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Abstract
The anchorage of Ras isoforms in the membrane and their nanocluster formations have been studied extensively, including their
detailed interactions, sizes, preferred membrane environments, chemistry, and geometry. However, the staggering challenge of
their epigenetics and chromatin accessibility in distinct cell states and types, which we propose is a major factor determining their
specific expression, still awaits unraveling. Ras isoforms are distinguished by their C-terminal hypervariable region (HVR) which
acts in intracellular transport, regulation, and membrane anchorage. Here, we review some isoform-specific activities at the
plasma membrane from a structural dynamic standpoint. Inspired by physics and chemistry, we recognize that understanding
functional specificity requires insight into how biomolecules can organize themselves in different cellular environments. Within
this framework, we suggest that isoform-specific expression may largely be controlled by the chromatin density and physical
compaction, which allow (or curb) access to “chromatinized DNA.” Genes are preferentially expressed in tissues: proteins
expressed in pancreatic cells may not be equally expressed in lung cells. It is the rule—not an exception, and it can be at least
partly understood in terms of chromatin organization and accessibility state. Genes are expressed when they can be sufficiently
exposed to the transcription machinery, and they are less so when they are persistently buried in dense chromatin. Notably,
chromatin accessibility can similarly determine expression of drug resistance genes.
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Introduction

Quantifying Ras isoform-specific expression in distinct tis-
sues has been challenging. Here, we suggest that a key factor
determining their cell-specific levels is their epigenetics and
chromatin accessibility status. Chromatin accessibility relates
to the local density level of proteins including histones, tran-
scription factors, chromatin-modifying enzymes, and
chromatin-remodeling complexes on the DNA. Their deple-
tion at cis-regulatory elements commonly points to candidate

genomic regions which may be available for transcription
(Minnoye et al. 2021). Post-translational modifications
(PTMs) of chromatin, such as DNA methylation, and histone
methylation and acetylation, are dynamic, varying across cell
states and types and correlating with chromatin accessibility
and gene expression. The dynamic density levels make pro-
filing of accessibility an extremely difficult task (Ashwin et al.
2019; Barth et al. 2020; Wachsmuth et al. 2016). An added
complexity is the interpretation of the data as it relates to
enhancer–promoter proximity and functional transcription
factor binding (Minnoye et al. 2021). As we discuss below,
these complexities combine with additional ones underscoring
the challenge of quantitative studies of Ras isoform-specific
expression.

Here, we describe isoform-specific activities and review
experimental observations from a structural dynamic stand-
point. This conformational perspective of isoform-specific ac-
tivities mimics nature: biomolecules are not static sculptures.
Molecular behavior, which dominates the structure–function
paradigm, is shaped by biomolecules which are always
switching between a variety of structures with varying
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energies, with the most populated being those which are en-
ergetically most favored. This dynamic (Kumar et al. 2000;
Tsai et al. 1999) behavior can be described by the free energy
landscape (Frauenfelder et al. 1991). The populations of the
conformational species are influenced by multiple factors, in-
cluding sequence alterations, which dictate specific interac-
tions. Thus, with different sequences and chemistries (charge,
hydrophobicity) and distinct combinations of hydrophobic
PTMs in the hypervariable C-terminal tails (Fig. 1), the iso-
forms present different favored interactions with membrane
lipids and protein partners.

Our views are influenced by concepts from physics and
chemistry. We believe that molecular fluctuations are
harnessed for life (Nussinov 2016; Wei et al. 2016) and that
biomolecules must be described statistically, not statically.
Understanding functional specificity requires insight into
how biomolecules can organize themselves and their assem-
blies in different cellular environments, including molecular

concentrations (e.g., of scaffolding proteins, as was shown for
galectin-1 (Blazevits et al. 2016)). It is also manifested by the
distinct segregations into nanoclusters, and the isoform dy-
namics between the substructures where they congregate and
their movements in the plasma membrane into—and out of—
the membrane domains (Nussinov et al. 2019b).

Background information on Ras

Ras isoforms, structure, and biology

Ras proteins control cell proliferation pathways, cell growth
and division (Lavoie et al. 2020; Nussinov et al. 2020b; Smith
et al. 2020). Three RAS genes lead to four proteins, HRas,
NRas, and splice variants KRas4A and KRas4B. The inci-
dence of mutated RAS genes differs among human cancers:
KRAS is the most highly mutated isoform (85%), followed by

Fig. 1 The sequences of C-terminal hypervariable regions (HVRs, resi-
dues 167–185/186) of the Ras isoforms and the modeled HVR structures
with the post-translational modifications (PTMs) representing their pre-
ferred membrane interactions. The modeled HRas and NRas HVR pep-
tides preferentially bind the zwitterionic DPPC or DOPC bilayers in the
gel or liquid phases, while the KRas HVR peptides anchor to the anionic
DOPC/DOPS bilayer in the liquid phase. In the HVR sequence, basic
residues (positively charged) are colored in blue, acidic residues

(negatively charged) are colored in red, hydrophobic residues are colored
in black, and polar and glycine residues are colored in green. The
prenylated Cys residues are colored in gray with a tail mark. In the
HVR cartoon, the same colors are used, except the hydrophobic residues
colored in white. The farnesyl and palmitoyl groups are shown as yellow
and orange sticks, respectively. In the surface representation of lipid bi-
layer, pink, white, and gray surfaces denote DPPC, DOPC, and DOPS,
respectively
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NRAS (11%), and HRAS (4%). They predominate in different
cancer types and the distributions of the mutations differ as
well (Cox et al. 2014; Hobbs et al. 2016; Li et al. 2018a; Prior
et al. 2012). Sequence comparisons indicate that the catalytic
domains of the isoforms (residues 1–166) are almost identical.
Binding to exchange factors exchanges GDP by GTP activat-
ing the Ras isoforms; binding to GTPase-activating proteins
(GAPs) deactivates them (Tsai et al. 2015; Vigil et al. 2010).
When activated, Ras proteins bind and activate their effectors,
initiating their respective signaling pathways, primarily
mitogen-activated protein kinase (MAPK) via Raf/MEK/
ERK (MEK, mitogen-activated protein kinase kinase; ERK,
extracellular signal regulated kinase) and PI3K/AKT/mTOR
(PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B;
mTOR, mechanistic target of rapamycin) phosphorylation
cascades. Both signaling pathways feed into the cell cycle,
together leading to cell proliferation (Nussinov et al. 2017).

Over 150 experimentally determined structures of the cat-
alytic domain have been deposited in the structural database.
In contrast, the 22–23 residue C-terminal tail which consti-
tutes the hypervariable region (HVR) is disordered, preclud-
ing crystallization. However, its populated conformations
have been sampled by NMR and molecular dynamics (MD)
simulations (Chavan et al. 2015a). Membrane anchorage, ex-
ecuted by the tails, is required for Ras activation, with the tails’
hydrophobic PTMs docking at favored membrane environ-
ments (Fig. 1). The HVRs are farnesylated, proteolyzed, and
carboxyl methylated. In addition, NRas, HRas, and KRas4A
cysteines are palmitoylated. These PTMs stabilize the anchor-
age. Lacking a palmitoyl, KRas4B attachment to negatively
charged membranes is assisted by a lysine polybasic stretch
(175KKKKKK180). The covalent palmitoylation thioester
modification linkages are reversible; the farnesyl thioether
linkages are not. The HVR of KRas4B can also be phosphor-
ylated. The introduction of the large, negatively charged phos-
phoryl group dissociates KRas4B from the negatively charged
plasma membrane (Bivona et al. 2006; Jang et al. 2015). The
HVR of KRas4A resembles that of KRas4B: it is also highly
positively charged, albeit not to the extent of KRas4B
(Nussinov et al. 2016). Whereas the lysines are almost contin-
uous in KRas4B, they are not in KRas4A and there are fewer
of them (Tsai et al. 2015). KRas4A’s pattern of PTMs varies
as well and lies in-between NRas and KRas4B. Like NRas,
KRas4A can have farnesyl and palmitoyl; however, with the
palmitoyl thioester linkage being reversible, it may be hydro-
lyzed, resulting in KRas4A retaining only its farnesyl. This
can explain KRas4A’s acting as NRas (when the tail is
farnesylated and palmitoylated) and as KRas4B (when the
palmitoyl is hydrolyzed), thus NRas- and KRas4B-like cell
transformation patterns (Tsai et al. 2015). Like the C181S
NRas, a C180S mutation in KRas4A does not stop it from
shuttling to the plasma membrane. However, in the absence
of palmitoylation and diminished polybasic region as

compared to KRas4B, KRas4A retains lower affinity for the
plasma membrane (Chakrabarti et al. 2016; Muratcioglu et al.
2017; Nussinov et al. 2016). The HVR sequence and
palmitoylation status also govern the isoforms’ preferred plas-
ma membranes (Eisenberg et al. 2011) (Fig. 2). The positively
charged KRas HVR, but not HRas or NRas, strongly favors
acidic disordered membranes (Fig. 1), making membrane
composition an important consideration in isoform-specific
signaling (Chavan et al. 2015b; Nussinov et al. 2018a).
Isoform-specific HVR activities also include binding to mem-
brane shuttling factors as in the case of phosphodiesterase-δ
(PDEδ) which shuttles KRas4B (Dharmaiah et al. 2016; Klein
et al. 2019; Kuchler et al. 2018; Muratcioglu et al. 2017).
NMR data and MD simulations of GDP-bound KRas4B sug-
gest that the HVR obstructs access to the active site (Banerjee
et al. 2016; Jang et al. 2016a), which apparently is not exhib-
ited by other isoforms likely due to the absence of a sufficient-
ly strong positive charge. Ras isoforms are also differentially
ubiquitylated, which may affect their membrane attachment
status (Ahearn et al. 2018; Dohlman and Campbell 2019;
Hobbs et al. 2016; Sasaki et al. 2011). Activation-related ef-
fects include monoubiquitylation at Lys147, which increases
the levels of KRas4B-GTP due to impaired GAP binding
(Baker et al. 2013a; Sasaki et al. 2011), and HRas
ubiquitylation at Lys117, which promotes GDP-GTP ex-
change (Abe et al. 2020; Baker et al. 2013b).

Earlier discussions on Ras isoforms

Several comprehensive reviews of Ras isoforms have been
published in the last few years. These broadly discussed their
different biochemical and biological (many cancer-related)
roles, localization, sublocalization, and more. To avoid re-
reviewing the topics which were covered, we refer the reader
to these recent excellent publications. These include subcellu-
lar localization and considering exploiting the membrane in
therapeutics (Kattan and Hancock 2020; Zhou et al. 2018),
mutational analysis and isoform signaling (Li et al. 2018a;
Munoz-Maldonado et al. 2019; Prior et al. 2020; Randic
et al. 2021), subcellular localization and tumor growth
(Garcia-Ibanez et al. 2020), Ras–ERK signaling (Zaballos
et al. 2019) and MAPK inhibition (Heppner and Eck 2021;
Ullah et al. 2021), isoform-specific differences in the effector
binding regions (Nakhaeizadeh et al. 2016), and the recent
contributions from theMark Philips lab on KRas4A reversible
palmitoylation and colocalization (Amendola et al. 2019) and
on membrane association/colocalization (Zhou et al. 2020).
Isoform signaling specificity at the membrane (Nussinov
et al. 2018a), KRas mobility in the membrane (Nussinov
et al. 2019b) and nanoclustering (Nussinov et al. 2019a) were
also reviewed as well as genetic aspects of KRas signaling
networks (Jinesh et al. 2018). Thus, below, we only briefly
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touch on some of these aspects. Instead, we provide new
views which we hope will help guide future research.

Ras isoforms segregate into nanoclusters which favor
distinct membrane composition: family members
with similar tail chemistry can join

GTP-bound Ras forms nanoclusters in the membrane.
Nanoclustering is required for Ras signaling via the MAPK,
but not PI3Kα/AKT/mTOR pathways (Bandaru et al. 2019;
Boriack-Sjodin et al. 1998; Cherfils and Zeghouf 2013;
Hancock et al. 1989; Jang et al. 2016a; Jang et al. 2016b;
Muratcioglu et al. 2017; Nussinov et al. 2018a; Nussinov
et al. 2019b; Schmick et al. 2014; Zhou and Hancock 2015).
The reason for this distinction is that for MAPK signaling, Raf
kinase domains need to be activated. This requires their side-
to-side (homo- or hetero-) dimerization (Freeman et al. 2013a;
Freeman et al. 2013b; Jambrina et al. 2016; Lavoie et al. 2018;
Rezaei Adariani et al. 2018; Tsai and Nussinov 2018; Udell
et al. 2011; Varga et al. 2017; Verkhivker 2016; Yuan et al.
2018), which is not the case for PI3Kα (Nussinov et al. 2018a;

Nussinov et al. 2019a). The two kinase domains are contrib-
uted by two Raf molecules, with the Ras binding domain
(RBD) of each Raf binding to the catalytic domain of an active
Ras molecule (Fig. 3). This requires that Ras molecules either
be in direct contact (Ras dimers) (Jang et al. 2020;
Muratcioglu et al. 2020; Nan et al. 2015) or in spatial vicinity
which can be achieved in sufficiently populated nanoclusters.
Membrane anchored nanoclusters increase the probability of
such favorable proximity (Nussinov et al. 2019a), and galectin
dimers were proposed to scaffold Raf-effectors to further pro-
mote Ras nanoclustering (Blazevits et al. 2016). In this model,
at high concentrations, galectin dimerizes in the cytoplasm
and binds to two Raf’s RBDs which are Ras-bound. The
galectin–Raf complexes cooperatively nucleate Ras
nanoclustering, thereby promoting dimerization of Raf’s ki-
nase domains. Computational modeling supported by experi-
mental data suggested that cooperativity between KRas4B
dimerization and Raf-1 (C-Raf) RBD–Ras binding may also
emerge though the engagement of Raf-1’s cysteine-rich do-
main (CRD) at the membrane (Jang et al. 2020). In this model,
Raf-1’s RBD-CRD can cooperatively support stable KRas4B

Fig. 2 Subcellular localization of Ras proteins. Ras isoforms, HRas,
NRas, and two splice variants KRas4A and KRas4B terminate in a
CAAX motif are cleaved, carboxymethylated, and farnesylated in the
endoplasmic reticulum (ER). HRas, NRas, and KRas4A are further
palmitoylated in the Golgi apparatus, while KRas4B traffics to the
plasma membrane shuttled by phosphodiesterase-δ (PDEδ). KRas4A in
state 1 (only farnesylated) can also traffic to the plasma membrane via a
similar mechanism as in KRas4B. After palmitoylation, HRas, NRas, and
KRas4A in state 2 (with both farnesyl and palmitoyl modifications) are

translocated to the plasma membrane via vesicular transport. HRas favors
localization in the ordered caveolae and lipid rafts, and fluidic disordered
(non-raft) regions of the plasma membrane. NRas can localize to
cholesterol-rich lipid raft and non-raft regions. Depalmitoylation removes
HRas and NRas from the plasma membrane. KRas4A in state 2 can
localize to the non-raft region, while both KRas4A in state 1 and
KRas4B highly localize to the acidic lipid enriched membrane microdo-
mains. Phosphorylation of Ser181 or calmodulin extracts KRas4B from
the plasma membrane
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dimers/nanoclusters. The varied chemistry of the HVRs, thus
membrane preferences, favors distinct isoform nanoclusters.
However, recently KRas4B nanoclusters were shown to be
co-inhibited also by other isoforms and notably, by a subset
of prenylated small GTPase family members, confirming the
importance of dimer/co-cluster formation on cell membranes
(Li et al. 2020b), in line with an earlier hypothesis making
such prediction (Nussinov et al. 2020a).

A few years ago, wild-type HRas was observed to suppress
HRas driven cancer (Spandidos et al. 1990). This was follow-
ed by the observation that wild-type KRas can inhibit lung
cancer (Diaz et al. 2002) and that wild-type NRas can also
suppress its mutant as potently as can KRas (Zhang et al.
2001). However, the data (To et al. 2013; Xu et al. 2013;
Zhou et al. 2016) as to how would wild-type Ras suppress
the oncogenicity of its mutant was not understood (Kong
et al. 2016; Qiu et al. 2011; Staffas et al. 2015) despite its
significant implications to Ras drug discovery (Zhou et al.
2016). Nanoclustering can resolve these apparent perplexing
observations. In the absence of an external cue, wild-type Ras
spends most of its life in the inactive state. “Diluting” the
population of active, oncogenic Ras by the inactive wild type
would lower the probability of spatially nearby active Ras

molecules (Fig. 3), thus Raf dimerization, activation, and
MAPK signaling. This effect is particularly large in cells with
high KRas populations. Segregated nanoclustering also re-
solves the next question of why the wild-type state of one
isoform type cannot suppress the oncogenic mutant of another
(Matallanas et al. 2011; Xu et al. 2013). The apparent ob-
served suppression of MAPK by Rap1A small GTPase,
whose HVR resembles that of KRas4B, might also be ex-
plained along similar lines (Nussinov et al. 2020a).

Ras isoforms display distinct favored interactions with Raf
isoforms

Ras/Raf/MEK/ERK is a major Ras signaling pathway involving
protein kinases phosphorylation cascade (Lavoie and Therrien
2015). The sequences, structures and functions of Raf isoforms,
A-Raf, B-Raf, and Raf-1 are mostly similar, and they share con-
served regions (CRs); CR1, CR2, and CR3 (Shaw et al. 2014;
Yaeger and Corcoran 2019). CR1 at the N-terminal, contains the
RBD and the CRD. In active Raf, RBD interacts with Ras, and
CRD binds to the membrane (Garcia-Gomez et al. 2018; Ghosh
et al. 1994; Li et al. 2018b; Terrell and Morrison 2019; Travers
et al. 2018) (Fig. 3). Inhibition of Raf can allosterically promote

Fig. 3 Active, oncogenic Ras forms nanocluster at the membrane
microdomain that can serve as a signaling platform. Ras nanocluster
recruits Raf kinases to the membrane microdomain, promoting Raf
kinase domain dimerization, activation, leading to signaling via the
MAPK (Raf/MEK/ERK) phosphorylation pathway. Monomeric Raf is
mainly autoinhibited in the cytosol. Ras releases the autoinhibition via
the high-affinity interaction of Ras with Raf RBD. Inactive, wild-type Ras

dilutes the oncogenic Ras nanoclusters. The wild type normally exists in
the cell in its GDP-bound form. Its intrinsic orientation on the membrane
surface occludes its effector binding site, which is buried by the mem-
brane, abrogating effector binding and suppressing Raf’s activation. The
cartoon was inspired by previous publication of MAPK suppression by
Rap1 (Nussinov et al. 2020a)
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its paradoxical activation (Hatzivassiliou et al. 2010; Heidorn
et al. 2010; Poulikakos et al. 2010) via heterodimeric interactions
between the kinase domains of Raf isoforms (Jin et al. 2017;
Pfister et al. 2008; Ritt et al. 2010). Dimerization of the kinase
domains is required for full activation (Durrant and Morrison
2018; Hu et al. 2013; Lavoie et al. 2013; Rajakulendran et al.
2009). Under normal circumstances, B-Raf/Raf-1 heterodimers
predominate (Freeman et al. 2013a).

Wild-type Raf is mostly in the “closed” autoinhibited state,
where the CRD and RBD shield the kinase domain dimerization
surface (Nussinov et al. 2020c), with the 14-3-3 proteins stabi-
lizing this organization (Kondo et al. 2019; Park et al. 2019).
Dephosphorylation of pSer365 in B-Raf (pSer259 in Raf-1) and
release of RBD-CRD following a growth activation signal at the
membrane relieve the autoinhibition. The high affinity binding
of Raf’s RBD to active Ras, coupled with pSer365 dephosphor-
ylation which destabilizes the 14-3-3 interaction, shifts the Raf
ensemble toward the open state (Zhang et al. 2021). This ex-
poses the kinase domain dimerization surface enabling full acti-
vation (Fetics et al. 2015; Hatzivassiliou et al. 2010; Lu et al.
2016; Nussinov et al. 2015; Nussinov et al. 2019a). Cryo-EM
structures (Kondo et al. 2019; Park et al. 2019) of the Raf kinase
domain, RBD and CRD complexed with dimeric 14-3-3 vali-
date the organization of the assembly and the paradoxical acti-
vation of Raf (Kondo et al. 2019).

Recent experiments probed the preferred interactions of Ras
isoforms with Raf isoforms, by shuffling their N′ termini, which
precede the RBD-CRD. The N′ termini vary significantly
among the Raf isoforms (Fig. 4), whereas it is long (154 resi-
dues) and negatively charged in B-Raf, it is more neutral in Raf-
1 (55 residues) and A-Raf (18 residues). The experiments indi-
cated that the N′ termini of Raf isoforms selectively bind the
HVRs of Ras isoforms (Terrell et al. 2019). Replacing the Raf-1
terminus with B-Raf’s reduced the HRas–Raf-1 binding but had
no significant effect on KRas–Raf-1 interaction. As to Ras
HVRs, Raf-1 has high affinity to all Ras isoforms. However,
the lysine-rich polybasic region of KRas4B is important to B-
Raf selectivity due to its acidic N′ terminal region, resulting in
the high-affinity KRas4B–B-Raf RBD interaction. Taken to-
gether, Raf-1 binds all Ras proteins; however, B-Raf favors
KRas4B, with the sequences responsible for these preferences
residing in the N-terminal (for B-Raf) and the HVR at the C-
terminal for KRas4B. Additionally, Raf-1 is important for the
HRas interaction, with a fairly neutral HVR.

Even though these observations provide critical informa-
tion, understanding them is marred by lack of structural data.
This reflects the disordered nature of the N′ termini of Raf,
especially the long B-Raf sequence. It is also unclear how the
HVR concomitantly interacts with the membrane and Raf’s
termini. With structural data only for a fraction of the se-
quence, it is challenging to reliably model it.

Isoform-specific localization

Two-decades ago, Alan Wolfman raised the apt question of
“How is it that similar proteins carry out different jobs in the
cell?” (Wolfman 2001); his answer was “Location, Location,
Location.” He proceeded to survey literature reports and con-
cluded that different functions may stem from the distinct sub-
cellular localizations to which the isoforms are directed by their
HVRs and patterns of prenylation. Nonetheless, even if Ras
isoforms are localized to unique sets of cellular structures, the
number of Ras isoform-specific interaction sites is limited, which
underscores the importance of understandingwhy they apparent-
ly signal through distinct pathways. This may imply that a Ras
isoform-dependent oncogenic phenotype necessitates (i) cooper-
ation of additional cellular Ras proteins, (ii) a steady-state pool of
their complexes, and (iii) availability of other proteins in the
pathway in the cancer cell. Notably, Ras sublocalization at the
plasma membrane is highly dynamic and can be altered depend-
ing on the GDP/GTP load or the palmitoylation status (Agudo-
Ibanez et al. 2015). Electron microscopy indicated that HRas is
mainly in the endoplasmic reticulum and Golgi of acinar cells;
KRas in the membrane of ductal cells. Overall, Ras isoforms
were observed to have distinct and separate cellular and subcel-
lular distributions that likely persist even in transformed cells
(Kocher et al. 2005).

Differential Ras isoform expression

RAS isoforms are preferentially expressed in different
cancer types

The question of why the oncogenic RAS isoforms are prefer-
entially expressed in different cancer types has been baffling
(Der 2014; Hobbs et al. 2016), and several hypotheses have
been proposed to address it (e.g., Der 2014; Haigis et al. 2008;
Lampson et al. 2013; Rauen 2013; Schuhmacher et al. 2008;
more below). Among these, here we reason that the patterns of
isoform expression in different cells can relate to the accessi-
bility of the gene’s regulatory regions. The density of chroma-
tin in regulatory regions of highly expressed isoforms could be
lower than of those with lower expression. Temporal expres-
sion profiles of different isoforms across developmental stages
identified “isoform switching” of the predominant isoform (
>60% of all isoforms of the given gene at the given stage) (Li
et al. 2020a). The chromatin density of specific genes differs
between differentiated cells as compared to cells during em-
bryogenesis. The local chromatin density can also vary among
the differentiated cells, making the regulatory regions of some
genes more accessible to the transcription machinery than
others. This, along with the epigenetic features, control gene
expression (Klemm et al. 2019), including in our case here
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wild-type and mutant Ras isoforms (Nussinov et al. 2021),
thus signaling.

This picture becomes even more complex when Raf’s ex-
pression and mutational patterns are considered (Desideri
et al. 2015). Mutations in B-Raf, but not in A-Raf and Raf-
1, are common in human cancers, with Raf-1 mutations at
under 1% (Imielinski et al. 2014). Mutations were observed
in pancreatic and lung adenocarcinoma and colorectal cancer,
where KRas4B is commonly involved. It is overexpressed in
bladder cancer, hepatocellular carcinoma, squamous cell car-
cinoma, and lung adenocarcinoma (Maurer et al. 2011) and is
MEK independent (Blasco et al. 2011; Karreth et al. 2011).

Quantitative data on isoform-specific expression are
limited

Isoform-specific expression has been probed, as well as its
relation to signaling (Newlaczyl 2016) and prognosis (Yang

and Kim 2018). KRas4B was confirmed as the most highly
expressed isoform and KRas4A as the most dynamically reg-
ulated. Quantification of Ras isoform expression during de-
velopment by real-time polymerase chain reaction (PCR) in
mouse tissues indicated a relative contribution of KRas4B >
> NRas ≥ KRas4A > HRas to total Ras expression
(Newlaczyl et al. 2017), where KRas4B is about 60–99% of
all Ras transcripts. Recent data have also suggested that
spliced variants are translationally significant (Raso 2020).
This may reflect the dependence of multiple factors, including
cell type, tissue heterogeneity, timing, sparsity of data, defin-
ing flexible statistical frameworks for complex differential
patterns in gene expression, assigning a reference, errors and
missing data, and from our standpoint as we discuss here, key
factors are measuring chromatin accessibility (Buenrostro
et al. 2015; Cusanovich et al. 2015) and epigenetics, such as
DNA methylation (Karemaker and Vermeulen 2018) and
more (Lahnemann et al. 2020).

Fig. 4 Sequences of the N′
termini and RBD-CRD of Raf
isoforms, B-Raf and Raf-1 (upper
panel). In the sequences, basic
residues (positively charged) are
colored in blue, acidic residues
(negatively charged) are colored
in red, hydrophobic residues are
colored in black, and polar and
glycine residues are colored in
green. The B-Raf N′ terminus is
longer (154 residues) than that of
Raf-1 (54 residues). Underlines
denote the RBD and CRD resi-
dues. A collection of domain
structures for Raf N-terminal re-
gion are shown in the lower panel.
Crystal structures of B-Raf-
specific (BRS) domain (PDB:
5VR3) and B-Raf RBD (PDB:
3NY5). Solution structures of
Raf-1 CRD (PDB: 1FAR) and
kinase suppressor of Ras 1
(KSR1) C2 domain (PDB:
1KBE). In the cartoon, the same
colors are used as in the sequence,
except the hydrophobic residues
colored in white. In Raf-1 CRD,
sticks highlight the Cys152,
Cys155, His173, and Cys176
residues coordinated with the first
Zn2+, and the His139, Cys165,
Cys168, and Cys184 residues co-
ordinated with the second Zn2+.
Similarly, for KSR1 C2 domain
His334, Cys359, Cys362, and
Cys377 coordinated with the first
Zn2+, and Cys346, Cys349,
His367, and Cys370 coordinated
with the second Zn2+
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HRas, KRas, and NRas have specific context-dependent
functions (Hobbs et al. 2016; Nussinov et al. 2018a;
Nussinov et al. 2020b), and mutations (Li et al. 2018a;
Munoz-Maldonado et al. 2019). They also display cancer type
specific incidence: KRas in pancreatic, lung, and colorectal
carcinomas, NRas in cutaneous melanoma (Cox et al. 2014),
and HRas in head and neck and bladder squamous cell carci-
nomas. Several theories have been put forward to explain the
cell (tissue)-specificity. Among them (Der 2014), (i) isoform
specificity reflects the level of expression. Yet, the significant-
ly higher incidence of KRAS mutations as compared to NRAS
(Haigis et al. 2008) and HRAS (Schuhmacher et al. 2008) in
colorectal carcinoma was offered as questioning this explana-
tion. Another explanation (ii) relates to possible differential
potencies in promoting cancers across tissues (Haigis et al.
2008; Russo et al. 2014). (iii) An alternative explanation of-
fered differential DNA repair as a consequence of Ras
isoform-specific activating mutations (Ise et al. 2000). This
suggested that KRAS regulatory elements are responsible for
tissue specificity, rather than the Ras protein (Chin et al. 1997;
To et al. 2008). Still other explanations suggested (iv) that
isoform translational efficiency encoded by codon usage
could be the origin of the isoform specificity (Lampson et al.
2013) and finally, as analysis of The Cancer Genome Atlas
indicated (v), tumor RAS gene expression levels are influ-
enced by the mutational status of RAS genes and of upstream
and downstream Ras pathway genes (Stephens et al. 2017).

Furthering the differential potencies of mutants in promoting
cancers across tissues (Haigis et al. 2008; Russo et al. 2014), we
propose a role for chromatin accessibility (Fig. 5). The genome
of all cells is identical. However, not all genes are equally
expressed during the developmental lineage and across tissue
microenvironments. One major reason is the status of the chro-
matin density in gene regulatory regions. Regulatory regions can
be buried in compact dense chromatin or be in low-density re-
gions. In low density regions, the local chromatin conformation
is controlled by nucleosome dynamics. These regions can be-
come available to the transcription machinery upon a relatively
minor conformational change (Nussinov et al. 2020b). There is a
continuum of accessibility across the genome (Klemm et al.
2019), stretching from genes expressed only in embryonic cells,
to those in differentiated cells, as in the case of Ras isoforms.
Accessibility reflects the cell’s epigenetic landscape (Haigis et al.
2019; Sack et al. 2018) and relates to the density of proteins
interacting directly (mostly histones) or indirectly with the
DNA and their fractional residence times. Accessibility is a ma-
jor factor determining gene expression, thus protein availability
and consequently, pathways that consist of interactions of these
proteins. Protein availability differs among tissues: protein levels
in pancreatic cells whereKRas expression is abundantmay differ
from those in skin cells, where NRas is (Nussinov et al. 2020b).
Taken together, KRas and NRas can be differentially expressed
in specific cell types because their chromatin accessibility status

differ (Brubaker et al. 2019). This could clarify why the height-
ened abundance of the same active mutant, e.g., KRasG12D,
would differ in pancreatic cancer and melanoma skin cancer.
On the other hand, the differential outcome of NRasQ61R versus
NRasG12D in melanomamay stem from the differential mutation
strengths, which depends on the activation mechanisms (Burd
et al. 2014). Exploring the respective mechanisms would be of
interest and could aid in development of isoform- and mutant-
specific inhibitors.

Chromatin accessibility and genome organization are
cell-type and cell-state specific

To fit into the limited nuclei space, act in regulation and guard
genome integrity, chromatin is compacted. Compactness has
been assessed by several methods, including a quantitative
fluctuation-based assay (Hinde et al. 2012) and FRET; how-
ever, the low resolution does not permit correlation of the
in vivo signals with specific higher order chromatin organiza-
tion (Lleres et al. 2009). Quantitative super-resolution micros-
copy assay (Dultz et al. 2018) and algorithms for the quanti-
fication of chromatin condensation from microscopic data
have been developed, but to date their applications have been
limited (Sosnik et al. 2017). Chromatin accessibility reflects
changes in the local density, or compaction (Magana-Acosta
and Valadez-Graham 2020). Dynamic changes in chromatin
landscapes are associated with cell differentiation during em-
bryogenesis and dedifferentiation in pluripotent stem cell
(iPSC) in cancers. Among the factors defining chromatin
states are the composition and post-translational modifications
(PTMs) of the nucleosomes, concentration and interaction of
transcription factors, and chromatin remodelers (Klemm et al.
2019). The mechanisms controlling accessible chromatin re-
gions include competition between transcription factors and
histones, chromatin remodeling in cis through proximal linker
histone displacement, and in trans through accessible, distal
regulatory elements, binding of the pioneer transcription fac-
tors to nucleosomal DNA and more (Klemm et al. 2019).
Landscapes vary in different tissues and cell types.

Most chromatin conformation capture experiments focused
on intrachromosomal interactions. Recent observations reveal
that the patterns of interchromosomal interactions are tissue-
specific, differing between the heart and liver (Chapski et al.
2018). The experiments (Nothjunge et al. 2017; Rosa-Garrido
et al. 2017) show preferential localization of genes in 3D in the
nuclei of the organs in which the genes are transcribed.
Comparisons of liver and cardiac chromatin structures identify
widespread differences in compartmentalization, with these
not fully correlating with the organ transcriptional states.
Localization of genes within organ-specific chromatin scaf-
folds relate to cell type but can reflect stress conditions as well.
Genome structures indicate that the promoter to transposable
element loops differ between the organs, pointing to cell type
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specific organization of the epigenome. Interchromosomal in-
teractions were enriched in genes associated with the function
of that cell type, localizing nearby (Cremer and Cremer 2001)
in “transcription factories” (Papantonis and Cook 2013). In
the heart, 66.7% of cardiac-specific genes are in the center
of one compartment (marked compartment A), while 66.1%
of liver-specific genes are toward the periphery in compart-
ment B. The locations of the Ras isoforms on the human
chromosomes also differ (Pellicer 2011; Rajasekharan and
Raman 2013): HRAS gene is localized to the short arm (p)
of chromosome 11 at position 5, the KRAS gene is located
on the p arm of chromosome 12 at position 12.1, and the
NRAS gene is on chromosome 1 at position 13.2. Even though
these are positions along the linear chromosome sequence
organization, and to date data about their 3D locations are
unavailable, the distinct locations of isoforms suggest distinct
organization and expression patterns.

Advancements in super-resolution imaging (e.g., Nir et al.
2018) coupled with measurements of mRNA expression in
distinct cell types and states can test whether the patterns of
Ras isoform expression are associated with chromatin acces-
sibility (Nussinov et al. 2021; Nussinov et al. 2020b).

Ras isoforms, their functions, and cell
signaling

Differential isoform signaling

A key question is how a specific pathway can be selected
when the affinities of the effectors for each Ras isoform do
not show appreciable differences (Sieburth et al. 1998;
Wolfman 2001). That is, how can highly similar proteins carry
out different actions in the cell? Possible explanations to this
conundrum include (i) cell type-specific expression levels of
the Ras isoforms, and of all nodes (proteins) in the respective
pathway. For the signal to propagate, the levels of expression
of these nodes need to be sufficiently high. (ii) Observations
for over two decades (reviewed in, e.g., Castellano and Santos
2011; Garcia-Ibanez et al. 2020; Hobbs et al. 2016; Kattan and
Hancock 2020; Mo et al. 2018) suggest that isoform functions
may emerge from the subcellular localization favored by their
HVRs (Wolfman 2001) (Fig. 1). Isoform-specific functions of
Ras can be at least partly explained by localization (Fig. 2).
For example, NRas and HRas, but not KRas, are expressed on
the Golgi as well as the plasma membranes and it was recently

Fig. 5 Dynamic chromatin accessibility and cell-specific signaling path-
ways of Ras isoforms. KRas G12xmutations dominantly drive pancreatic
ductal adenocarcinoma (PDAC), while NRas Q61x mutations are often
found in melanoma. HRas mutations frequently occur in head and neck
squamous cell carcinoma (HNSCC). Ras isoform expression in different
cell types can relate to chromatin accessibility states of specific topolog-
ically associating domains (TAD) (Szabo et al. 2019). In the cell nucleus,
the disordered chain represents the chromatin, a chromosome in

interphase. Examples of different chromatin accessibility for RAS
isoform-specific TAD conformations are highlighted in the circles. In
the highlighted chromatin, A-TAD and I-TAD denote active and inactive
TADs, respectively. K, N, and H indicate isoform-specific genes in the
chromatin. Oncogenic Ras stimulates cancer signaling toward the tran-
scription factor (TF) bound DNA that regulates the transcription of genes
to cell proliferation. The phenotype of the production is cancer
development

497Biophys Rev (2021) 13:489–505



reported that this localization inhibits malignant transforma-
tion (Casar et al. 2018). KRas4A but not KRas4B directly
regulates hexokinase 1 by virtue of its unique localization on
the outer mitochondrial membrane driven by depalmitoylation
(Amendola et al. 2019). Compartmentalized signaling based
on HVR-driven subcellular localization has been established
in model organisms (Onken et al. 2006) and finally, a stark
example of differential signaling from distinct subcellular lo-
cations is in T cell thymic selection (Daniels et al. 2006). (iii)
Mutational potency is often isoform tissue specific (Munoz-
Maldonado et al. 2019). The strong KRas4BG12D driver inter-
feres with GTP hydrolysis. It occurs broadly, but especially in
pancreatic cancers. In contrast, the less frequent, weaker
KRas4BA146T drives cancer by promoting GDP by GTP ex-
change. It has been observed in colorectal and hematopoietic
cancers, but not in pancreatic adenocarcinomas where it is not
sufficiently powerful for cell transformation (Bera et al. 2019;
Poulin et al. 2019).

Major considerations in signaling outputs in distinct
tumors

Thus, taken together, signaling outputs in distinct tumors reflect
several major components. These include first, the expression
levels which depend on chromatin accessibility in the respective
cell type at that time window (Fig. 5). The local density of
chromatin at the regulatory region of the gene and nearby in
cis has to be low to permit binding of the transcription machin-
ery and high expression rates. Indeed, even very high expression
level on its own can promote cancer. Second, expression of other
proteins in the respective pathway should not be low for the
signal to propagate. Third, the mutations should be potent.
When considering different mutations in the same cell/tumor,
heightened abundance of activated Ras species depends on the
expression level of that gene and the potency of the mutation.
The NRasQ61R mutations versus KRasG12D in melanoma cell
line provide an example (Burd et al. 2014). As clinical data have
shown, the number of activated KRasG12D molecules in pancre-
atic cancer is extremely high.

Calmodulin interacts selectively with oncogenic
KRas4B

With a negatively charged linker and hydrophobic pockets,
calmodulin (CaM) interacts with KRas4B (Abraham et al.
2009; Chavan et al. 2013; Jang et al. 2017; Jang et al. 2019;
Villalonga et al. 2001; Wu et al. 2011), and likely also with
KRas4A, but not with the HRas and NRas isoforms (Nussinov
et al. 2016). The high affinity charge-charge interaction
coupled with the farnesyl nestling in CaM’s hydrophobic
pocket, shifts the ensembles toward this energetically favored
state, extracting KRas molecules from the membrane (Fivaz
and Meyer 2005; Sidhu et al. 2003; Sperlich et al. 2016).

While CaM’s interaction appears KRas4B GTP-dependent
(Abraham et al. 2009; Chavan et al. 2013; Villalonga et al.
2001;Wu et al. 2011), it can also involve the GDP-bound state
(Agamasu et al. 2019; Fivaz and Meyer 2005; Sidhu et al.
2003; Sperlich et al. 2016). This can be understood in terms
of the availability of the HVR for the interaction (Jang et al.
2019). In solution, the HVR in the GDP-bound state interacts
with the catalytic domain, populating an autoinhibited state
(Chavan et al. 2015a; Lu et al. 2015). However, the interaction
is unstable which is why it has not been captured in the crystal,
suggesting a minor GDP-bound KRas4B population with the
HVR available for CaM interaction (Jang et al. 2016a;
Nussinov et al. 2018b). At the membrane, likely being
sandwiched between the catalytic domain and the bilayer sur-
face the autoinhibited state can persist (Jang et al. 2016a).

CaM’s binding to mutant KRas4B is vastly important to
understand. Two possible reasons have been advanced to ex-
plain its role: (i) CaM–KRas4B-specific binding reduces the
number of available free CaM molecules for Ca2+-dependent
protein kinase II activation (Wang et al. 2015); (ii) phosphor-
ylated CaM and mutant KRas4B bind PI3Kα and activate it
(Joyal et al. 1997; Wang et al. 2018; Zhang et al. 2017; Zhang
et al. 2018). Together, mutant KRas4B and CaM can stimulate
the PI3Kα/AKT pathway even in its absence of an incoming
receptor tyrosine kinase growth signal. CaM’s fundamental
significance in KRas-driven adenocarcinoma made it a prime
drug discovery target.

Conclusions

Even though there are some sequence differences in the cata-
lytic domains, the distinction among Ras isoforms rests main-
ly in their HVR membrane-binding segments (Fig. 1). This
distinction underscores the significance of the attachment to
membrane domains in determining isoform functions, cellular
sublocalization and shuttling vehicles to get them there (Fig.
2). The chemical uniqueness of the HVRs stemming from the
variable amino acid sequences and the combination of prenyl
modifications, with the consequent separation into mostly ho-
mogeneous nanoclusters, emphasizes their specific roles un-
der normal conditions and the resulting mutational distribu-
tions observed in cancer. As recent work elegantly demon-
strated (Terrell et al. 2019), Ras isoforms interact differentially
with Raf isoforms, with Raf-1 binding all mutant Ras proteins
with high affinity, whereas B-Raf exhibiting a strong prefer-
ence for mutant KRas. It is thus quite likely that Ras isoforms
also differentially interact with other Ras effectors, such as
PI3Kα (Thevathasan et al. 2013). Even though differential
KRas and HRas regulation by galectin isoforms was also ob-
served (Elad-Sfadia et al. 2004; Shalom-Feuerstein et al.
2005), more recently the interaction was proposed to be me-
diated via Raf’s RBD (Blazevits et al. 2016), thereby
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cooperatively scaffold Ras nanoclusters, which would in-
crease dimerization of Raf’s kinase domains and activation.

All proteins are encoded and can be expressed by all cells
(Kosti et al. 2016). However, genes are preferentially expressed
in tissues (Farahbod and Pavlidis 2019; Honore 2020): proteins
expressed in pancreatic cells may not be equally expressed in
lung cells. This holds for isoforms of Ras and other proteins,
including receptor tyrosine kinases and lipid kinases. It is the
rule—not an exception, and it can be at least partly understood
in terms of chromatin organization and incoming signaling cues
(Fig. 5) and mRNA levels (Lorch and Kornberg 2017; Rolicka
et al. 2020). Genes are expressed when they can be sufficiently
exposed for the transcription machinery to trigger remodeling of
the chromatin conformation, and they are less so when they are
persistently buried in dense chromatin (Magana-Acosta and
Valadez-Graham 2020). Chromatin remodeling takes place in
cancer (Arildsen et al. 2017; Lafon-Hughes et al. 2008;
Morgan and Shilatifard 2015). Cell type and cell state epigenetic
organizations are key factors determining gene expression status,
and the expressed proteins are wired in the cellular protein-
protein interaction network. Super high-resolution electron mi-
croscopy and computational prediction methodologies are rapid-
ly advancing, and they are being applied to cell-specific cancer
genomes. This raises hope that RAS isoform-specific gene scale
topologically associating domains (TAD) will be identified not
only in specific tissues (Szabo et al. 2019), but also at different
cell-transformation states. Such detailed maps could help fore-
cast gene expression and alternative signaling pathways in drug
resistance (Nussinov et al. 2021; Nussinov et al. 2020b). The
anchorage of Ras isoforms in the membrane and their
nanoclustering have been studied extensively, including their
detailed interactions, sizes, and preferred membrane environ-
ments, chemistry and geometry (Lee et al. 2019). However, the
challenge of their epigenetics and its linkage to rewired networks
in distinct cell states and types is still waiting to be unraveled.
The landscape of accessibility changes dynamically in response
to external and developmental cues (Klemm et al. 2019). But its
tissue-specific footprints may help in deciphering the impending
pathways in drug resistance.

To date, pharmacology has successfully targeted
KRas4BG12C (Zeng et al. 2020; Zhang et al. 2020). Ras
isoform-specific pharmacology at the membrane has been de-
liberated. However, considering membrane fluidity, the com-
mon presence of phosphatidylserine, and the non-uniqueness
of the PTMs, toxicity is a challenge. Whereas pharmacologi-
cal innovations are compelling, reliably forecasting future de-
velopments is formidable, making the harnessing of the sig-
naling pathways appear more tractable venues.
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