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Abstract

Background: Heart failure (HF) is a major cause of frequent hospitalization and death. Early detection of HF symptoms using
smartphone-based monitoring may reduce adverse events in a low-cost, scalable way.

Objective: We examined the relationship of HF decompensation events with smartphone-based features derived from passively
and actively acquired data.

Methods: This was a prospective cohort study in which we monitored HF participants’ social and movement activities using a
smartphone app and followed them for clinical events via phone and chart review and classified the encounters as compensated
or decompensated by reviewing the provider notes in detail. We extracted motion, location, and social interaction passive features
and self-reported quality of life weekly (active) with the short Kansas City Cardiomyopathy Questionnaire (KCCQ-12) survey.
We developed and validated an algorithm for classifying decompensated versus compensated clinical encounters (hospitalizations
or clinic visits). We evaluated models based on single modality as well as early and late fusion approaches combining
patient-reported outcomes and passive smartphone data. We used Shapley additive explanation values to quantify the contribution
and impact of each feature to the model.

Results: We evaluated 28 participants with a mean age of 67 years (SD 8), among whom 11% (3/28) were female and 46%
(13/28) were Black. We identified 62 compensated and 48 decompensated clinical events from 24 and 22 participants, respectively.
The highest area under the precision-recall curve (AUCPr) for classifying decompensation was with a late fusion approach
combining KCCQ-12, motion, and social contact features using leave-one-subject-out cross-validation for a 2-day prediction
window. It had an AUCPr of 0.80, with an area under the receiver operator curve (AUC) of 0.83, a positive predictive value
(PPV) of 0.73, a sensitivity of 0.77, and a specificity of 0.88 for a 2-day prediction window. Similarly, the 4-day window model
had an AUC of 0.82, an AUCPr of 0.69, a PPV of 0.62, a sensitivity of 0.68, and a specificity of 0.87. Passive social data provided
some of the most informative features, with fewer calls of longer duration associating with a higher probability of future HF
decompensation.
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Conclusions: Smartphone-based data that includes both passive monitoring and actively collected surveys may provide important
behavioral and functional health information on HF status in advance of clinical visits. This proof-of-concept study, although
small, offers important insight into the social and behavioral determinants of health and the feasibility of using smartphone-based
monitoring in this population. Our strong results are comparable to those of more active and expensive monitoring approaches,
and underscore the need for larger studies to understand the clinical significance of this monitoring method.

(JMIR Form Res 2022;6(8):e36972) doi: 10.2196/36972
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Introduction

Although there are numerous attempts to monitor heart failure
(HF) in an outpatient setting using wearables and other
point-of-care devices, compliance is often an issue and prevents
monitoring for extended periods [1,2]. One key sensor system
many of us carry with us on a day-to-day basis is the
smartphone, and this has been shown to lead to longer patient
engagement times than has wearables [3]. In this pilot study,
we hypothesized that we could leverage the data recorded on
the personal smartphones used by a population with HF to
predict decompensation.

We defined HF decompensation status based on worsened
functional symptoms or physical examination findings
suggestive of lower cardiac output or increased intracardiac
pressures. This includes but is not limited to fatigue, dyspnea,
hypotension, and lower extremity edema [4]. Treatment includes
diuretics and vasodilators intended to improve volume status
and cardiac function. Unfortunately, even following successful
treatment and return to the euvolemic (normal volume status)
state, decompensation episodes can continue to occur with
increasing frequency [4,5]. Patil et al [6] reported that about
20% of the patient cohort were readmitted within 30 days of
initial hospitalization due to HF, with a median readmission
time of 12 days. Furthermore, patients with a lower income had
a higher readmission rate, indicating that socioeconomic factors
could also contribute to the disease’s progression. If low-cost
monitoring methods identify decompensation episodes
developing outside the clinic, medical interventions could be
administered proactively to prevent hospitalization or other
adverse outcomes.

Various studies have investigated techniques for nonintrusively
monitoring patients with HF. Packer et al [7] showed that using
a combination of clinical variables and impedance cardiography
features could be a predictor of a decompensation event in the
following 14 days. Previous studies have also investigated the
use of wearable devices adhered to the chest. In the “Multisensor
Monitoring in Congestive Heart Failure” study [8], the authors
propose an algorithm that uses physiological signals, reporting
a sensitivity of 63% and a specificity of 92%. However, the
authors provide few details and claim it is “proprietary.” Inan
et al [9] recorded seismocardiogram signals with a noninvasive
wearable patch before and after a 6-minute walk test to analyze
the cardiac response to exercise. The authors used graph
similarity scores between the rest and recovery phases and found
a significant difference between compensated and
decompensated groups. In another example, similarity-based

modeling was used with physiological signals from a patch on
the chest to detect changes from the baseline. This algorithm
had a sensitivity of 76% to 88% and a specificity of 85% [10].
Using ballistocardiogram data recorded at home was also
investigated [11], and authors demonstrated that collecting
high-quality ballistocardiogram data at home is feasible, and
an area under the curve of the receiver operator curve (AUC)
of 0.78 could be achieved for classifying clinical status.

Other noninvasive approaches include patient-reported
outcomes, which could be collected using clinically validated
questionnaires such as the Kansas City Cardiomyopathy
Questionnaire (KCCQ). The KCCQ assesses the quality of life
and predicts readmissions and mortality in patients with HF
[12]. In a previous study, Flynn et al [13] reported that KCCQ
has modest correlations with exercise capacity measured by the
6-minute walk test in a population with HF.

With the advancement of technology, smartphones have become
a ubiquitous part of our daily life. For long-term monitoring,
using a smartphone could be advantageous to a solution
requiring an additional device by reducing the disruption to
patients’ normal daily routine. Our research team and
collaborators have previously developed the Automated
Monitoring of Symptom Severity (AMoSS) app, which is a
custom and scalable smartphone-based framework for remote
monitoring [14]. Subsequently, we used the passive data from
the first 10 participants of this study to estimate the KCCQ
surveys collected through the app [15]. The model estimated
the KCCQ score with a mean absolute error of 5.7%, providing
an entirely passive method of monitoring HF-related quality of
life. (The method was passive in the sense that it does not require
any active participation by either the patient or clinical staff
beyond the everyday use of a mobile phone to monitor activity
and behavioral patterns in the background using software.). In
subsequent work, motion data were then used to classify
decompensation or compensation events [16]. By using a
hold-out test randomly sampled from 30% of the events (N=32),
the AUC of the classifier was found to be 0.76.

In this study, HF decompensation events were predicted from
features derived from passive and active data collected by the
smartphone-based framework. Features were extracted from 3
passive data modalities (motion, location, and social
interactions) and 1 active (clinical survey data: short KCCQ
[KCCQ-12]). Algorithms based on using a single modality and
2 sensor fusion approaches were developed. An analysis of the
feature importance in the model is also presented. Finally, a
novel late-fusion model that combines the KCCQ-12, motion,
and social contact data is proposed.
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Methods

Data Collection and Ethical Considerations
Earlier research with the AMoSS app [14] was augmented for
use in this study. The app passively collected 3D accelerometer
data at a 5-Hz sampling frequency on location, clinical surveys,
and digital social contact.

Ethical Considerations
All data were deidentified at the source (on the participants’
phones) with hashed identifiers, and random geographic offsets
were added to the location data to protect the participants’
privacy. The data were stored in HIPAA (Health Insurance
Portability and Accountability Act)-compliant Amazon Web

Services data buckets, and the phone app uploaded data
periodically (based on connectivity) every few hours.
Participants with HF enrolled in the ongoing study at the
Veterans Affairs Medical Center and Emory University Hospital
in Atlanta, GA, USA, signed a consent form prior to the
beginning of the study. The study protocol was approved by
the institutional review board (#00075867) at Emory University.
The clinical team provided participants with an Android-based
smartphone with the app installed during the enrollment. The
participant could opt to stop sharing any data type during the
study, using switches provided in the app. Figure 1 illustrates
the study timeline after the participant is enrolled. The app
passively collected data while the clinical team recorded the
clinical events, which consisted of hospital visits with
compensated or decompensated status during the enrollment.

Figure 1. Illustration of the study timeline. Passive data collection started after the hospital discharge, and the clinical team recorded the clinical events
after the enrollment. HF: heart failure.

Data Collection
The data from 28 participants (25 males) who contributed at
least 1 clinical event were used in this research. The inclusion
criteria for participants in the study were the following: a
diagnosis consistent with congestive HF as noted in the
electronic medical records within the Emory Health Network,
an age over 18 years, the ability to consent to a clinical study,

and English as their primary language. Exclusion criteria were
the following: diagnosis with a terminal illness with a life
expectancy of fewer than 6 months, enrollment in a hospice
program, or enrollment in a clinical study that precluded them
from participating in another clinical study. Finally, participants
had to be willing and able to comply with the use of their
smartphones as indicated in the study. Table 1 shows the detailed
information about the participants included in the study.
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Table 1. Data set description: if the metric is not available, the participant is excluded from that row.

Values (N=28)Participant characteristics

Sociodemographics

67 (8)Age (years), mean (SD)

25 (89)Male, n (%)

31 (6)BMI, mean (SD)

35 (17)Mean ejection fraction (%), mean (SD)

3 (11)Employed, n (%)

Race/ethnicity, n (%)

13 (46)Black

15 (54)White

Health factors, n (%)

18 (64)History of diabetes

2 (7)Previous myocardial Infarction

19 (68)History of hypertension

4 (14)Previous stroke

2 (7)Peripheral vascular disease

8(29)History of atrial fibrillation

3 (1)Other non–atrial fibrillation arrhythmia

Events

62Compensated, n

48Decompensated, n

2 (1.8)Compensated per person, mean (SD)

2 (1.7)Decompensated per person, mean (SD)

Clinical Events
Clinical events consisted of decompensated and compensated
events and were collected by the clinical team when the
participants visited the hospitals. In the compensated events,
the participants visited the hospital for any reason, and their
fluid levels were determined to be normal based on the clinician
assessment, which includes a history and physical examination.
For the decompensated events, the clinical team determined the
participant to have functional limitations related to HF.
Decompensated and compensated events were assigned to
positive and negative classes, respectively.

Passive Data Sources
The raw 3D accelerometer data were converted to activity counts
using the Actigraphy Toolbox to reduce the required memory
for storing [17]. In the first step, the z-axis of the accelerometer
data was filtered using a band-pass Butterworth filter with a
0.25 to 11-Hz passband to eliminate extremely slow or fast
movements [18]. The maximum values inside 1-second windows
were then summed for each 30-second epoch to obtain the
activity counts, following a previously described approach [19].
If the participant shared data for less than 0.1% of the analysis
window, that window was considered missing. A common way
for visualizing motion data in sleep studies to emphasize shifts

in sleep rhythms is using a “double plot” format (Figure 2). This
figure illustrates the motion data for 1 participant over a
recording period of 300 days, and the darker colors indicate
lower-intensity movement. Each column consists of 2
consecutive days of data stacked together. The first column
shows motion intensity levels on days 1-2, and the second
column shows days 2-3, and so on. White regions indicate
missing data, which could be due to the participant turning off
the data sharing or the smartphone running out of battery.

Social contact data included the contact identifier (ID),
directionality, and the duration of each call. Each contact was
anonymized and assigned a unique ID at the source (on the
phone by the app). The age demographics of our population
were such that social media was not uniformly used across the
population [20], and therefore, we chose not to capture it to
avoid bias. We found that phone calls more so than SMS text
messaging were used in our population for digital social
interactions. Some participants did not use SMS text messaging
at all. We therefore chose to focus on call log data. The phone
call log is particularly appealing in an older demographic
because it reflects the interactions of close and trusted entities,
particularly those that may offer advice on health [21].
Moreover, call logs can be generalized beyond phone calls to
any communication medium that is the primary social digital
interaction point for close and critical contacts.
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Figure 2. Double plot representation of actigraphy data illustrating daily motion intensity levels for 1 participant. Darker colors indicate lower intensity
movement, and the white color indicates missing data. On the top of the plot, decompensated and compensated clinical events are shown with red and
orange squares, respectively. Comp: compensated; Decomp: decompensated.

Figure 3 illustrates 1 participant’s social contact over 300 days
for the 10 most frequently contacted IDs. Lastly, location data
were collected using the Android location services app program
interface, which generally used cellphone tower or Wi-Fi and
not GPS for geolocation. Figure 4 shows the location data of a
participant, collected from compensated and decompensated
windows. High spatial resolution was not required since the
aim was to identify the general environment in which a user

was located (eg, home, work, shops). If the smartphone moved
at least 100 meters and at least 5 minutes had passed since the
last location data update, a new relative location was recorded.
These parameters were defined while designing the app to
preserve battery life while still providing sufficient temporal
and spatial resolution in comparison to the phone’s ability to
geolocate without GPS. Figure 5 shows the kernel density
estimate of 1 participant’s all-location data updates.

Figure 3. Participants' social contact intensity over 300 days. Each unique contact is assigned a number as shown in the y-axis, and the circle radius
is proportional to the call duration to each ID. On the top of the plot, decompensated and compensated clinical events are shown with red and orange
squares, respectively. Comp: compensated; Decomp: decompensated.
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Figure 4. Location data collected in compensated (comp.) and decompensated (decomp.) windows for a participant shown on the same map with 50
km × 50 km dimensions.

Figure 5. Kernel density estimate for the location data of 1 participant.

Active Data Sources
The active data type, which required user input, was the KCCQ
administered through the smartphone app. The scores are lower
for severe HF symptoms, and KCCQ scores ≤25 correspond to
New York Heart Association class IV. In this study, we used
the shorter version of the questionnaire, referred to as the

KCCQ-12 [22]. The KCCQ-12 survey had physical limitation,
symptom frequency, quality of life, and social limitation
domains, and the summary score (ranging from 0 to 100) was
the average of all available domains. Figure 6 shows the
KCCQ-12 scores administered through the app for a particular
participant.
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Figure 6. KCCQ-12 summary score over days for a particular participant. A KCCQ-12 score ≤25 indicates a transition to severe HF. Decompensated
and compensated clinical events are shown with red and orange squares above the plot, respectively. Comp: compensated; Decomp: decompensated;
HF: heart failure; KCCQ-12: short Kansas City Cardiomyopathy Questionnaire.

Feature Extraction and Temporal Windows
Several features were extracted for a particular time window
from the data collected through the app to construct the motion
feature set. A time window of data was the N day period before
a clinical event, and the feature extraction was performed for
each time window. The window size N was chosen to be 14
days initially since it was also selected by the developers of
KCCQ-12 to represent the participant’s recent functioning [12].
First, from preprocessed smartphone activity counts, descriptive
statistics were extracted. These included mean (actmean), SD
(actstd), mode (actmode), skewness (actskew), and kurtosis (actkurt).
The completeness percentage (actcomp) was calculated by
dividing the epochs with data by the total number of epochs in
the time window. For each time window, the total number of
calls (numCalls), the sum of the duration of calls (durCalls),
the SD of the duration of calls (durCallsstd), the sum of time
without any calls (durNoCalls), and the SD of time without any
calls (durNoCallsstd) were calculated to be used as social contact
features. For these 2 active data feature sets, the performance
of using the mean of all surveys inside the window or using the
most recent survey was also tested.

Using the participant’s location data, the most frequently visited
location was determined and defined as the “home” location.
The number of times the participant was at the home location
was calculated and used as a feature (atHome). For the second
location feature, Haversine distances [23] between all locations
to the home location were summed (distToHome). Finally, the
area within a 2-km radius from home was defined as zone 1.
The area outside of this radius was defined as zone 2. The

number of times the participant contributed from these 2 zones
was calculated (zone 1 and zone 2, respectively).

From the KCCQ-12 data, 2 different sets of features were
investigated. First, the summation score (KCCQ-12sum) described
in the Active Data Sources section was used as a feature. For
the second set of features, each domain (physical limitation,
symptom frequency, quality of life, and social limitation) of the
KCCQ-12 survey was used separately (KCCQ-12all).

Machine Learning Models
Logistic regression classifiers were trained to map the feature
vector to the compensated or decompensated outcome. All the
models were written in Python 3 language (The Python Software
Foundation), and the programming code was based on
scikit-learn [24]. Since each participant could contribute to more
than 1 event, we used leave-one-subject-out cross-validation.
The model was trained on the data from all participants except
1 hold-out participant, and this participant’s data were used as
the test set. This process was repeated for each participant in
the data set.

Since the number of compensated and decompensated events
were highly imbalanced (Table 1), a majority undersampling
was performed on the training set before training the classifiers.
During the majority undersampling, all participants from the
minority class were used, and the same number of participants
from the majority class were randomly selected. Sequential
forward feature selection was used to select the 3 most
informative features from each modality.

Both early and late fusion approaches combined passive and
active modalities (Figure 7). In the early fusion approach,
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extracted features were combined at the input level of the
classifier to create a single feature vector. For the late fusion
approach, all single modality models’ output probabilities were
concatenated and used as input to another classifier. In all fusion

models, the participants who contributed with all data types
were included in the analysis. Each analysis was repeated 50
times with different seeds. The mean and SD of the repeats were
then presented as results.

Figure 7. Modality fusion techniques. Purple and red colors indicate 2 different modalities. The left side (a) shows the early fusion approach, and the
right side (b) shows the late fusion of the modalities. comp: compensated; decomp: decompensated.

To examine and interpret the features further, Shapley additive
explanation (SHAP) values for the early fusion model were
calculated [25]. This framework is model agnostic, and SHAP
values quantify the contribution and impact of each feature to
the model.

Finally, we investigated how early the models can predict an
outcome by implementing a time-to-event analysis and a
window size analysis. The time-to-event methodology consisted
of analyzing the performance of a model using data from only
1 day prior to the event but shifting which day is included in
the analysis. The window size methodology consisted of
analyzing different intervals of days prior to the event and
evaluating the model performance on each window.

Results

Single Modality Model Results
The cross-validation performance for each single-modality
model (motion, location, and social contact) is shown in Table
2. For these experiments, the time window was set to 14 days
before each clinical event. The number of unique participants
and the number of clinical events changed according to the
modality since the participants could stop contributing data. For
the motion model, 23 participants contributed with 28
decompensated events and 44 compensated events. For the
social contact model, there were 21 participants with 27
decompensated events and 45 compensated events. Finally,
there were 18 participants with 13 decompensated events and
33 compensated events for the location model.

Table 2. Passive data model performance results presented as the mean and SD of the external folds of each experiment.

TPRd, mean (SD)PPVc, mean (SD)AUCPrb, mean (SD)AUCa, mean (SD)Accuracy, mean (SD)Modality

0.61 (0.06)0.55 (0.04)0.60 (0.06)0.66 (0.03)0.66 (0.03)Motion

0.49 (0.17)0.34 (0.10)0.39 (0.11)0.56 (0.10)0.59 (0.07)Location

0.60 (0.07)0.46 (0.06)0.56 (0.06)0.65 (0.05)0.58 (0.05)Social

aAUC: area under the curve of the receiver operator curve.
bAUCPr: area under the precision-recall curve.
cPPV: positive predictive value.
dTPR: true positive rate.

Table 3 provides the single modality results for the active data
type, the KCCQ-12 survey. The table shows the performance
metrics when the mean of all the questionnaires within the
14-day window was used and when the most recent
questionnaire was used for the 2 different active feature sets

(KCCQ-12sum and KCCQ-12all). For this active data type, 20
unique IDs contributed with 23 decompensated events and 32
compensated events. Using the summary KCCQ-12 score and
taking the most recent questionnaire resulted in the highest area
under the precision-recall curve (AUCPr) score of 0.69.
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Table 3. Active data single modality model performance reported as the mean and SD of the external folds of each experiment.

TPRd, mean (SD)PPVc, mean (SD)AUCPrb, mean (SD)AUCa, mean (SD)Accuracy, mean (SD)Modality

Mean of window

0.66 (0.03)0.55 (0.01)0.61 (0.02)0.75 (0.01)0.64 (0.01)KCCQ-12sum
e

0.69 (0.04)0.57 (0.02)0.54 (0.04)0.67 (0.02)0.65 (0.02)KCCQ-12all
f

Most recent

0.71 (0.03)0.61 (0.02)0.69 (0.02)0.77 (0.01)0.69 (0.01)KCCQ-12sum

0.74 (0.04)0.60 (0.02)0.61 (0.04)0.70 (0.01)0.69 (0.03)KCCQ-12all

aAUC: area under the curve of the receiver operator curve.
bAUCPr: area under the precision-recall curve.
cPPV: positive predictive value.
dTPR: true positive rate.
eKCCQ-12all: set of features for each short Kansas City Cardiomyopathy Questionnaire survey domain separately.
fKCCQ-12sum: summation scores for all short Kansas City Cardiomyopathy Questionnaire survey domains.

Fusion Modality Model Results
For the fusion model which combines KCCQ-12 and motion
data, 17 participants contributed data for both modalities, with
21 decompensated events and 26 compensated events. When 3
modalities were used (KCCQ-12, motion, and social contact),
16 participants contributed with 18 decompensated events and
21 compensated events. Finally, when all data types were
merged (KCCQ-12, motion, social contact, and location), there

were data available for 12 participants, with 10 decompensated
events and 18 compensated events.

The results for the early fusion models are shown in Table 4.
For the late fusion models, the results are shown in Table 5.
The highest AUCPr of 0.77 was achieved when KCCQ-12,
motion, and social contact modalities were combined with late
fusion. For the early fusion models, using the same modalities
resulted in an AUCPr of 0.69. The corresponding SHAP
summary plot for the early fusion model is shown in Figure 8.

Table 4. Results of early fusion models reported as the mean and SD of the external folds of each experiment.

TPRd, mean (SD)PPVc, mean (SD)AUCPrb, mean (SD)AUCa, mean (SD)Accuracy, mean (SD)Modality

0.53 (0.06)0.53 (0.05)0.54 (0.04)0.58 (0.03)0.62 (0.04)Motion + social

0.73 (0.05)0.69 (0.02)0.75 (0.03)0.81 (0.01)0.73 (0.02)KCCQ-12e + motion

0.66 (0.09)0.70 (0.04)0.69 (0.06)0.72 (0.05)0.71 (0.04)KCCQ-12 + motion + social

0.56 (0.09)0.55 (0.07)0.57 (0.11)0.64 (0.07)0.67 (0.05)KCCQ-12 + motion + social
+ location

aAUC: area under the curve of the receiver operator curve.
bAUCPr: area under the precision-recall curve.
cPPV: positive predictive value.
dTPR: true positive rate
eKCCQ-12: the short Kansas City Cardiomyopathy Questionnaire survey.
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Table 5. Results of late fusion models reported as the mean and SD of the external folds of each experiment.

TPRd, mean (SD)PPVc, mean (SD)AUCPrb, mean (SD)AUCa, mean (SD)Accuracy, mean (SD)Modality

0.56 (0.07)0.54 (0.04)0.52 (0.05)0.63 (0.04)0.64 (0.03)Motion + social

0.72 (0.07)0.61 (0.03)0.67 (0.04)0.75 (0.02)0.67 (0.03)KCCQ-12e + motion

0.70 (0.05)0.68 (0.04)0.77 (0.04)0.79 (0.03)0.71 (0.04)KCCQ-12 + motion + social

0.68 (0.10)0.49 (0.07)0.60 (0.11)0.72 (0.07)0.62 (0.07)KCCQ-12 + motion + social
+ location

aAUC: area under the curve of the receiver operator curve.
bAUCPr: area under the precision-recall curve.
cPPV: positive predictive value.
dTPR: true positive rate.
eKCCQ-12: the short Kansas City Cardiomyopathy Questionnaire survey.

Figure 8. SHAP summary plot for the early fusion model. Features are sorted by their impact on the y-axis. Each point on the plot shows the Shapley
value for 1 instance. The horizontal location shows the feature’s effect for predicting positive class (decompensated) or negative class (compensated),
and color indicates the feature value. SHAP: Shapley additive explanation.

Time-to-Event and Window Size Analysis
We investigated how early the algorithms can predict an
outcome by shifting the days to the event and using different
window sizes in days for each model in each category.

Figure 9 illustrates the AUC and AUCPr change of each model
as the time in days to the event is increased. Only participants
who contributed data during the time-to-event intervals and
event type were included (n=13; with 13 decompensated events

and 18 compensated events). We observed a decrease in
performance on the social contact modality when the time to
event was 4 days. However, the motion model performance
peaked at 4 days to the event. The best model was the late fusion
model with a prediction window of 2 days prior to the event
(Figure 9). This best model had an AUC of 0.83, an AUCPr of
0.80, a positive predictive value (PPV) of 0.73, a sensitivity of
0.77, and a specificity of 0.88. The 4-days-ahead model had a
similar but lower performance with an AUC of 0.82, a AUCPr
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of 0.69, a PPV of 0.62, a sensitivity of 0.68, and a specificity of 0.87.

Figure 9. Performance changes as the days to events are shifted. The x-axis indicates the time to event in days, and the y-axis indicates the AUC and
AUCPr performance. Early fusion and late fusion models combine KCCQ-12, motion, and social contact modalities. AUC: area under the curve of the
receiver operator curve; AUCPr: area under the precision-recall curve; fus: fusion; KCCQ-12: the shot Kansas City Cardiomyopathy Questionnaire.

Figure 10 illustrates the performance of the models when the
window size is increased. Participants with all the window size
data and event type were included (n=11; 12 decompensation
events and 15 compensation events). We observed that the

performance of the KCCQ-12 model was similar across all
window sizes. However, the performance of the social contact
model improved as the window size decreased.

Figure 10. Performance changes as the window size is reduced. The x-axis indicates the time to event in days and the y-axis indicates the AUC and
AUCPr performance. Early and late fusion models use KCCQ-12, motion, and social contact modalities. AUC: area under the curve of the receiver
operator curve; AUCPr: area under the precision-recall curve; fus: fusion; KCCQ-12: the shot Kansas City Cardiomyopathy Questionnaire; win: window.

Discussion

Overview
In this proof-of-concept study that involved tracking HF status
with smartphone technologies, we showed that it is feasible to
collect information from self-reported surveys and passive
monitoring that are clinically relevant in classifying
compensated versus decompensated status. This study is a first
of its kind to evaluate 3 passive data modalities (motion,
location, and social interactions) and 1 active data modality,
the KCCQ-12 survey. We tested both individual and combined

active and passive metrics, and showed that each of them
individually and in combination may be potentially useful in
helping predict HF decompensation up to 6 days in advance of
the clinical encounter.

Principal Findings
Next-day prediction algorithms were built using each modality
separately. From the passive data sources, the motion data–based
model achieved the highest AUCPr of 0.60. For a model based
only on the responses of the KCCQ-12, using the summary of
all domains and using the most recent score resulted in the best
performance with an AUCPr of 0.74 (Table 3). Combining both
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passive and active data modalities achieved a superior
performance compared to models based on passive or actively
collected data alone (see Tables 4 and 5). The highest
performing model combined KCCQ-12, motion, and social
contact data. Using the late fusion approach achieved a 6%
higher AUCPr compared to early fusion when 3 modalities were
used. Late fusion summarizes each modality and presents a
lower-dimensional vector to the final classifier [26]. Therefore,
this method could reduce the chances of overfitting and
addresses the curse of dimensionality when the sample size is
small. An AUC of 0.83, an AUCPr of 0.80, a PPV of 0.73, a
sensitivity of 0.77, and a specificity of 0.88 for this model may
indicate that the approach could potentially add clinical
interventions into the framework and result in a low number of
false alarms.

Figure 8 illustrates the feature importance using the SHAP
method. Duration and number of calls were among the most
informative features, indicating that the dynamics of social
interactions could be affected by the disease status. The SHAP
summary plot also indicates that a higher duration but fewer
calls results in a higher probability of HF decompensation for
the model. Another important feature was the KCCQ-12
summary value, and a lower value of this parameter gave rise
to higher SHAP values. The SHAP plot also indicated that
higher mean smartphone motion intensity resulted in a higher
probability of HF, which was unexpected since HF limits daily
physical activity and is often associated with fatigue.

When different time-to-event horizons were tested, a general
trend of lower performance for longer future predictions was
observed. This was expected since symptoms are likely to
become more pronounced closer to the event. However,
predictions 2 days ahead were actually better than those 1 day
ahead, and the performance 4 days ahead was almost as good
as that 1 day before the event. This indicates that 1-day, 2-day,
and 4-day models could be run simultaneously to identify short-
and medium-term risks and result in different levels of
intervention. Changes in performance will be affected by the
levels of missingness as the event approaches, as well as the
intrinsic behaviors, which may explain the performance of the
2-day window.

Comparison With Other Work
Our proof-of-concept study suggests that low-burden,
smartphone-based methods of monitoring in HF may offer
modest incremental predictive value. The accuracy of our
models was similar to earlier work that used mobile health
sensors [10] although the lead time was less. We obtained
similar results with a late fusion model with a sensitivity of 77%
and a specificity of 88% two days prior to the event. However,
only a modest reduction in performance was seen for a 4-day
prediction window, particularly using motion only, suggesting
that running multiple models for different prediction windows
may be appropriate. Similarly, the Link-HF study reports a
sensitivity of 76% to 88% and a specificity of 85% in a median
time of 6.5 (IQR 4.2-13.7) days prior to HF readmission [10].
Although the lead time is lower in our study (2 vs 6.5 days),
the costs and burden are lower as well. Two-day advanced alerts
may still accelerate care and trigger earlier treatments than may

usual care although more research is needed. Any reduction in
delays of care with proactive monitoring and intervention may
reduce the overall HF burden; nonetheless, the impact on costs
and mortality remain to be explored. Because this is the first
study of its kind, our primary focus was on the discovery of
novel social and behavioral metrics that help to understand the
biopsychosocial mechanisms underlying HF. As such, it
underscores the need for larger studies aimed at training and
testing models with larger lead times and the potential to reduce
HF readmissions with sufficient statistical power.

Limitations
There are several key limitations to this study. First, when the
data were missing, the app did not indicate whether this resulted
from the participant closing the app voluntarily or if it resulted
from the smartphone battery running out. These behaviors have
different etiologies, which may be related to impending
decompensation in different ways. For example, closing the app
may indicate being tired, whereas a battery running out of charge
may indicate apathy connected with depression. If an additional
label is collected for missing sections, it could be used to learn
other behavioral patterns. Second, text messages and social
media can provide a more complete picture on social contact.
However, due to the age demographics of our population, social
contact was quantified using only phone call information [20].
Despite the limited data, our results showed a strong association
with decompensated HF status and phone call information.
Third, even though each participant contributed many days, the
study’s sample size was relatively small (N=28 participants),
and, therefore, the methods should be further validated in a
larger cohort. Finally, the reliance on hospital records rather
than on independent examination of participants might have led
to misclassification. We cannot rule out the possibility of
unmeasured confounders in those who did and did not
experience decompensation events, and our limited sample size
restricted our ability to examine this as well. The small sample
size also restricted our ability to examine differences by age
and HF severity. Nevertheless, we were able to show the
feasibility of combining passive and active features extracted
from a mobile device to predict HF events. Our findings provide
good evidence that we should perform a larger confirmatory
study.

Conclusions
Our proposed novel smartphone-based approach for
noninvasively monitoring patients with HF may help monitor
health status changes through changes in movement, location,
social interactions, or a combination of these. Many of these
features are new discoveries and suggest important mechanisms
of disease that have previously been less explored. Due to the
ubiquity of smartphones and the ease of scalability of the
framework, our method has the potential to facilitate low-cost
monitoring of large populations. However, we note that this is
a preliminary study on a relatively small population, and before
it can be validated, a larger study is required. In addition, other
passive monitoring devices (such as movement sensors in the
house, electricity usage monitors, and home alarm systems)
may provide additional useful information on the changes in
behavior leading up to an intervenable event. Moreover, in
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future work, the feasibility of combining the proposed method
with clinical interventions (such as teleconsultations and drug

dose modification) will need to be investigated to measure the
potential impact of the framework described in this paper.
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Abbreviations
actcomp: completeness percentage activity counts
actmean: mean of activity counts
actmode: mode of activity counts
actkurt: kurtosis activity counts
actskew: skewness activity counts
actstd: SD of activity counts
AMoSS: Automated Monitoring of Symptom Severity
atHome: number of times the participant was at the home location
AUC: area under the curve of the receiver operator curve
AUCPr: area under the precision-recall curve
distToHome: sum of Haversine distances between all locations to the home location.
durCalls: sum of the duration of calls
durCallsstd: SD of the duration of calls
durNoCalls: sum of time without any calls
durNoCallsstd: SD of the time without any calls
HF: heart failure
HIPAA: Health Insurance Portability and Accountability Act
KCCQ: Kansas City Cardiomyopathy Questionnaire
KCCQ-12: short Kansas City Cardiomyopathy Questionnaire
KCCQ-12all: set of features for each KCCQ-12 survey domains separately
KCCQ-12sum: summation scores for all KCCQ-12 survey domains
NHLBI: National Heart, Lung, and Blood Institute
NIH: National Institutes of Health
numCalls: total number of calls
PPV: positive predictive value
SHAP: Shapley additive explanation
TPR: true positive rate
zone 1: number of times the participant was within a 2-km radius from home
zone 2: number of time the participant was outside the 2-km radius from home
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