
of mRNAs. To test this hypothesis, we repeated the meta-analyses selecting only subsets
corresponding to treatments of 24–48 h, significantly longer than the median half-life of
5.7 h observed for human mRNAs under hypoxia [23]. As shown in Figure 3D left panel,
both distributions show a small shift toward higher absolute effect size values, but the
difference between them remains unaltered. Thus, the relatively smaller effect of hypoxia
on gene repression does not appear to be due to the persistence of mRNA molecules present
prior hypoxia exposure.

Finally, in order to get a list of core hypoxia-responsive genes we identified those that
were ubiquitously expressed. To that end, we selected those genes whose expression, aver-
aged across conditions, was detectable in at least 90% of the analyzed subsets (Figure 3A
labeled in red color). The resulting list included a total of 295 genes (114 down- and and 181
up-regulated) consistently altered by hypoxia across conditions. These genes correspond
to those most frequently found significantly regulated across individual datasets (Supple-
mentary Tables S2 and S3). The top 5 most frequently down- and up-regulated genes are
labelled in Figure 3A.

Functional enrichment of Gene Ontology terms, indicated that core hypoxia-induced
genes are mainly involved metabolic reprogramming but also in differentiation and mor-
phogenesis, being the development of the circulatory system particularly prominent
(Figure 4A). On the other hand, the genes consistently repressed by hypoxia across condi-
tions, are involved in cell cycle progression, DNA replication and repair, ribosome/rRNA
biogenesis and metabolism of amino acids (Figure 4B). Similar results were obtained by
Gene Set Enrichment Analysis (GSEA) using the meta-analysis derived LFC pooled es-
timates as ranking factor and pathway databases (Biocarta, KEGG, PID, Reactome and
Wikipathways) as source of gene sets [24]. GSEA results showed that cell cycle, DNA repli-
cation and DNA repair pathways were repressed by hypoxia (Supplementary Table S6). In
addition, mitochondrial respiratory electron transport and complex I biogenesis were also
found repressed (Supplementary Table S6). On the other hand, HIF-related pathways and
glucose metabolism were upregulated by hypoxia (Supplementary Table S7).

In summary, the application of a formal meta-analysis to hypoxia gene expression
profiles using a random effects model lead to the identification of a core set of 295 ubiq-
uitously expressed genes whose expression is significantly altered by hypoxia by a factor
of at least 0.7 log2-units. The identity of these genes and along their response to hypoxia
across individual subsets can be found in Supplementary Table S8.
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Figure 3. Identification of a common set of hypoxia-regulated genes. (A) The graph represents the
pooled effect of hypoxia on gene expression (Log2FC hypoxia over normoxia) against the statistical
significance of the effect (−log10 FDR−adjusted p−value) according to the meta-analysis. Genes
are represented as dots and their color indicates the effect of hypoxia: grey, genes not regulated by
hypoxia (FDR−adjusted p−value ≥ 0.01); blue, genes mildly affected by hypoxia (FDR−adjusted
p−value < 0.01 and |Log2FC| ≤ 0.7); green, genes strongly regulated by hypoxia (FDR−adjusted
p−value < 0.01 and |Log2FC| > 0.7), and dark red, ubiquitous genes regulated by hypoxia (strongly
regulated genes present in > 90% of the subsets). Non significant genes are represented by smaller
dots to avoid saturation. (B) Distribution of the number of genes found significantly (FDR−adjusted
p−value ≥ 0.01) down- (“DN”) or up-regulated (“UP”) by hypoxia in individual studies. (C) Distri-
bution of the median effect size (Log2FC Hypoxia over Normoxia) of hypoxia on repressed (“DN”) or
induced (“UP”) genes in individual studies. The red and blue dotted lines correspond to the median
effect size for repressed and induced genes respectively, according to the meta-analysis pooled esti-
mates. (D) Distribution of Log2FC values for significantly down-regulated (blue) and up-regulated
(red) genes, both in a meta-analysis including all the subsets, as well as in a meta-analysis restricted
to subsets corresponding to hypoxia treatments of 24 h or more.

3.4. Consistency of Meta-Analysis Results

To test the consistency of the pooled estimates described above, we applied a leave-
one-out cross-validation, a common method to estimate how accurately a predictive model
will perform on new data. To this end, we performed a set of meta-analyses using as input
all data subsets except for one and then compared the estimated effect sizes with the actual
LFC observed in the subset that was left out (Figure 5A). The process was repeated until
all possibilities were exhausted. This approach yielded a list of 70 correlation coefficients
corresponding to each iteration. As shown in Figure 5B, in almost all cases there was a
strong correlation between the pooled estimates and the actual effect sizes observed in
the individual subset that was left out of the meta-analyses, with 50% of the instances
showing a Pearson’s correlation coefficient over 0.81 and 75% of the cases above 0.72. We
also analyzed the overlap between the DEG derived from each meta-analyses and those
from the individual experiment that was left out from it and found a median value of 19%
percent of shared genes between lists of repressed genes and a median value of 18% percent
in the case of the induced genes (Figure 5B). These values contrast with the low overlap
found in pairwise comparisons between individual experiments (Figure 1C), in particular
in the case of down-regulated genes. Finally, we analyzed the percentage of core genes
genes (FDR < 0.01, |Log2| > 0.7 and present in at least 90% of the subsets included in the
meta-analysis) that were present in the DEG (FDR < 0.01) from the subset not included in
the meta-analysis. This analysis showed than core genes are consistently found among the
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DEG identified individual studies, with median values of 55% of the core repressed genes
and 65% of the core induced genes (Figure 1D). Altogether these results indicate that the
ensemble of pooled estimates predict with high accuracy the response to hypoxia and the
identity of DEGs in new experiments not included in the meta-analysis.

Figure 4. Functional enrichment analysis of the core hypoxic signature. Gene Ontology terms (Gene
Ontology ID: Description) significantly enriched among the core of hypoxia up- (A) and down-
(B) regulated genes. The analysis was restricted to terms of the “Biological process” domain. “Rich
Factor”, represents the fraction of category genes regulated by hypoxia. Count, absolute number of
category genes regulated by hypoxia.

3.5. Comparison of Meta-Analyses Results with a Reference Hypoxia Signature

The core set of genes identified in the analyses described before can be considered
a signature of the transcriptional response to hypoxia. Thus, we next compared the
core of hypoxia-inducible genes derived from the meta-analysis with the MSigDB’s
Hallmark hypoxia geneset [24], a widely used gene signature composed of 200 genes
up-regulated in response to low oxygen levels. As shown in Figure 6A, the overlap
between both gene sets was relatively small, with less than one third (64 out of 200)
of the genes in the Hallmark hypoxia signature being present in the meta-analyses
derived geneset, in spite of both genesets being similar in size, median Log2FC and
nearly universal expression (Supplementary Table S9). Moreover, the overlap was only
moderately increased when the Hallmark hypoxia signature was compared to the geneset
derived from the meta-analysis without restricting to ubiquitously expressed genes
(Figure 6B). In order to understand the cause for the reduced overlap, we analyzed the
effect of hypoxia on the expression of the 109 genes present in the Hallmark hypoxia
signature only (Supplementary Table S10). Five of the genes in this group (CCN5, CCN1,
BRS3, CCN2 and LALBA), were not among the 22,182 genes considered in the meta-
analyses, probably due to the lack of detectable expression in the RNA-seq datasets.
The effect of hypoxia on the remaining 104 genes is shown in Figure 6C. This analysis
revealed that 40% percent of these genes (43 out of 104) were not present in the meta-
analyses-derived signature because the pooled estimate of their induction by hypoxia
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was below the threshold value of 0.7, in spite of being statistically significant (labeled
as “DEG_UP” and shown in green color). However, the remaining 60% of the genes
(62 out of 104) did not show a statistically significant induction by hypoxia (57 out of
104; Figure 6C labeled as “Non_DEG” and shown in red color) or were repressed (5 out
of 104 genes; Figure 6C labeled as “DEG_DN” and shown in blue color). A forest plot
representing the pooled estimate of the LFC for the genes labeled as “Non_DEG” or
“DEG_DN” shows that they cluster around the value of zero and that, in many cases,
confidence interval for the point estimate is wide (Figure 6D) and overlaps the value of
zero (no regulation). These results indicate that these 62 genes are either not consistently
induced by hypoxia or show a cell-type/condition specific induction. An example
of the latter is the HMOX1 whose expression is induced, repressed or left unaltered
depending on the cell-type and/or experimental conditions (Supplementary Figure S4).
Interestingly, among the genes whose regulation by hypoxia depends on the specific
experimental conditions are ALDOB, and LDHC, which are tissue-specific paralogs of
genes strongly and consistently induced by hypoxia, ALDOA and LDHA respectively
(Figure 6D, labelled in red).

Figure 5. Meta-analyses accurately predict the identity of DEG and the magnitude of the change in
their expression. (A) Diagram depicting the procedure to assess meta-analyses consistency using
leave-one-out cross-validation. For each iteration, a meta-analysis spanning 69 subsets (“MA-69”)
was performed, and then the concordance between expression changes in the individual subset
left out and the pooled estimates in the MA-69 was calculated (central column in the diagram).
In addition, the list of differentially expressed genes derived from the meta-analysis (“DEG69”)
and from the individual transcriptome (“DEGi”) were compared to assessed their overlap (right
column in the diagram). The whole procedure shown in panel A was repeated leaving out a
different subset each time until all possibilities were exhausted. The distribution of the 70 resulting
correlation coefficients is shown in panel B and the overlap between DEG lists in panels C and
D. (B) Histogram and boxplot showing the distribution of the Pearson’s correlation coefficients
between the pooled estimates and the actual effect size observed in each left-out subset. (C) Genes
showing a statistically significant (FDR < 0.01) change in expression were obtained from each
meta-analysis (DEGMA) and the corresponding left-out individual subset (DEGi). The overlap
between both lists of DEGs was calculated as |DEGMA∩DEGi |

|DEGMA∪DEGi | . The graph represents the distribution
of the overlap values obtained in the 70 iterations of the process. To facilitate the comparison, the
graph uses the same y-axis scale than the one in Figure 1C. (D) A list of “core” hypoxia responsive
genes was derived from each meta-analyses as ubiquitous genes (expression detected in at least
90% of the datasets included in the meta-analyses) showing a robust (|LFC| > 0.7) and significant
(FDR < 0.01) change in expression (DEGcore). This list was then compared the list of genes
showing a significant (FDR < 0.01) change in expression in the remaining subset (DEGi). The
proportion of “core” genes present in the DEG from the individual experiment was calculated as
|DEGcore∩DEGi |
|DEGcore | . The graph represents the distribution of the values obtained in the 70 iterations of

the process.
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Figure 6. Comparison of Meta-analyses-derived and Hallmark hypoxic signatures. (A,B) Venn
diagrams showing the number of genes shared by the Hallmark hypoxic signature (labeled HM) and
the meta-analysis derived (labeled MA) core geneset (A), including genes expressed in over 90% of
the studies, or an extended geneset not restricted to ubiquitously expressed genes (B). (C) Effect of
hypoxia (pooled estimates from meta-analyses) on the 109 Hallmark hypoxia signature genes not
present in the meta-analyses geneset (see panel B). Genes showing a statistically significant induction
or repression by hypoxia are shown as green or blue dots respectively, while those whose expression
is not significantly altered are shown as red dots. The red vertical dotted lines mark threshold
effect size of 0.7 logarithmic units. The red horizontal dotted line marks the significance threshold
(adjusted p−value < 0.01). (D) Forest plot showing the estimated effect of hypoxia on the expression
of Hallmark genes not significantly up-regulated (those labelled in red and blue colors in panel C)
together with the confidence interval for the point estimate. For comparison, the paralogs of ALDOB
and LDHC, ALDOA and LDHA respectively, are included and labelled in red color.

Altogether, these results suggest that the meta-analyses derived gene signature im-
proves the gene sets derived from individual studies by excluding genes whose regulation
is cell type or condition specific and those with effect sizes of small magnitude.

4. Discussion

The integration of multiple datasets representing the transcriptional response to a
given stimulus, allows for the identification of consistent changes in gene expression.
However, transcriptional profiles are noisy, and the correlation between them is poor [25,26].
Thus, the number of common DEGs decreases rapidly with the number of studies taken
into consideration (Figure 1). To identify genes commonly regulated by hypoxia one can
set a minimum number of studies where the gene needs to be found as a DEG [9]. Then
again, there is no objective criteria to select minimal thresholds and this approach results
in a list of commonly regulated genes which does not provide information regarding the
magnitude of their regulation. Fortunately, applying meta-analysis methods appears to be a
good and practical solution to reduce noise and increase signal across different studies [10].

Herein we describe the application of a formal meta-analysis procedure to identify
genes whose expression is significantly modulated across a number of different gene profil-
ing studies. This approach not only provides the identity of the genes but also a pooled
estimate of the effect of the condition on the expression. Moreover, by applying a random
effects model, this strategy takes into account the wide variability in gene expression
expected from the integration of transcriptomes derived from different experimental con-
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ditions. The application of this approach to 70 paired normoxic/hypoxic transcriptomes
representing a total of 430 samples resulted in the identification of 6242 genes, roughly
30% of the detectable genes, as significantly (FDR < 0.01) regulated in response to changes
in oxygen tension. These results beg answering the question of the biological relevance
of statistically significant but small changes in gene expression. For example, the median
effect size for significantly up-regulated genes was 0.42, corresponding to a fold induction
of 1.34 times over normoxia. Thus, for half of the significantly-induced genes, the level of
mRNA in hypoxia is at most 1.34 times higher than control levels.

For some genes this small increase in expression could have important consequences,
but statistical significance by itself does not warrant biological relevance. For this reason
we sought to identify an effect size that it is likely to have an impact of cellular biochemistry.
To this end we recorded the changes in expression of genes known to have an impact
on different biological processes upon exposure to hypoxia and took the median effect
size value, 0.7 log2 units, as threshold. As only a fraction of the genes in a category are
induced to initiate the biological response, this value is likely to be an underestimation and
thus could be considered a lower boundary to identify biologically relevant changes. The
importance of considering the effect size (Log2FC), and not only the statistical significance
to identify DEGs, is a strong argument in favor of formal meta-analysis instead of other
integrative methods that yield a consensus list of genes without an associated estimate of
the effect of hypoxia. The effect of hypoxia on gene repression is apparently weaker than
on gene induction, as indicated by relative smaller number of repressed genes above the
effect size threshold. This could be a consequence of repression being indirectly regulated
by HIFs [8,27,28] and would explain the higher heterogeneity of the response observed
for repressed genes (Figure 1). The indirect regulation could occur via transcriptional
regulators acting downstream of HIF [29] or be a consequence of the cellular adaptations to
hypoxia. For example, alteration of energy availability during hypoxia could prevent cell
division with the concomitant down-regulation of genes involved in DNA synthesis and
cell cycle progression. Thus, further work is required fully understand the mechanisms
responsible for gene repression during hypoxia.

As a further advantage, the application of a formal meta-analysis approach allows for
the application of all associated statistical tests, including moderator analysis, to study the
effect of different factors on the regulation of gene expression. Through the application of
this analysis we found that endothelial cells are deficient in the induction of a relatively
large set of genes in response to hypoxia. Among those genes there are many enzymes
involved in glucose metabolism, particularly in glycolysis and synthesis of glycogen (data
not shown). It is known that HIF1A, but not EPAS1, is responsible for the hypoxic induction
of glycolytic genes [30], it is tempting to speculate that the specific pattern of expression
observed in endothelial cells could be a consequence of the relative importance of EPAS1
over HIF1A isoform in this cell type. However, since most endothelial datasets consist of
experiments performed on Human Umbilical Vein Endothelial Cells (HUVEC), we cannot
rule out that the blunted induction of these genes is specific to this cell type rather than a
general feature of endothelial cells. In agreement with this latter possibility, preliminary
experiments showed a feeble induction of glycolytic genes in several, but not all, endothelial
cells tested (data not shown).

The Hallmark subset of MSigDB contains signatures generated by a computational
method based on the identification of overlaps across different gene sets and retaining
those genes that display coordinate expression [24]. In spite of being an invaluable and
widely used resource, our results suggests that the MSigDB hypoxia signature shows
some shortcomings. For one thing, the signature lacks many hypoxia-regulated genes,
containing only 37% of the genes strongly and consistently regulated by hypoxia across
different cell types and experimental conditions (Figure 6A). In addition, the 114 core genes
identified by the meta-analysis and not present in the Hallmark signature, include well
characterized hypoxia-induced genes such as BCKDHA, EGLN1, several KDM family
members and LOXL2 among others (Supplementary Table S10). On the other hand, the
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Hallmark signature includes some genes that are induced only in specific cell types or
experimental conditions (Figure 6D) and thus, cannot be considered general hypoxia
responsive genes. This result is particularly interesting as it explains the contradictory
reports regarding the effect of hypoxia on specific genes such as HMOX1 [31–35] and
PPARG1 [36–42].

In summary, herein we describe a formal meta-analysis approach that identifies the
core transcriptional response to hypoxia. In addition to the identity of the genes, the
approach results in a estimate of the magnitude of their change in expression in response
to hypoxia. We also describe an approach to determine a minimum effect size to be used
in combination with the statistical significance to identify biologically relevant changes in
response to hypoxia.
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//www.mdpi.com/article/10.3390/biomedicines10092229/s1, Figure S1. Meta-analysis of the effect
of hypoxia on EGLN3 gene expression. Figure S2. Identification of outlier subsets. Figure S3.
Identification of an effect size value that maximizes the association between gene expression and
cellular responses to hypoxia. Figure S4. Meta-analysis of the effect of hypoxia on HMOX1 gene
expression. Table S1. Studies selected from database search. Table S2. Frequency of hypoxia-repressed
genes. Table S3. Frequency of hypoxia-induced genes. Table S4. Metadata of studies kept after
filtering original datasets. Table S5. Compiled Meta-analyses results. Table S6. Biological pathways
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