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Retinal vessel segmentation (RVS) is a significant source of useful information for monitoring, identification, initial medication,
and surgical development of ophthalmic disorders. Most common disorders, i.e., stroke, diabetic retinopathy (DR), and cardiac
diseases, often change the normal structure of the retinal vascular network. A lot of research has been committed to building an
automatic RVS system. But, it is still an open issue. In this article, a framework is recommended for RVS with fast execution
and competing outcomes. An initial binary image is obtained by the application of the MISODATA on the preprocessed image.
For vessel structure enhancement, B-COSFIRE filters are utilized along with thresholding to obtain another binary image. These
two binary images are combined by logical AND-type operation. Then, it is fused with the enhanced image of B-COSFIRE
filters followed by thresholding to obtain the vessel location map (VLM). The methodology is verified on four different datasets:
DRIVE, STARE, HRF, and CHASE_DB1, which are publicly accessible for benchmarking and validation. The obtained results
are compared with the existing competing methods.

1. Introduction

The most essential sensory system for gathering information,
navigation, and learning is the human visual system [1]. The
retina is the sensitive part of the eye that contains fovea, light
receptors, Optic disk, and macula. The retina is a layered
tissue, coating the interior of the eye, which is an initial
sensor of the communication system and gives a sense of
sight. Moreover, it allows understanding the colors, dimen-
sions, and shape of objects by processing the amount of light
it reflects or emits. Retina image of an eye is captured with a
fundus camera [2]. RGB photographs of the fundus are the
protrusion of the internal surface of an eye. Imaging of the
retina has emerged swiftly and now one of the most common
practices in healthcare and for screening the patients suffer-
ing from ophthalmologic or systemic diseases. For identify

ing numerous ophthalmologic diseases, the ophthalmologist
uses vessel condition as an indicator which is a vital compo-
nent in retinal fundus images.

Critical diagnostic to eye diseases in human retinal
images can be indicated by its shape analysis, its appearance,
blood vessels, morphological features, and tortuosity [3].
Structure of RVS is also used for screening of brain and heart
stock diseases [4, 5]. Retinal vessel structures play a signifi-
cant role among other structures in fundus images. RVS is
the elementary phase utilized for the examination of retina
images [6]. Vascular-related diseases are diagnosed with
the help of vessel delineation which is an important compo-
nent of medical image processing. Additionally, ongoing
research in the area of deep learning suggested multiple
approaches with emphasis on the separation and the delin-
eation of the vasculature.
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The inadequate number of images and having low-
contrast in publicly available retina datasets is challenging
for deep learning-based research. A dataset having a large
number of retina images captured with a different imaging
system and under diverse environmental conditions is
required to train the supervised network. Deep learning-
based methods will aid to control blindness, timely and
precise identification of diseases for successful remedy, and
thus vividly increase the life quality of patients with eye
ailments [7]. RVS is a very difficult task due to many reasons:

(1) The structure and formation of retinal vessels are
very complex and there is a prominent dissimilarity
in various local parts regarding the shape, size, and
intensity in vessels.

(2) Some structures have the same intensity and shape as
vessels, e.g., hemorrhage. Moreover, there are also
thin microvessels, whose width is normally between
ranges from one to a few pixels and which can be eas-
ily mixed with the background. There are irregular
illumination in the images and having low-varying
contrast [7, 8]. Typically, noise in fundus images is
added by the image-capturing procedure such as arti-
fact on the lens or movement of the patient [9]. It is
hard to differentiate vessels from other structures that
are similar or noises in the retina image. In other
words, thicker vessels are more prominent in com-
parison to the thinner ones as shown in Figure 1

(3) Different manual graders have different segmenta-
tion results. Manual RVS is also a very hard and
tedious task. Over the recent two decades, automatic
RVS has caught noteworthy attention and numerous
such techniques are developed but they have perfor-
mance degradation with the change of datasets. Some
of the techniques are not fully automatic while others
are incapable to handle pathological images. Some of
these methods are evaluated on the datasets having a
limited number of images while others have prob-
lems of oversegmentation or undersegmentation
with abnormal images [10]. Hence, the dilemma of
perfect RVS is still not answered.

Automated RVS techniques provide incredible support
to the ophthalmologist in terms of identification and medica-
tion of numerous ophthalmological abnormalities. In this
article, an automatic unsupervised approach is developed
for RVS that consists a combination of the preprocessing
steps, segmentation, vessel structure-based enhancement,
and postprocessing steps. The preprocessing steps aim at
exterminating noise and improving the contrast of the fun-
dus image. Segmentation is performed by using the Modified
Iterative Self Organizing Data Analysis Technique (MISO-
DATA) to acquire a binary image that is fused with the
segmented image of the Combination Of Shifted Filter
Responses (B-COSFIRE). Then, the fused image is multiplied
with the enhanced image of the B-COSFIRE to obtain the ini-

tial vessel location map (VLM). Lastly, the VLM and the
fused image are combined by logical OR-type operators to
obtain final results. In a nutshell, the main contributions of
this research are the following:

(1) A mask image is not provided with all retina datasets.
Automatic masking creation is proposed for each
image to extract ROI which suppresses the false
positive rate (FPR).

(2) The proposed efficient denoising process (prepro-
cessing steps) improves the selection of a suitable
threshold.

(3) The basic ISODATA algorithm only one-time pro-
cess the retina image locally and then globally, which
sometimes makes it unable to find an optimal thresh-
old. The modified ISODATA technique is introduced
to find the global threshold of the entire image which
is compared and equated with the individual local
threshold of each segment in order to find the opti-
mal threshold for more precise detection of vessels.

(4) The vessel location map (VLM) is a new scheme to
achieve better performance. In this scheme, the back-
ground noise eradication and vessel enhancement are
accomplished independently.

(5) A distinctive postprocessing steps (AND-type and
OR-type operations) to reject misclassified fore-
ground pixels.

2. Related Works

Numerous methodologies for RVS have been developed in
literature [4, 10]. These methodologies are arranged into
two sets: supervised and unsupervised procedures. Super-
vised techniques utilizing a trained classifier for pixel classifi-
cation into the foreground or background. Supervised
techniques utilized various classifiers, for instance, adaptive
boosting (AdaBoost), support vector machines (SVM),
neural networks (NN), Gaussian mixture models (GMM)
and k-nearest neighbors (k-NN).

A RVS method utilizing a supervised k-NN classifier for
isolation of foreground and background pixels was recom-
mended by Niemeijer et al. [11], with a feature vector (FV)
formation based on a multiscale (MS) Gaussian filter. Staal
et al. [12] projected an equivalent RVS methodology using
an FV generated based on a ridge detector. A feed-forward
NN built classifier was applied by Marin et al. [13], using 7-
D FV generated based on moment-invariant.

An SVM-based approach was presented by Ricci et al.
[14], utilizing FV constructed through a rotation-invariant
linear operator and pixel intensity. An AdaBoost classifier
was suggested by Lupascu et al. [15], utilizing a 41 −D feature
set. An ensemble-based RVS system applying a simple linear
iterative clustering (SLIC) algorithm was presented by Wang
et al. [16]. A GMM classifier-based scheme was recom-
mended by Roychowdhury et al. [17], utilizing 8 −D FV
extracted from the pixel neighborhood on first and second-
order gradient images.
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Figure 1: Graphical representation of thinner and thicker vessels.
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Figure 2: Sequential sketch of the proposed framework.
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(a) (b) (c)

Figure 3: (a) DRIVE dataset color image. (b) Green plane. (c) CLAHE output.
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Figure 4: Histogram pictorial effects. (a) Green plane. (b) CLAHE.
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Zhu et al. [18] offered an extreme learning machi-
ne(ELM) based RVS scheme utilizing a 39 −D FV generated
by morphological and local attributes combined with attri-
butes extracted from phase congruency, Hessian, and diver-
gence of vector fields (DVF). Tang et al. [19] recommended
an SVM-based RVS scheme utilizing an FV created based
on MS vessel filtering and the Gabor wavelet features. A
random forest classifier-based RVS system was proposed by
Aslani et al. [20], utilizing a 17 −D FV created based on MS
and the multiorientation Gabor filter responses and intensity
feature combined with feature extracted from vesselness
measure and B-COSFIRE filter.

A directionally sensitive vessel enhancement-based
scheme combined with NN derived from the U-Net model
was presented in [21]. Thangaraj et al. [22] constructed a

13 −D FV from the Gabor filter responses, Frangi’s vessel-
ness measure (1D), local binary pattern feature (1D), Hu
moment invariants (7D), and grey-level cooccurrence matrix
features (3D) for RVS utilizing NN-based approach. Memari
et al. [23] recommended an arrangement of various enhance-
ment techniques with the AdaBoost classifier to segregate
foreground and background pixels.

A three-stage (thick vessel extraction, thin vessel extrac-
tion, and vessel fusion-based) deep learning approach were
proposed in [24]. Guo et al. [25] suggested an MS deeply
supervised network with short connections (BTS-DSN) for
RVS. Local intensities, local binary patterns, a histogram of
gradients, DVF, higher-order local autocorrelations, and
morphological transformation features were used for RVS
in [26]. Random forests were used for the selection of feature

1 function level = isodataðIdÞ;
2 Step 1: compute the mean intensity of image from histogram;
3 set T =mean ðIÞ;
4 ½counts,N� = imhistðIdÞ;
5 i⟵ iteration, let i = 1;
6 mu = cumsumðcountsÞ;
7 TðiÞ = ðsumðN ∗ countsÞÞ/muðendÞ;
8 TðiÞ = roundðTðiÞÞ;
9 M ⟵ mean intensity of Id utilizing histogram;
10 Step 2: for i⟵ 1do
11 Compute MAT ⟵ mean above threshold using T from step 1;
12 Compute MBT ⟵ mean below threshold using T from step 1;
13 i = i + 1;
14 mu2 = cumsumðcountsð1 : TðiÞÞÞ;
15 MBT = sumðNð1 : TðiÞÞ ∗ countsð1 : TðiÞÞÞ/mu2ðendÞ;
16 mu3 = cumsumðcountsðTðiÞ: endÞÞ;
17 MAT = sumðNðTðiÞ: endÞ ∗ countsðTðiÞ: endÞÞ/mu3ðendÞ;
18 T =MAT +MBT/2;
19 if TðiÞ ≠ Tði − 1Þ then
20 go to Step 2;
21 else
22 level = ðT − 1Þ/ðNðendÞ − 1Þ;
23 end
24 Step 3: divide the image into square local regions as follows:
25 ½M,N� = sizeðIdÞ;
26 0I_bnry = zerosðM,NÞ;
27 W = floorðN/3Þ,H = floorðM/2Þ; for

i = 1 : H : ðM −H + 1Þ do
28 for j = 1 : W : ðN −W + 1Þ do
29 Temp = Idði : i +H − 1, j : j +W − 1Þ;
30 lval = isodataðTempÞ;
31 if lval > level then
32 set = level − 0:015;
33 else if lval < = level − level/2 then
34 set = level − 0:04;
35 else
36 set = level − 0:03;
37 end
38 I_bnryði : i +H − 1, j : j +W − 1Þ = im2bwðTemp, set − 0:009Þ
39 end
40 end
41 end

Algorithm 1: MISODATA algorithm.
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(a) (b) (c)

Figure 5: (a) Average filter image. (b) Difference image. (c) Segmented initial vessel map.

(a) (b) (c)

Figure 6: (a) B-COSFIRE binary segmented image (b) Enhanced image based on symmetric-asymmetric filter responses. (c) AND-type
operation output.

(a) (b) (c)

Figure 7: Inspecting the results of AND-type operator. (a) Manual image. (b) AND-type. (c) OR-type.

(a) (b) (c)

Figure 8: Inspecting the results of AND-type operator. (a) Manual image. (b) AND-type. (c) without AND-type.
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sets which were utilized in combination with the hierarchical
classification methodology to extract the vessels.

Alternatively, unsupervised systems are categorized
based on matched filtering (MF), mathematical morphology
(MM), and multiscale-based approaches. In matched filter-
ing approaches, thick and thin vessels are extracted by the
selection of large and small filter kernels, respectively. How-

ever, the application of large kernels can accurately detect
major vessels with the misclassification of thin vessels by
increasing its width. Similarly, smaller kernels can accurately
extract thin vessels along with the extraction of thick vessels
in reduced widths. To obtain a complete vascular network,
a conventional MF technique can be applied with a large
number of diverse filter masks in various directions.

(a) (b) (c)

Figure 9: Inspecting the results of OR-type operator. (a) Manual image. (b) OR-type. (c) without OR-type.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 10: Step-by-step visual results of the proposed method using image from the DRIVE dataset. (a) Color input image. (b) Green plane.
(c) CLAHE. (d) Low-pass filter. (e) Difference output. (f) MISODATA. (g) Binarized vessel map of B-COSFIRE. (h) AND operator ½ f , g�. (i)
B-COSFIRE enhanced image. (j) Final result.
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Similar methods were employed using MF [27–32], com-
bined filters [33], COSFIRE filters [3, 5, 34–36], Gaussian
filters [37], wavelet filters [38], and Frangi’s filter [39]. The
MM-based approaches are utilized for isolating retinal image
segments such as optic disk, macula, fovea, and vasculature.
Morphological operators utilized the application of structur-
ing elements (SE) to images for extraction and representation
of region contours. A morphological operation for detecting
particular structures has the benefit of speed and noise elim-
ination. But they are unable to achieve the known vessel
cross-sectional shape. Moreover, there is an issue to extract
extremely tortuous vessels in case of superimposing large
SE. Morphological operations were utilized for both
enhancement and RVS [2, 40–44]. On the other hand, retinal
blood vessels of variable thickness at various scales were
obtained by multiscale approaches [45–50].

3. Proposed Model

The complete structure of the proposed RVS framework is
introduced in this section. The information and description
of every stage are also presented in subsections.

3.1. Overview. The proposed framework consists of two
major blocks to obtain a final binary image: (1) retina image
denoising and segmentation and (2) vessel structure-based
enhancement and segmentation. The key objective of this
framework is to extract vasculature excellently along with
the elimination of noise and supplementary disease falsifica-
tions. The complete structure of the proposed framework is
labeled in Figure 2. In which Block-I consists of the selection
of suitable retina channel, contrast enhancement, noise filter-
ing, region of interest (ROI) extraction, thresholding, and
post processing steps. Block-II includes the application of
B-COSFIRE filter, logical operations, and postprocessing
steps. The initial binary vessel map of Block-I is fused with
the B-COSFIRE filter segmented image in Block-II. Then, it
is multiplied with the B-COSFIRE filter-enhanced image
which is further thresholded. This output image is combined
with the initial postprocessed image by the logical OR-type
operation to obtain the final binary.

3.2. Block-I: Retina Image Denoising and Segmentation. In the
first block, the retina image is passed through selected tech-
niques to extract the initial denoised vessel map. The green
band of the RGB retina image is extracted and nominated
for subsequent operation due to its noticeable contrast differ-
ence between the vessel and other retina structures. The RGB
retina images generally have contrast variations, low resolu-
tion and noise. To avoid such variations and produce more
appropriate image for further processing, the vessel light
reflex elimination and background uniformity operations
are performed. Retinal vessel structures have poor reflectance
when equated to other retinal planes. Some vessels contain a
bright stripe (light reflex) which runs down the central length
of the vessel. To overcome this problem, a disc-shape open-
ing operator with a 3-pixel width SE is used on the green
plane. A minimal value of disc width is selected to avoid
the absorption of close vessels. The background uniformity

and smoothness of random salt-and-pepper noise are
obtained by the application of a 3 × 3 mean filter. Additional
noise flattening is achieved with the application of a Gaussian
kernel of size 9 × 9, mean = 0, and variance 1:8.

CLAHE [51, 52] is applied on the preprocessed green
channel to make vessel structures prominent. The CLAHE
operation divides the input image into blocks (size 8 × 8 in
our case) with the constraint of contrast improvement which
is set to 0.01. The clip limit suppresses the noise level and esca-
lates the contrast. The effect of the CLAHE process (Iclahe)
along with the green plane is displayed in Figure 3.
Histogram-based graphical demonstration of the contrast
improvement operations is displayed in Figure 4. An averag-
ing filter of size 49 × 49 is applied for smoothness and elimina-
tion of anatomical regions (e.g., optic disk,macula, and fovea).
Iavg symbolizes the output image of the averaging filter. The
difference image (Id) is computed for all pixels as follows.

Id m, nð Þ = Iavg m, nð Þ − Iclahe m, nð Þ: ð1Þ

The extra regions of the retinal image are cropped by the
utilization of the masking method to extract ROI which
reduced the computational complexity. An automatic mask

Table 1: Datasets comparison.

Dataset Image classification Image size Format

DRIVE

Total 40 images 565 × 584 JPEG

20 test, 20 training

7 abnormal, 33 normal

STARE

Total 20 images 700 × 605 PPM

10 normal

10 abnormal

HRF

Total 45 images 3504 × 2336 JPEG

15 normal, 15 DR

15 glaucomatous

CHASE_DBI

Total 28 images 1280 × 960 JPEG

14 left eye

14 right eye

Table 2: Performance judgment criteria of the proposed model.

Parameter Formulation

Sensitivity (Sn)
TP

TP + FN
Specificity (Sp) 1-FPR or TN/TN + FP

Accuracy (Acc)
TN + TP

TN + FP + TP + FN
Area under ROC curve (AUC) Sn + Sp/2

Matthews correlation coefficient
(MCC)

TP/N − S × Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P × S × 1 − Sð Þ ×p

1 − Pð Þ
Connectivity-area-length (CAL) f C, A, Lð Þ = C × A × L
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is created from the red band of the retinal image. The reason
behind using the red channel for mask construction is that it
has a good vessel-background dissimilarity. The automatic
mask is created for all datasets because the mask image is

not available in some datasets. Id is thresholded by theMISO-
DATA algorithm. The subsequent procedure is used to com-
pute the threshold level, and the application ofMISODATA is
shown in Algorithm 1.

Table 3: Statistical scores achieved on the DRIVE and STARE datasets.

Img
DRIVE STARE

Acc Sn Sep AUC MCC CAL Acc Sn Sep AUC MCC CAL

1 0.961 0.810 0.976 0.893 0.764 0.764 0.993 0.494 0.997 0.745 0.468 0.550

2 0.966 0.771 0.988 0.883 0.802 0.783 0.996 0.832 0.977 0.915 0.594 0.418

3 0.948 0.812 0.961 0.887 0.712 0.660 0.988 0.838 0.988 0.913 0.476 0.539

4 0.967 0.757 0.987 0.872 0.786 0.701 0.995 0.419 0.999 0.709 0.383 0.254

5 0.967 0.792 0.983 0.888 0.780 0.767 0.989 0.909 0.989 0.949 0.625 0.575

6 0.957 0.755 0.978 0.866 0.741 0.653 0.995 0.929 0.996 0.962 0.735 0.663

7 0.959 0.821 0.969 0.895 0.721 0.657 0.996 0.785 0.997 0.891 0.709 0.684

8 0.947 0.843 0.954 0.899 0.660 0.621 0.997 0.792 0.998 0.895 0.714 0.678

9 0.955 0.771 0.971 0.871 0.709 0.632 0.998 0.828 0.999 0.914 0.843 0.655

10 0.962 0.819 0.973 0.896 0.736 0.731 0.993 0.941 0.993 0.967 0.695 0.576

11 0.958 0.795 0.973 0.884 0.737 0.681 0.999 0.971 0.999 0.985 0.892 0.617

12 0.955 0.856 0.964 0.910 0.739 0.750 0.999 0.954 0.999 0.977 0.961 0.677

13 0.955 0.703 0.983 0.843 0.736 0.672 0.998 0.842 0.999 0.921 0.819 0.551

14 0.952 0.869 0.959 0.914 0.717 0.689 0.997 0.867 0.999 0.933 0.848 0.613

15 0.947 0.783 0.960 0.872 0.666 0.547 0.998 0.762 0.999 0.881 0.773 0.685

16 0.962 0.798 0.977 0.888 0.762 0.743 0.995 0.659 0.998 0.829 0.714 0.489

17 0.954 0.836 0.963 0.899 0.716 0.698 0.999 0.975 0.999 0.987 0.961 0.612

18 0.961 0.813 0.976 0.895 0.771 0.730 0.999 0.730 0.999 0.865 0.829 0.531

19 0.961 0.754 0.984 0.869 0.775 0.709 0.999 0.764 0.999 0.882 0.538 0.550

20 0.957 0.773 0.976 0.875 0.746 0.722 0.996 0.547 0.998 0.773 0.562 0.397

Avg 0.958 0.797 0.973 0.885 0.739 0.696 0.996 0.792 0.997 0.895 0.707 0.566

Table 4: Average efficiency scores on the HRF dataset (normal and diabetic images).

Img
Normal Diabetic

Acc Sn Sep AUC MCC CAL Acc Sn Sep AUC MCC CAL

1 0.958 0.701 0.988 0.844 0.700 0.574 0.963 0.768 0.977 0.845 0.646 0.742

2 0.965 0.806 0.983 0.894 0.787 0.671 0.958 0.755 0.974 0.843 0.671 0.672

3 0.954 0.713 0.983 0.848 0.741 0.632 0.949 0.775 0.961 0.860 0.631 0.563

4 0.957 0.810 0.975 0.882 0.761 0.719 0.951 0.758 0.966 0.836 0.633 0.531

5 0.968 0.765 0.988 0.876 0.795 0.754 0.964 0.725 0.983 0.823 0.709 0.609

6 0.960 0.832 0.978 0.888 0.774 0.759 0.950 0.564 0.988 0.728 0.619 0.394

7 0.968 0.817 0.988 0.878 0.793 0.741 0.957 0.737 0.980 0.834 0.702 0.688

8 0.964 0.806 0.985 0.879 0.788 0.729 0.952 0.776 0.971 0.841 0.680 0.688

9 0.956 0.808 0.968 0.888 0.681 0.632 0.945 0.758 0.958 0.858 0.634 0.551

10 0.959 0.765 0.979 0.863 0.730 0.561 0.951 0.664 0.981 0.809 0.684 0.598

11 0.970 0.839 0.990 0.886 0.806 0.753 0.953 0.700 0.983 0.808 0.713 0.611

12 0.967 0.852 0.986 0.895 0.816 0.788 0.955 0.701 0.976 0.813 0.666 0.579

13 0.966 0.837 0.982 0.894 0.778 0.711 0.960 0.753 0.981 0.829 0.704 0.645

14 0.966 0.835 0.981 0.890 0.761 0.699 0.944 0.726 0.964 0.829 0.645 0.622

15 0.970 0.827 0.982 0.905 0.708 0.768 0.953 0.730 0.971 0.834 0.648 0.547

Avg 0.963 0.801 0.982 0.881 0.761 0.699 0.954 0.726 0.974 0.826 0.666 0.603
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Table 5: Average efficiency scores on the HRF dataset (Glaucomatous images).

Img
Glaucomatous

Acc Sn Sep AUC MCC CAL

1 0.952 0.813 0.962 0.887 0.688 0.743

2 0.954 0.805 0.966 0.886 0.704 0.679

3 0.962 0.830 0.970 0.900 0.688 0.610

4 0.962 0.788 0.974 0.881 0.711 0.695

5 0.963 0.833 0.972 0.902 0.721 0.663

6 0.962 0.811 0.973 0.892 0.708 0.713

7 0.969 0.773 0.977 0.875 0.721 0.609

8 0.957 0.835 0.964 0.899 0.703 0.720

9 0.962 0.774 0.975 0.875 0.710 0.646

10 0.963 0.780 0.976 0.878 0.718 0.665

11 0.962 0.749 0.976 0.863 0.717 0.641

12 0.958 0.799 0.967 0.883 0.717 0.688

13 0.958 0.753 0.974 0.863 0.692 0.664

14 0.951 0.764 0.965 0.865 0.663 0.646

15 0.956 0.748 0.973 0.860 0.691 0.620

Avg 0.959 0.790 0.979 0.881 0.703 0.667

Table 6: Average performance achieved on the CHASE_DB1 dataset.

Images Acc Sn Sep AUC MCC CAL

01L 0.995 0.753 0.996 0.874 0.582 0.552

01R 0.997 0.705 0.999 0.852 0.707 0.485

02L 0.995 0.647 0.997 0.822 0.623 0.516

02R 0.995 0.744 0.996 0.870 0.620 0.488

03L 0.996 0.783 0.997 0.890 0.646 0.571

03R 0.998 0.848 0.999 0.923 0.793 0.582

04L 0.996 0.588 0.998 0.793 0.648 0.616

04R 0.997 0.651 0.998 0.825 0.692 0.535

05R 0.997 0.758 0.998 0.878 0.746 0.634

06L 0.998 0.620 0.999 0.809 0.694 0.548

06R 0.998 0.705 0.999 0.852 0.726 0.503

07L 0.997 0.722 0.998 0.860 0.678 0.574

07R 0.997 0.630 0.999 0.815 0.675 0.553

08L 0.997 0.850 0.998 0.924 0.650 0.507

08R 0.997 0.867 0.997 0.932 0.641 0.566

09L 0.991 0.816 0.991 0.903 0.315 0.509

09R 0.994 0.915 0.994 0.955 0.368 0.493

10L 0.994 0.672 0.995 0.834 0.408 0.483

10R 0.996 0.900 0.996 0.948 0.590 0.458

11L 0.997 0.933 0.997 0.965 0.617 0.622

11R 0.998 0.878 0.998 0.938 0.656 0.570

12L 0.997 0.699 0.998 0.848 0.566 0.609

12R 0.998 0.770 0.999 0.885 0.693 0.513

13L 0.998 0.833 0.998 0.916 0.667 0.503

13R 0.998 0.650 0.998 0.824 0.548 0.445

14L 0.997 0.813 0.998 0.905 0.652 0.639

14R 0.997 0.692 0.999 0.845 0.628 0.554

Average 0.997 0.757 0.997 0.877 0.629 0.547
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The isolated pixels with an area less than 25 pixels in the
image (Is1) are trimmed and fused with the B-COSFIRE filter
segmented image of Block-II by AND-type operation. The
physical stats (eccentricity and area) are utilized for the rejec-
tion of nonvessel structures. The vessel structures have a
higher area and eccentricity as their pixels are linked and
having an elongated structure. Figure 5 indicates the graphi-
cal results of the Iavg, Id, and Is1 .

3.3. Block-II: Vessel Structure-Based Enhancement and
Segmentation. In Block-II, the masked image of the Block-I
is used as an input for vessel structure-based enhancement
and RVS. B-COSFIRE filter [5] is applied for contrast
improvement of vessel structures that will enhance noise also
along with the enhancement of vessel structures if the image
is not preprocessed. Therefore, the masked image is used for
further processing. B-COSFIRE filter produced two results:
binary segmented image (IsC ) and vessel structure-based

enhanced image (IEC
). The outputs of B-COSFIRE filter are

displayed in Figure 6. The AND-type operation is used to
combine Is1 with IsC that produced output image denoted
by IAnd. The effect of AND-type operation is shown in
Figure 7, which demonstrates that if an alternative operator
like OR-type is utilized, it will introduce noise and misclassi-
fication. The advantage of using an AND-type operator is
exposed in Figure 8 by displaying the visual results with and
without using the AND-type operator. The IAND is postpro-
cessed (Ip1) and multiplied with IEC

which is further thre-
sholded to obtain a segmented image (Is2). Pixel-by-pixel
multiplication aims at ensuring the detection of vessels at their
correct position. The logical OR-type operation is used to pro-
duce the final result by coupling of Ip1 and Is2 . The visual
effects of the OR-type operator are presented in Figure 9.

The B-COSFIRE filter application includes convolution
with difference of Gaussian (DoG) filters, its blurring effects,
shifting the blurred responses, and an approximate point-
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Figure 11: Visual effects of the best and worst cases from the DRIVE dataset.
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wise weighted geometric mean (GM). A DoG function Do
Gσðx, yÞ is given by [5]

DoGσ x, yð Þ = 1
2πσ2 exp −

x2 + y2

2σ2

� �
−

1
2π 0:5σð Þ2 exp −

x2 + y2

2 0:5σð Þ2
 !

,

ð2Þ

where σ is the standard deviation (SD) of the Gaussian func-
tion (GF) that decides the range of the boundary. 0:5σ is
manually set SD value of the internal GF, and ðx, yÞ symbol-
izes the pixel position of the image. Response of DoG filter
Cσðx, yÞ with kernal function of DoGσðx − x′, y − y′Þ has
been estimated by convolution, where (x′, y′) denotes pixels
intensity distribution.

Cσ x, yð Þ = I ∗DoGσj j+, ð3Þ

where j:j+ represents the half-wave rectification process to
reject negative values.

In the B-COSFIRE filter, three factors (σi, ρi,∅i) are used
to represent each point i, where σi = SD of the DoG filter,

while ρi and ∅i denote the polar coordinates. This set of
parameters is indicated by S = fðσi, ρi,∅iÞ ∣ i = 1,⋯, ng,
where n represents the figure of measured DoG responses.
The blurring process indicates the calculation of the extreme
limit of the weighted thresholded responses of a DoG filter.
The blurring operation is shown as follows.

σ′ = σ0′ + αρi, ð4Þ

where σ0′ and α are constants. Each DoG-blurred outcome is
moved in the reverse direction to ∅i by a gap ρi, and as a
result, they can merge at the support center of the B-
COSFIRE filter. Blurred and shifted responses of the DoG
filter is indicated by Sσi ,ρi ,∅i

ðx, yÞ for every tuple ðσi, ρi,∅iÞ
in set S. The ith blurred and shifted response of the DoG filter
is defined as

Sσi ,ρi ,∅i
x, yð Þ =maxx ′ ,y′ cσi x − δxi − x′, y − δyi − y′

� �
Gσi

x′, y′
� �n o

,

ð5Þ
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Figure 12: Visual effects of the best and worst cases from the STARE dataset.

12 BioMed Research International



where −3σ′ ≤ x′, y′ ≤ 3σ′. The output of the filter is shown as
GM of all the blurred and shifted DoG responses.

rS x, yð Þ =
YSj j
t=1

Sσi ,ρi ,∅i
x, yð Þ

� �ωi
� �〠Sj j

i=1
ωi

0
BBB@

1
CCCA

���������

���������
t

, ð6Þ

where ωi = exp−ρ2i /2σ2 and j:jt symbolizes the thresholding
response at t, ð0 ≤ t ≤ 1Þ. Equation (6) represents the AND-
type operation that is attained by the B-COSFIRE filter only
when all DoG filter responses Sσi ,ρi ,∅i

are larger than zero.
The overall step-by-step visual results according to the block
diagram (Figure 2) are portrayed in Figure 10.

4. Experimental Outcomes and Deliberation

This section will provide the information about datasets,
performance metrics, analysis of experimental results, and
time complexity of the proposed method.

4.1. Datasets. The proposed system obtained remarkable
results on the freely online available datasets: DRIVE [11,
12], STARE [53], HRF [54], and CHASE_DB1 [55]. The
magnificence of the framework is justified in terms of assess-
ment with state-of-the-art systems. The datasets used for
endorsement of the suggested framework are encapsulated
in Table 1. The manually labeled results in all datasets are uti-
lized as a gold standard for performance assessment of the
proposed framework.

4.2. Performance Judgment Parameters. The quantitative
results are obtained by equating the proposed segmentation’s
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Figure 13: Visual results of the best and worst cases from the HRF dataset.
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with the manual segmentation available on each dataset.
There are numerous performance standards mentioned in
the literature. The performance metrics used for evaluation
of the proposed framework are visible in Table 2. Six perfor-

mance standards (Acc, Sn, Sp, AUC, MCC, and CAL) are
selected for the justification of the proposed methodology.
The Acc metric tells about the overall valuation of the pro-
posed method. Sn is a measure of the quantity of correctly

Image
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Im_03R
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Im_07R
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Input Manual Proposed

Figure 14: Best and worst cases visual results from the CHASE_DB1 dataset.

Table 7: Mean results comparison of the proposed method on different datasets.

Datasets Images Acc Sn Sp AUC MCC CAL

DRIVE (1st observer) 20 0.954 0.766 0.972 0.869 0.721 0.690

DRIVE (2nd observer) 0.958 0.797 0.973 0.885 0.739 0.696

HRF_Normal 15 0.963 0.801 0.982 0.881 0.761 0.699

HRF_DR 0.954 0.726 0.974 0.826 0.666 0.603

HRF_Glaucoma 0.959 0.790 0.979 0.881 0.703 0.667

HRF_Average 45 0.959 0.772 0.978 0.863 0.710 0.656

CHASE_DB1 (1st observer) 28 0.997 0.757 0.97 0.877 0.629 0.547

CHASE_DB1 (2nd observer) 0.996 0.814 0.996 0.905 0.569 0.547

STARE 20 0.996 0.792 0.997 0.895 0.707 0.566
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classified vessel pixels, while Sp is an assessment of the com-
petency of differentiating nonvessel pixels. The AUC is the
ratio of Sn and Sp. The MCC [5, 56] is a more appropriate
indicator of the accuracy of binary categorization in the case
of unbalanced structures. For a comprehensive judgment of
the superiority of segmentation, the CAL metric [57, 58] is

computed. This metric provides justification based on the
properties (connectivity-area-length) of the segmented struc-
tures beyond the correctly classified image pixels.

In Table 2, N = TN + TP + FN + FP, S = ðTP + FNÞ/N
and P = ðTP + FPÞ/N [58]. The terms TP, TN, FP, and FN
denote the true positive (exactly matched vessel pixels), true

Table 8: Performance assessments of existing techniques on the DRIVE and STARE datasets.

Method Year
DRIVE STARE

Acc Sn Sp AUC Acc Sn Sp AUC

Human observer 0.947 0.779 0.972 0.874 0.935 0.895 0.938 0.917

Unsupervised techniques

Chauduri [31] 1989 0.877 — — 0.788 — — — —

Zana and Klein [42] 2001 0.938 0.697 — — — — — —

Martinez-Perez [45] 2007 0.934 0.725 0.965 0.845 0.941 0.751 0.955 0.853

Zhang [27] 2010 0.938 — — — 0.948 — — —

Bankhead [38] 2012 0.937 0.703 0.971 0.837 0.932 0.758 0.950 0.854

Fraz [44] 2012 0.943 0.715 0.976 0.845 0.944 0.731 0.968 0.850

Azzopardi [5] 2015 0.944 0.766 0.970 0.868 0.950 0.772 0.970 0.871

Oliveira [33] 2016 0.946 0.864 0.956 0.910 0.953 0.825 0.965 0.895

Khan [40] 2016 0.961 0.746 0.980 0.863 0.946 0.758 0.963 0.861

Biswal [29] 2017 0.950 0.710 0.970 0.840 0.950 0.700 0.970 0.835

Khan [32] 2017 0.944 0.754 0.964 0.859 0.948 0.752 0.956 0.854

Soomro [63] 2017 0.943 0.752 0.976 0.864 0.961 0.784 0.981 0.883

Badawi [3] 2018 0.955 0.791 0.971 0.881 0.953 0.865 0.961 0.913

Yue [50] 2018 0.945 0.753 0.973 0.863 — — — —

Soomro [9] 2018 0.948 0.745 0.962 0.854 0.951 0.784 0.976 0.880

Soomro [64] 2018 0.953 0.752 0.976 0.864 0.967 0.786 0.982 0.884

Fan [60] 2018 0.960 0.736 0.981 0.858 0.957 0.791 0.970 0.880

Khan [65] 2019 0.951 0.770 0.965 0.868 0.951 0.752 0.981 0.867

Memari [59] 2019 0.961 0.761 0.981 0.871 0.951 0.782 0.965 0.873

Proposed 2020 0.958 0.797 0.973 0.885 0.996 0.792 0.998 0.895

Supervised techniques

Niemeijer [11] 2004 0.942 0.690 0.970 0.830 — — — —

Staal [12] 2004 0.944 0.719 0.977 0.848 0.952 0.697 0.981 0.839

Ricci [14] 2007 0.959 — — — 0.964 — — —

Lupascu [15] 2010 0.959 0.673 0.987 0.830 — — — —

MarÃ‐n [13] 2011 0.945 0.707 0.980 0.844 0.953 0.694 0.982 0.838

Wang [16] 2015 0.977 0.817 0.973 0.895 0.981 0.810 0.979 0.894

Roychowdhury [17] 2015 0.952 0.725 0.983 0.854 0.951 0.772 0.973 0.873

Aslani [20] 2016 0.951 0.754 0.980 0.867 0.961 0.755 0.983 0.869

Zhu [18] 2017 0.961 0.714 0.987 0.851 — — — —

Thangaraj [22] 2017 0.961 0.801 0.975 0.888 0.943 0.834 0.954 0.893

Memari [23] 2017 0.972 0.872 0.988 0.930 0.951 0.809 0.979 0.894

Dharmawan [21] 2018 — 0.831 0.972 0.902 — 0.792 0.983 0.887

Yan [24] 2018 0.954 0.763 0.982 0.873 0.964 0.774 0.986 0.880

Guo [25] 2019 0.955 0.780 0.981 0.881 0.966 0.820 0.983 0.902

Khowaja [26] 2019 0.975 0.818 0.971 0.895 0.975 0.824 0.975 0.899

Soomro [8] 2019 0.959 0.802 0.974 0.948 0.961 0.801 0.969 0.945

Soomro [62] 2019 0.956 0.870 0.985 0.986 0.968 0.848 0.986 0.988

Fan [61] 2019 0.966 0.796 0.982 0.889 0.974 0.816 0.987 0.901
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negative (exactly matched nonvessel pixels), false positive
(invalidly predicated vessel pixels), and false negative (inval-
idly predicated nonvessel pixels), correspondingly.

Let IS be the extracted final binary image and IG the
corresponding manual segmented image. The considered
metric evaluates the following [57, 58]:

(i) Connectivity (C): it calculates the fragmentation
grade of IS with respect to the manual segmentation

IG and penalizes fragmented segmentation. It is com-
puted as

C IS, IGð Þ = 1 −min 1,
#C IGð Þ −#C ISð Þj j

# IGð Þ
� �

, ð7Þ

where #Cð·Þ sums the linked segments while #ð·Þ measures
the number of vessel pixels in the considered binary image

Table 9: Performance assessments of existing methods with the proposed model on the HRF and CHASE_DB1 datasets.

Technique Year
HRF CHASE_DB1

Acc Sn Sp AUC Acc Sn Sp AUC

Unsupervised techniques

Odstrcilik [54] 2013 0.949 0.774 0.967 0.871 — — — —

Azzopardi [5] 2015 — — — — 0.939 0.759 0.959 0.859

Zhang [66] 2016 0.957 0.798 0.974 0.886 0.946 0.763 0.968 0.866

Biswal [29] 2017 — — — — 0.940 0.760 0.970 0.865

Rodrigues [67] 2017 0.948 0.722 0.964 0.843 — — — —

Badawi [3] 2018 — — — — 0.953 0.800 0.964 0.882

Proposed 2020 0.960 0.732 0.979 0.855 0.996 0.727 0.997 0.862

Supervised techniques

Roychowdhury [17] 2015 — — — — 0.953 0.720 0.982 0.851

Thangaraj [22] 2017 — — — — 0.947 0.629 0.973 0.797

Memari [23] 2017 — — — — 0.948 0.819 0.959 0.889

Dharmawan [21] 2018 — 0.813 0.977 0.895 — — — —

Yan [24] 2018 — — — — 0.961 0.764 0.981 0.873

Fan [60] 2018 — — — — 0.951 0.657 0.973 0.815

Guo [25] 2019 — — — — 0.963 0.789 0.980 0.885

Khowaja [26] 2019 — — — — 0.952 0.756 0.976 0.866

Soomro [62] 2019 0.962 0.829 0.962 0.978 0.976 0.886 0.982 0.985

Fan [61] 2019 0.976 0.824 0.987 0.905 0.971 0.802 0.985 0.893

Table 10: Performance assessments of existing techniques on the four datasets.

Method Year
DRIVE STARE HRF CHASE_DB1

MCC CAL MCC CAL MCC CAL MCC CAL

Unsupervised techniques

Chauduri [31] 1989 0.420 0.208 — — — — — —

Hoover [53] 2000 — — 0.615 0.534 — — — —

Fraz [68] 2011 0.733 — 0.700 — — — — —

Fraz [69] 2013 0.736 — 0.691 — — — — —

B-COSFIRE [5] 2015 0.719 0.721 0.698 0.709 0.686 0.577 0.656 0.608

RUSTICO [58] 2019 0.729 0.728 0.698 0.709 0.691 0.587 0.663 0.620

Proposed 2020 0.739 0.696 0.707 0.566 0.710 0.656 0.629 0.547

Supervised techniques

Yang [70] 2019 0.736 — 0.704 — 0.712 — — —

Yang [71] 2018 0.725 — 0.662 — 0.682 — — —

FC-CRF [73] 2016 0.756 0.731 0.727 0.658 0.690 0.541 0.704 0.622

UP-CRF [73] 2016 0.740 0.675 0.726 0.665 0.677 0.475 0.689 0.571

Vega [72] 2015 0.662 — 0.640 — — — — —

Niemeijer [11] 2004 0.722 0.659 — — — — — —
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(ii) Area (A): it estimates the intersecting area between IS
and IG, based on the Jaccard coefficient. Let δεð·Þ be a
morphological dilation that utilizes a disc structuring
element (SE) with a radius of ε pixels. The magnitude
A is calculated as follows:

A IS, IGð Þ = # δε ISð Þ ∩ IS ∩ IGð Þ ∪ IS ∩ δε IGð Þð Þð Þð Þ
# IG ∪ ISð Þ : ð8Þ

The value of ε controls the tolerance to lines of various sizes.
We set ε = 2

(iii) Length (L): it determines the equivalent degree
between IS and IG by computing the length of the
two line networks:

L IS, IGð Þ = # φ ISð Þ ∩ δβ IGð Þ� 	
∪ δβ ISð Þ ∩ φ IGð Þ� 	� 	

# φ ISð Þ ∪ φ IGð Þð Þ , ð9Þ

where φð·Þ is a skeletonization process and δβð·Þ is a morpho-
logical dilation with a disc SE of β pixel radius. The value of β
controls the tolerance to dissimilarity of the line tracing out-
put. We set β = 2. The final assessment parameter, named
CAL, is demarcated as f ðC, A, LÞ = C · A · AL.

4.3. Experimental Results and Inspection. The success of the
proposed framework is established by utilizing four freely
obtainable datasets: DRIVE, STARE, HRF, and CHASE_
DB1 for testing and evaluation. The average performance
parameters results in Table 3 are computed by processing
20 test images of the DRIVE and STARE datasets. The per-
formance scores of HRF dataset (15 normal images, 15 DR,
and 15 glaucomatous) and CHASE_DB1 are presented in
Tables 4 and 5 and Table 6, respectively. The best and worst
results within Tables 3–6 are highlighted in italic font. The
best and worst image results from each dataset are selected
based on their accuracy’s scores. Their pictorial results are
shown in Figures 11–14.

The framework performs well on both healthy and path-
ological images of all selected datasets. The statistical results
in Tables 3–6 validates that the suggested system is robust
and has the capability to handle the bright lesions images of
the STARE dataset, higher resolution images of the HRF
dataset, low resolution images of the DRIVE dataset, and
left/right eyes images of the CHASE_DB1 dataset. The
anatomical structures are also efficiently omitted to avoid
any misclassification.

The average statistical results of the proposed framework
on all selected datasets are displayed in Table 7, which reflects
that the highest mean score of Acc 0.997, Sn 0.814, Sp 0.997,
and AUC 0.905 is achieved on the CHASE_DB1 dataset. The
lowest FPR is also observed using the same dataset. The high-
est value of MCC 0.761 and CAL 0.699 is recorded on the
HRF dataset. The highest value of each parameter is italicized
in the respective column of the Table 7.

The average performance parameter scores of the pro-
posed framework on the DRIVE and STARE datasets are
compared with the existing literature in Table 8, while
Table 9 shows the result comparison of the HRF and
CHASE_DB1 datasets. The Acc, Sn, and Sp results of all tech-
niques in Tables 8 and 9 are acquired from their respective
published articles while the AUC result is calculated by using
the formula in Table 2.

In Table 8, the obtained results of the framework are
compared with 19 unsupervised and 18 supervised existing
techniques. The proposed framework achieved the highest
Acc result than all unsupervised methods on the DRIVE
dataset except Khan et al. [40], Memari et al. [59] which is
0.003%, and Fan et al. [60] which is 0.002% better than ours.
The supervised methods Ricci and Perfetti [14], Lupascu
et al. [15], Wang et al. [16], Zhu et al. [18], Thangaraj et al.
[22], Memari et al. [23], Khowaja et al. [26], and Fan et al.
[61] show 0.001%, 0.001%, 0.019%, 0.003%, 0.003%,
0.014%, 0.017%, and 0.008% better results than the proposed
method, respectively. But some of these methods are only
validated on one dataset, which reflects that they are tuned
for a single dataset. Some of these methods produce a very
low AUC score, which is a trade-off between Sn and Sp.
Moreover, supervised methods are computationally very

Table 11: Processing time evaluation of the systems.

Method Time Hardware particulars

Roychowdhury [17] 3.11 sec Intel Core i3 CPU 2.6GHz, 2GB RAM

Zhu [18] 12.160 sec 4.0GHz Intel i7-4790K CPU and 32GB RAM

Memari [23] 8.2 mins Intel i5-M480 CPU, 2.67GHz, 4GB RAM

Biswal [29] 3.3 sec Intel i3 (4010U CPU) 1.7GHz, 4GB RAM

Badawi [3] 8 sec CPU 2.7 GHz, 16GB RAM

Yue [50] 4.6 sec Intel i5-6200U CPU 2.3GHz, 8GB RAM

Khan [39] 6.1 sec

5∗Intel Core i3 CPU, 2.53GHz, 4GB RAM

Khan [40] 1.56 sec

Azzopardi [5] 11.83 sec

Vlachos [47] 9.3 sec

Bankhead [38] 22.45 sec

Proposed 5.5 sec
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expensive. In the case of the STARE dataset, the framework
produced highest Acc scores than all other methods.
Table 9 reflects that there are very few techniques that used
both HRF and CHASE_DB1 datasets for validation. The
Acc score of the framework is higher than both supervised
and unsupervised approaches on the HRF and CHASE_
DB1 datasets except Soomro et al. [62] and Fan et al. [61]
which is slightly higher than ours on HRF dataset only. Fan
et al. [61] showed higher Sp value than all other methods
on the HRF dataset. The highest Sp value on CHASE_DB1
dataset is obtained by the proposed method. All the other
supervised and unsupervised methods acquired a bit greater
or equivalent values of Sn and AUC metric on the HRF and
CHASE_DB1 datasets as compared to ours.

In Table 10, theMCC and CAL values are recorded by the
proposed method and other existing supervised and unsu-
pervised methods. The MCC and CAL values of Chauduri
et al. [31], Niemeijer et al. [11], Hoover et al. [53], and B-
COSFIRE [5] are calculated by utilizing their publicly acces-
sible segmented images. The results of Fraz et al. [68, 69],
RUSTICO [58], Yang et al. [70, 71], Vega et al. [72], FC-
CRF [73], and UP-CRF [73] are extracted from their
published articles.

The average value of MCC attained by the proposed
method is higher than all compared unsupervised
approaches on the DRIVE, STARE, and HRF datasets, while
it is statistically lower than the supervised methods (i.e., FC-
CRF [73] and UP-CRF [73]) on the DRIVE, STARE, and
CHASE_DB1 datasets. The CAL value of the proposed
method is observed higher than all supervised and unsuper-
vised methods on the HRF dataset, while it is statistically
lower than or equivalent to CAL values of other methods
on the DRIVE, STARE, and CHASE_DB1 datasets.

4.3.1. Processing Time. The proposed framework processes a
single image in a very short time as equated to other
approaches in Table 11. The time values are computed on
the single image taken from the DRIVE and STARE datasets.

5. Conclusion

Vessel extraction is momentous for inspecting abnormalities
inside and around the retinal periphery. The retinal vessel
segmentation is a challenging task due to the existence of
pathologies, unpredictable dimensions and contour of the
vessels, nonuniform clarification, and structural inconsis-
tency between subjects. The proposed methodology is consis-
tent, faster, and completely automated for isolation of retinal
vascular network. The success of the proposed framework is
evidently revealed by the RVS statistics on the DRIVE,
STARE, HRF, and CHASE_DB1 datasets. The eradication
of anomalous structures prior to enhancement boosted the
efficiency of the proposed method. The application of logical
operators avoids misclassification of foreground pixels which
enhances the accuracy and makes the method robust. Picto-
rial representation validates that the framework is able to
segment both healthy and unhealthy images. Furthermore,
the method does not include any hand-marked data by
experts for training, which makes it computationally fast.
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