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Mean values of hematological parameters are currently used in the clinical laboratory
settings to characterize red blood cell properties. Those include red blood cell indices,
osmotic fragility test, eosin 5-maleimide (EMA) test, and deformability assessment
using ektacytometry to name a few. Diagnosis of hereditary red blood cell disorders
is complemented by identification of mutations in distinct genes that are recognized
“molecular causes of disease.” The power of these measurements is clinically well-
established. However, the evidence is growing that the available information is not
enough to understand the determinants of severity of diseases and heterogeneity
in manifestation of pathologies such as hereditary hemolytic anemias. This review
focuses on an alternative approach to assess red blood cell properties based on
heterogeneity of red blood cells and characterization of fractions of cells with similar
properties such as density, hydration, membrane loss, redox state, Ca2+ levels, and
morphology. Methodological approaches to detect variance of red blood cell properties
will be presented. Causes of red blood cell heterogeneity include cell age, environmental
stress as well as shear and metabolic stress, and multiple other factors. Heterogeneity
of red blood cell properties is also promoted by pathological conditions that are not
limited to the red blood cells disorders, but inflammatory state, metabolic diseases
and cancer. Therapeutic interventions such as splenectomy and transfusion as well as
drug administration also impact the variance in red blood cell properties. Based on the
overview of the studies in this area, the possible applications of heterogeneity in red
blood cell properties as prognostic and diagnostic marker commenting on the power
and selectivity of such markers are discussed.

Keywords: red blood cells, heterogeneity, morphology, erythroid precursor cells, age

INTRODUCTION

Our understanding of red blood cells (RBCs) evolved from acknowledgment of the basic and
fundamental role of these cells as key players in gas exchange to the state where we assign multiple
complex functions related to sensing and signaling, maintenance of homeostasis of pH and redox
state and participation in control of vascular tone, clotting (Andrews and Low, 1999; Bernhardt
et al., 2019), and other processes (Helms et al., 2018; Pernow et al., 2019).
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Broadening of RBC functions was accompanied with our
awareness of complexity of the cellular architecture and
biochemistry. Spatial compartmentalization of processes and
resources in RBCs was discovered (Hoffman et al., 2009;
Chu et al., 2012). Complex dynamics precise orchestration of
processes occurring in the circulating RBCs in response to
the changes in micro- and macro-environment (hormonal and
mechanical stimulation, changes in local or ambient oxygen
availability, temperature, circadian rhythm-related processes and
others) is becoming evident (e.g., O’Neill and Reddy, 2011;
Cahalan et al., 2015; Zhou et al., 2019).

With time it became clear that these changes and responses do
not necessarily involve all the circulating cells. As our knowledge
of these cells accumulates more and more reports mention the
presence of “responding” and “non-responding” cells in the
circulation (e.g., Kaestner et al., 2012; Makhro et al., 2013; Wang
et al., 2013; Rotordam et al., 2019). As we recognize the existence
of multiple fractions of RBCs that are functionally different from
each other, we feel a growing need to unravel the nature of these
differences, their causes and the potential information hidden in
RBC heterogeneity on systemic distress and pathology. In this
review we aimed to summarize the current state of knowledge
in this rapidly developing research area. We focus on RBCs
of healthy humans and give only a few examples of how RBC
heterogeneity may be used to predict RBC disease nature and
severity. Heterogeneity of stored or transfused RBCs is a broad
topic also out of the scope of this review.

INTER-INDIVIDUAL HETEROGENEITY

Inter-individual variation in properties of circulating RBCs of
healthy donors reflects genetic and epigenetic variance as well
as the state in which the organism resides over the past 3–
4 months during which the cells undergo transitions from
erythroid progenitors to young, mature, and senescent state.
Variance spreads to the number of copies of proteins per cell,
activity of enzymes and ion transporters, shapes, differences in
density, deformability, membrane stability, redox state, and the
collection of Hb variants in a given cell. Most of the studies for
healthy humans were performed on stored blood to assess its
quality and identify a cohort of best donors (Sparrow, 2017).

The possible causes of this inter-individual variation originate
at the level of erythroid precursor cells (as in case of ineffective
erythropoiesis (Oikonomidou and Rivella, 2018), for more details
see section Cellular Heterogeneity During Erythropoiesis) or
emerge later on as the cells enter the circulation and get
exposed to a variety of microenvironments (osmolarity gradients
in the kidneys, shear in capillaries and spleen, changes in
oxygen availability and pH within peripheral tissues, changes in
redox state next to the inflammatory side or to the exercising
muscle). Development of heterogeneous RBC populations may
be an intrinsic property of blood (e.g., RBC aging), or be
triggered by the changes in life style or environmental conditions
(e.g., hypoxia, microgravity) or state of the organism (e.g.,
stress, inflammation, changes in dietary preferences and blood
metabolites). Finally, it may result from hereditary diseases

that destabilize the RBC membrane or perturb its rheological
properties, redox or metabolic state. In this review we focus on
the possible physiological causes of heterogeneity.

PARAMETERS SHOWING
INTER-CELLULAR HETEROGENEITY
AND METHODS TO DETECT THEM

Table 1 summarizes the information on the parameters
displaying inter-individual and inter-cellular heterogeneity, as
well as methodological approaches for detection of heterogeneity.

Shape and Size
First descriptions of RBCs as “red corpuscles” given by Jan
Swammerdam and dates back to 1658 (Swammerdam, 1737;
Bessis and Delpech, 1981; Hajdu, 2003). Since then, substantial
progress was made in imaging equipment as well as in fixation
and staining of RBC. Blood smears still remain a part of common
diagnostic practice in most of the clinical laboratories (Bain,
2005) despite the fact that smear preparation results in distortions
of RBC morphology and lysis of the most fragile of them (Wenk,
1976). This technique allows to discriminate between numerous
shapes from discocytes to a broad variety of “static” shapes such
as echinocytes and stomatocytes, for healthy humans. The list of
shape types will extend manifolds for patients with hereditary or
acute disorders.

The biggest drawback of the whole approach with smears is
that it provides an immediate snapshot of the shape distribution,
whereas living RBCs are very dynamic entities. So are their
shapes, and, rather than discussing their “absolute shape,” it
would be feasible to assign them a probability to be observed
in one of the shape types. The first attempts to address RBC
shapes in terms of probability density distribution are recently
undertaken (Reichel et al., 2019). Each cell has its “static shape”
that is preferred over the other ones if no force is applied to
it. There are also several preferred shape types caused by shear
stress in flow. The probability to observe one of those depends on
the shear rates and flow dynamics (Abkarian et al., 2008; Dupire
et al., 2015; Lanotte et al., 2016; Kihm et al., 2018; Mauer et al.,
2018; Reichel et al., 2019). The restoration of the initial shape
of the cells as soon as the flow stops got the name of “shape
memory” (Fischer, 2004; Cordasco and Bagchi, 2017). Acute
shape changes associated with the ion movements across the cell
membrane (dehydration or overhydration) are often reversible
(Brugnara, 1997; Cossins and Gibson, 1997; Zhu et al., 2018)
whereas shape alterations related to the permanent damage of the
cytoskeleton or membrane loss are irreversible (Gallagher, 2005;
Perrotta et al., 2008).

Preferred shapes reflect the optimal cytoskeletal
conformation, hemoglobin concentration, redox state and
metabolic balance and free Ca2+ levels that, in turn, define the
activity of ion transporters, hydration state and phosphorylation
state of proteins. Some of these variables will be addressed below.

Parameters to describe dynamics of RBCs morphology are
currently in development. Former classifications of shapes
performed by eye (Bessis and Lessin, 1970; Bessis and Delpech,
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TABLE 1 | Overview of parameters showing inter-cellular heterogeneity as well as basic principle and methodological approaches of their detection in single cells and
sub-populations.

Parameter Indicator Method References

Shape/size Direct:
Shape classification
Projected area
Perimeter/roughness
Sphericity/elongation

Microscopy:
Blood smears, images of living cells
(snapshots, time series in flow,
microfluidics),
Imaging flow cytometers

Gonzalez-Hidalgo et al., 2015; Quint
et al., 2018; Herold-Garcia and
Fernandes, 2019

Volume Confocal microscopy + 3D
deconvolution

Sadafi et al., 2019

Scanning probe microscopy (semi
quantitative)

Kihm et al., 2018

Indirect:
Forward and side light scatter
Impedance (coulter principle)

Flow cytometry
Coulter counters
Multiple Blood analyzers

Density Direct:
Separation according to RBC density

Fractionation in Percoll-, Stractan or
similar density gradients

Lutz et al., 1992

Lab-on-a-chip approaches Catarino et al., 2019

Indirect:
Swelling- or shrinkage- resistance (e.g., the
changes in SS and FS within the swelling test)
Single cell rheology

Flow cytometry
Cell-flow properties analyzer

Kaul et al., 2008; Barshtein et al., 2016;
Fermo et al., 2017

Membrane surface/EMA test Flow cytometry

Free Ca2+/channel
activity

Fluorescent dyes for Ca2+

Detection of ionic currents across the
membranes of single cells

Flow cytometry and fluorescence
microscopy
Patch-clamp incl. automated planar
chips

Kaestner et al., 2006; Makhro et al.,
2013; Wang et al., 2013; Fermo et al.,
2017; Rotordam et al., 2019

Redox state and
metabolism

Fluorescent dyes for reduced thiols (e.g., thiol
tracker, monobromobimane),
Fluorescent dyes for N2O3 (DAF-DA),
Dyes for detection of H2O2, ONOO, HO* (e.g.,
H2DCF-DA)
Single cell metabolomics
(not yet used for red blood cells)

Flow cytometry
Fluorescence microscopy
Mass-spectrometry

Jemaa et al., 2017; Gilmore et al., 2019

Hb levels and variance Antibodies with fluorescent tags
Chromicity
Sodium metabisulfite (Na2S2O5) and similar
deoxygenation-based sickling tests
Hemoglobin Distribution Width (HDW)

Flow cytometry,
Fluorescence microscopy

Microscopy

Kunicka et al., 2001; Darrow et al.,
2016; Jung et al., 2016

Age Labeling of cells (biotin conjugated with
fluorescent tag or staining with PKH dyes)
Reticulocyte count RNA-positive or Transferrin
receptor-positive

Flow cytometry, microscopy Mock et al., 1999;
Piva et al., 2010

1982) are non-numerical and cannot be reliably translated into
the algorithms for automated segmentation and classification of
smears and images of living cells. New approaches are currently
developing (Tomari et al., 2014). Roundness, roughness,
projected areas are among such numeric descriptors of RBC
shapes. 3D volume reconstruction of, e.g., confocal recordings are
more informative than 2-dimentional images. High resolution
3D-imaging was performed for fixed RBC (Abay et al., 2019).
First attempts to get the 3D imaging working for RBCs in flow are
undertaken but is not yet available as a high-throughput mode
(Quint et al., 2018). Cell shape recognition and classification
involving artificial intelligence (AI) algorithms based on artificial
neural networks (Kihm et al., 2018). New optical concepts
using optofluidic microlenses-like behavior of RBCs (Mugnano
et al., 2018) and indirect adaptive optics as well as label-
free quantitative phase imaging (Miccio et al., 2015) enables

assessment of cell volume of individual cells, and monitoring
of morphometric features (e.g., label-free optical markers) that
make high throughput reliable quantification of cell phenotypes
possible. It allows to stay unbiased, omit “human factor,” and
allocate RBC shapes to a continuous scale with high throughput
and precision. The challenge is that artificial neural networks
need to be set up, customized and most notably trained. This type
of analysis will become available routinely in the nearest future.

Hydration State and Density
The best method to visualize the variance in RBC density
is fractionation on a Percoll (Figure 1), Ficoll, Stractan, or
phtalate density gradient (Danon and Marikovsky, 1964; Corry
et al., 1982; Salvo et al., 1982; Mosca et al., 1991; Lutz et al.,
1992). Upon centrifugation in isotonic solution of any of these
materials forming continuous or discontinuous gradients, RBCs
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FIGURE 1 | An example of heterogeneity of RBC density revealed by
fractionation of RBCs on a self-forming Percoll density gradient. Composition
of light, medium and high-density fractions vary depending on human health
and environmental stress. About 15–20% of RBCs of healthy human donors
forming low density are reticulocytes. However, along with young cells this
fraction is “contaminated” with swollen RBCs at the terminal senescence
stage (Lew and Tiffert, 2013). Medium fraction is formed by mature RBCs,
and heavy dehydrated cells are those with senescent phenotype.

distribute within them according to their densities. As RBCs
of healthy human donors are fractionated on a self-forming
Percoll gradient, three to five fractions may be collected. A small
fraction of cells with lower density bands as the top layer,
followed by one or several RBC populations with a medium
density and a minor fraction of cells is presented with the
highest density (Lutz et al., 1992; Makhro et al., 2013; Makhro
et al., 2016b). RBCs of patients with hereditary hemolytic
anemias are generally characterized with a broader variance in
densities. Often this diversity may contain clinically relevant
information on the severity of disease state. For sickle cell
disease the abundance of dense cells was suggested to be
a predictor of severity of disease manifestation due to the
increased probability of irreversible aggregation of HbS (Kaul
et al., 1983). For hereditary spherocytosis severity is associated
with an increase in abundance of well-hydrated cells that are
lost before they have time to mature and lose some of their
membrane (Huisjes et al., 2019). Increase in heterogeneity is
high in patients with cryohydrocytosis (Bogdanova et al., 2010),
Gardos channelopathy (Fermo et al., 2017) beta-thalassemia,
G6PD, and pyruvate kinase (PK) deficiency (Mosca et al., 1991).

Factors defining RBC density include changes in water and
ion content and membrane loss. During the density fractionation
RBCs experience shear stress during centrifugation as they move
through the isotonic Percoll solution containing micromolar
concentrations of Ca2+ in the absence of EGTA. Shear forces may
activate mechano-sensitive channels such as PIEZO1 channels
(Cahalan et al., 2015) and NMDA receptors (Hanggi et al., 2014)
that are permeable for Ca2+. Uptake of Ca2+ via these receptors
triggers loss of K+ mediated by opening of Ca2+-dependent
Gardos channels. Thus, fractionation of RBCs on Percoll should
be viewed as a functional test in which distribution of the cells
is not only driven by the steady state density, but also by their
mechano-sensitivity.

Indirect methods to assess heterogeneity in RBC density
include detection of hypo- and hyperchromic cells in blood
smears, HDW as well as the shape of the curve in osmotic
fragility test of the right arm of the osmoscan curve obtained
by ektacytometry (Clark et al., 1983; Lutz et al., 1992).
Hight throughput devices for evaluation of RBC density using
functional tests at the single cell level are being developed.

Ca2+ Levels (Static and Dynamic Tests)
and Electrophysiological Properties
Heterogeneity in basal free Ca2+ levels was recorded in RBCs
of healthy humans (Kaestner et al., 2006; Makhro et al., 2013;
Fermo et al., 2017). Stimulation of Ca2+ uptake by treatment
of healthy human RBCs with PGE2 (Danielczok et al., 2017),
lysophosphatidic acid (Steffen et al., 2011; Kaestner et al., 2012;
Wang et al., 2013; Wesseling et al., 2016) or glutamate (Makhro
et al., 2013; Hanggi et al., 2014; Makhro et al., 2016a; Petkova-
Kirova et al., 2019) increases variance in the intracellular Ca2+.
Not all cells respond to shear stress or pro-oxidative condition
with an increase in Ca2+.

Molecular causes for this heterogeneity in responses to various
stressors are poorly understood. It is obvious, that they relate to
the differences in abundance of either Ca2+ channels (Kaestner
et al., 1999; Makhro et al., 2013; Kaestner and Egee, 2018;
Rotordam et al., 2019) or of the primary receptors responding
to the stressor (such as LPA or prostaglandin receptors; Wang
et al., 2013; Danielczok et al., 2017). In human RBCs several
ion channels are known to mediate Ca2+ uptake including
PIEZO1, TRPC6, NMDA receptors, CaV2.1 and several others
(for a recent review see Kaestner et al., 2020). As a result of
stochastic distribution and opening probability, Ca2+ entry into
individual RBCs varies in response to stimulation by individual
Ca2+ channels substantially giving rise to “responders” and “non-
responders” cellular sup-populations. This uneven behavior may
be further amplified due to the existence of feedback loops
supporting Ca2+-dependent Ca2+ uptake (Kaestner et al., 2018).

Most documented is inter-cellular variance in distribution of
the Ca2+-dependent K+ (Gardos) channel in RBCs. However,
majority of the recordings for this best-studied channel in RBCs
were performed as mean values for the unseparated populations,
using radioactive tracer kinetics technique or single channel
recordings. Reports based on whole-cell recordings for this
channel are still sparse (Kucherenko et al., 2005; Kucherenko
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et al., 2013; Fermo et al., 2017). A further factor that may
amplify heterogeneity of Gardos channel recordings in RBCs is
its inactivation upon hypoxic exercises (Mao et al., 2011).

Redox State and Metabolism
Staining of individual cells with fluorescent probes sensitive
to pro-oxidative free radicals such as dicarbofluorescein (Amer
et al., 2003; Grinberg et al., 2005) and monobromobimane
(Kosower and Kosower, 1995) provide a possibility to follow
the changes in redox balance in individual cells. One more
approach to record redox state in sub-fractions of RBCs is
based on pre-fractionation of cells into low, medium and high
density fractions before assessment of reduced and oxidized
glutathione (GSH and GSSG) and NAD(P)H (Piccinini et al.,
1995; D’Alessandro et al., 2013) in these sub-populations. Dense
cells were shown to be deprived of GSH and enriched with GSSG
compared to the mature RBCs of medium density. Accumulation
of GSSG and reduction in GSH was not associated with any
substantial changes in the intracellular ATP or NADPH (Sass
et al., 1965; D’Alessandro et al., 2013). Finally, redox state of RBCs
may be expressed as the ability to tolerate oxidative challenge
(Lisovskaya et al., 2008; Sinha et al., 2015) which differs between
individual RBCs as well.

Shifts in redox equilibrium in RBCs of healthy donors are
associated with age-dependent decrease in pyruvate kinase,
hexokinase, glucose-phosphate dehydrogenase, aldolase activities
(Salvo et al., 1982; Suzuki and Dale, 1988). Oxidative stress
is a hallmark of RBCs of patients with hereditary hemolytic
anemias presented with one or two alleles of mutated glucose-
6 phosphate dehydrogenase (G6PD). The resulting in acute
hemolytic condition known as favism is associated with depletion
in NADPH in favor of NADP+ (Mason et al., 2007; Peters and van
Noorden, 2017). Furthermore, systemic oxidative stress caused
by inflammatory processes, infection and other causes may result
in release of reduced glutathione from RBCs and temporary
increase in oxidative load and aggravate the differences in redox
state between the cells of different ages (Giustarini et al., 2008).

Hb Levels and Variants
Inter-cellular heterogeneity in intracellular hemoglobin content
in clinical settings is reflected by the abundance of hypochromic
and hyperchromic cells in blood smears. The abundance of
hypochrome RBCs for healthy humans should not exceed 2.5% of
circulating RBCs (Macdougall et al., 1992; Schaefer and Schaefer,
1995; Braun et al., 1997), dropping below 1% in patients with iron
overload, and increasing to 20% and more in patients with iron
deficiency. Higher levels of hyperchromic cells was also reported
for patients with hereditary spherocytosis (Conway et al., 2002)
and sickle cell disease (Ballas and Kocher, 1988).

Even more intercellular heterogeneity is introduced by a
pronounced variance in the presence of fetal hemoglobin in
a small fraction of cells (F-cells) in healthy humans (Boyer
et al., 1975; Thein and Craig, 1998). The abundance of F-cells
increases during high altitude exposure (Narayan et al., 2005).
Pregnancy has an impact on this parameter (Prus and Fibach,
2013). Moreover, the abundance of F-cells as well as the amount
of HbF in them may differ from cell to cell in patients with

beta-thalassemia (Narayan et al., 2005). In sickle cell disease,
HbF abundance furthermore strongly depends on the haplotype
(Menzel and Thein, 2019). Sickle cell trait results in uneven
distribution of HbS between the cells, and the pattern for such
variance seems to be hereditary (Anyaibe et al., 1985).

CAUSES OF HETEROGENEITY

If we want to make extensive use of RBC heterogeneity as a
diagnostic and prognostic marker, we have to understand the
origin of the observed variance in RBC properties.

This may stem from the different pools of erythroid precursor
cells that equip the resulting reticulocytes with various sets of
proteins that may only be produced as long as the synthesis
machinery is active before the enucleation.

The other cause of heterogeneity are the age-dependent
differences between the young, mature and senescent RBCs. The
third cause occurring at the systemic level originates from the
alteration in the micro- and macro-environmental conditions
(changes in hormonal and metabolic levels, inflammation, shear
stress load, hyperthermia and others).

These three sources of heterogeneity will be reviewed below.

Cellular Heterogeneity During
Erythropoiesis
Accumulated evidence over the last 25 years has demonstrated
the existence of heterogeneity within the erythroid compartment
schematically shown in Figure 2. Although it is quite expected to
have a heterogenic population within the mature RBC population
due to the long- life span of mature RBCs (100–120 days in
human) representing cells of various ages, it is less clear and more
intriguing the reasons for erythroid precursors/progenitors to be
heterogeneous in multiple facets of their form and function.

One of the most established and well-explained aspect
of erythroid precursor heterogeneity pertains to erythroid
precursors possessing differing sensitivities to erythropoietin
(EPO). Soon after discovering the precise molecular function of
EPO to be a cell survival function (Koury and Bondurant, 1988,
1990), studies revealed that even within a highly homogenous
population in terms of the differentiation stage (operationally
defined as colony-forming unit-erythroid; CFU-E), erythroid
precursors underwent apoptosis following EPO withdrawal in
an asynchronous manner (Kelley et al., 1993). These studies
demonstrated a dose response effect as reflected by increasing
numbers of CFU-Es undergoing apoptosis as EPO concentrations
were gradually decreased. These observations clearly highlighted
the built-in heterogeneity within the developing erythroid cell
compartment with respect to the biochemical nature of each cell
within an otherwise “homogenous” precursor pool as defined
by morphological characteristics. One of the possible causes
supporting heterogeneity are the gradients in various signaling
messengers, growth factors, chemokines, oxygen levels and
the resulting reactive oxygen species, and other factors (e.g.,
Thompson et al., 2010; Spencer et al., 2014; Itkin et al., 2016)
making conditions in which precursor cells differentiate unique
and dependent on their location within the bone marrow

Frontiers in Physiology | www.frontiersin.org 5 May 2020 | Volume 11 | Article 392

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00392 May 5, 2020 Time: 18:35 # 6

Bogdanova et al. Heterogeneity of Red Blood Cells

FIGURE 2 | Schematic representation of the possible causes of heterogeneity
for erythroid precursor cells within bone marrow. Gradients in oxygen
availability, chemokines and other signaling messengers create a plethora of
conditions in which cells find themselves during differentiation. For details see
the text.

(Figure 2). An elegant model proposed by Koury and Bondurant
(1992), explained the basis of differing EPO sensitivities as a built-
in mechanism to prevent all erythroid precursors undergoing
apoptosis during low EPO levels in circulation such as in patients
with renal failure. The work by several other groups (Miura et al.,
1991; Landschulz et al., 1992; Nakamura et al., 1992; Kelley et al.,
1993) had shown that heterogeneic EPO response within the
same precursor population cannot be attributed to the numbers
of EPO-receptors, affinity or structure, thereby suggesting
differences in signal transduction as the likely mechanism for
the existence of heterogeneity in EPO response. Based on
these findings one can appreciate the existence of signaling
heterogeneity within the erythroid precursor compartment as
a necessary component during the development process to
yield mature red blood cells. Recently developed single-cell
intracellular flow cytometry approaches (Liu et al., 2019) are
bound to further uncover previously unrecognized levels of
regulatory heterogeneity during erythroid cell development.

Besides the existence of biochemical/signaling heterogeneity
within the developing erythroid precursors other aspects of
erythroid precursor heterogeneity have been observed especially
most recently due to the advancement of single-cell technologies
at both trascriptomic and phenotypic levels (Woll et al., 2014;
La Manno et al., 2018; Brierley and Mead, 2019). Within the
erythroid compartment especially during the early stages of
erythropoiesis a significant level of transcriptomic variability and
heterogeneity seem to exist at least based on mouse bone marrow
erythroid precursors (Tusi et al., 2018). The same study also
found that cell cycle in erythroid precursors are continuously
remodeled during the differentiation program but consistent
with very early studies using bulk erythroid precursors (CFU-
E), the vast majority of cells were in the S-phase of the cell cycle
(Iscove, 1977). These results demonstrate that an individual cell,

especially during development, has the ability to program itself to
act not in concert each other with respect to signal transduction,
gene transcription, cell cycle and many other aspects even though
morphologically a cell population may look alike at a particular
stage of differentiation.

Overall, accumulated data suggests that heterogeneity during
erythroid development may not be evenly spread during the
entire development cascade. Most data points to greatest
level of inter-cellular heterogeneity during the early phases of
development when these cells are responsive to various growth
factors. Beyond the late polychromatic stage, when the cells
have exited the cell cycle one observes less heterogeneity and
most cells undergo dramatic reduction in cell size, chromatin
condensation and enucleation. However, it is conceivable even
in the bone marrow niche within the blood island not all
erythroblasts undergo enucleation adding another layer of
heterogeneity. It is also conceivable that due to differing levels of
chemokine receptors on these cells the progenitors also exhibit
varying degrees of migration within the bone marrow niche.
Overall, it may seem the inter-cellular heterogeneity during
erythroid precursor development. Each cell is possessing different
sensitivity to EPO, and as a result a vast majority of precursors die
due to apoptosis, the strategy that seems quite wasteful. However,
we speculate that such heterogeneity is critical in order to respond
to rapid changes in the micro and macro environment such as
changes in oxygen concentration due to changes in altitude, pro-
inflammatory and oxidative stress conditions as well as sudden
blood loss due to trauma and onset of anemia due to renal failure.

Age of RBCs
Most of the findings for the age-related variance for RBCs of
healthy humans were obtained for the fractions of cells of low,
medium and high density, that were enriched with young, mature
and senescent cells, respectively (Mueller et al., 1985, 1987; Lutz
et al., 1992; Figure 1). Gradual changes occurring with cell aging
were described in several reviews (Lutz and Bogdanova, 2013;
Lew and Tiffert, 2017; Badior and Casey, 2018; Minetti et al.,
2018) and article collections (Beutler, 1988; Mangani, 1991), and
schematically represented in Figure 3.

Recent studies of the age-dependent changes in RBCs involve
single cell approaches such as flow cytometry and microscopy as
well as proteomics (D’Alessandro et al., 2013; Minetti et al., 2013).

Deamidation of asparagine residue 502 of the band 4.1 protein
was shown to occur gradually with RBC age as the deamidation
rate is an exclusive function of temperature and time (Inaba and
Maede, 1988, 1992). Deamidation is manifested as an appearance
of a double band on the gels as the native and deamidated form
of the protein differ in electrophoretic mobility of the protein.
Fractionation of RBCs of healthy humans according to their
density has shown that young cells have lower density than
mature cells. Senescence is associated with further increase in
RBC density and mean corpuscular hemoglobin concentration,
and reduction in RBC volume. Using the changes in deamidation
of band 4.1 protein or direct labeling of RBCs and monitoring of
their aging (Luthra et al., 1979), increase in density were revealed
as an intrinsic feature of in vivo aging of RBCs of healthy humans.
Dense cells obtained by fractionation of leukodepleted RBCs on
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FIGURE 3 | Selected parameters that change during RBC aging following
exponential or linear kinetics as cells turn from reticulocytes to mature cells
and finally enter the senescent stage. Percentage of reticulocytes, mature
cells, and dense senescent cells shown in the scheme correspond to those in
adult healthy donors. For more details see Lutz and Bogdanova (2013) and
the text.

Percoll density gradient were presented with substantially lower
GSH levels and GSSG levels that were doubled compared to
the mature RBCs, whereas ATP and NADPH levels were only
slightly reduced in the densest cell fractions (Sass et al., 1965;
D’Alessandro et al., 2013). These changes were associated with
the age-driven decrease in pyruvate kinase, hexokinase, glucose-
6-phosphate dehydrogenase, aldolase activities (Salvo et al., 1982;
Suzuki and Dale, 1988). Some of the terminally senescent RBCs,
that lose control over their Na+ gradients and volume regulation
due to the reduction in Na,K-ATPase activity, were reported to
swell and lyse (Lew and Tiffert, 2013, 2017).

Reports on the changes in free Ca2+ levels are controversial
and depend on the techniques used for assessment of these
parameters (Romero and Romero, 1997, 1999; Makhro et al.,
2013; Lew and Tiffert, 2017). Both Ca2+-permeable channel
activity and that of plasma membrane Ca2+ pumps decreases
with cellular aging (Romero et al., 2002; Makhro et al., 2013).
Despite this inconsistency, changes in the intracellular free
Ca2+ and the ability to maintain low levels of Ca2+ are the
factors in control of RBC longevity (Bogdanova et al., 2013;
Lew and Tiffert, 2017).

Further hallmarks of RBC aging include the changes in
phosphorylation pattern (Fairbanks et al., 1983) and membrane
loss (Mohandas and Groner, 1989).

Physical Activity, High Altitude, and
Other Stress Conditions
How substantial would the change be at the level of circulating
RBCs if the gene expression reprogramming occurs at the level
of precursor cells? Simple calculations assuming that the RBC
longevity is not affected by these changes and all cells are equally
affected by this change, gives a rough estimate of∼0.82% of RBC
population changing per day for the “normal” production rate

of 2.4 × 106 cells/s. If erythropoiesis is boosted to its maximum
(10-fold increase, 8.2% of new cells will appear daily (Elliott and
Molineux, 2009). This means that acute reversible changes at
the bone marrow level will hardly be noticed if stress conditions
persist for just 24 h. On the contrary, when stress conditions
boosting erythropoiesis persist for a week, 5.7–57% of cells will
get a new feature.

Such kinetics does not favor de novo production as an efficient
strategy for acute adaptation to hypoxia or single endurance
sport exercise bout, dietary changes, or to pathological conditions
such as infection or sepsis, cancer, diabetes, or cardiovascular
diseases (Figure 4). These changes in turn translate into the
changes in shear stress, oxygen availability, pH, hormones
and proinflammatory cytokines and other microenvironmental
factors sensed by RBC directly. Species that undergo such
acute changes from hyperoxygenation to severe hypoxia, such
as Rainbow trout (Oncorhynchus mykiss) (Fago et al., 2001)
or Rüppell’s griffon vulture (Gyps rueppelli). Rüppell’s griffon
vulture was spotted at 37,000 feet (11277.6 m) when colliding
with the plane (Laybourne, 1974) permanently possess several
hemoglobin variants. Hemoglobin A and D chains are present in
RBC vulture producing high and low affinity hemoglobin variants
and allowing these unique birds to fly above 10,000 m with no
need to engage any complex adaptive processes as they land
(Weber et al., 1988; Hiebl et al., 1989).

Adult humans have by far lower adaptive capacity, possessing
generally one Hb variant, HbA with some minor additions of
HbF. However, plasticity of O2 delivery, and its fast on-demand
optimization upon the changes in environmental O2 availability
may be associated with other types of heterogeneity in RBC
structure and function. Potential adaptive role of variance in RBC
properties has to be further explored.

FIGURE 4 | Summary on the environmental causes imposing heterogeneity of
circulating RBCs. Exposure of the organism to high altitude or practicing
endurance sport as well as dietary preferences cause durable or acute impact
on the RBC properties. Along with RBC diseases (anemia, polycythemia),
pathologies such as hypertension, diabetes, infection, trauma, cancer, and
further systemic diseases are influencing both erythropoietic niche and the
circulating cells. All these macroenvironmental stresses translated into the
changes in microenvironment for erythroid precursors and circulating RBCs.
Shear, alterations in pH and oxygen levels, proinflammatory cytokines, and
hormones, as well as drugs work to shape the features of each individual RBC
resulting in an increase in the inter-cellular heterogeneity.

Frontiers in Physiology | www.frontiersin.org 7 May 2020 | Volume 11 | Article 392

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00392 May 5, 2020 Time: 18:35 # 8

Bogdanova et al. Heterogeneity of Red Blood Cells

It is largely accepted that multiple forms of pathologies,
both related to abnormal structure RBC membrane or cytosolic
proteins and lipids, as well as systemic disorders such as cancer,
diabetes, cardiovascular diseases, sepsis and other diseases of
inflammation are associated with anemia, RBC damage and their
premature removal from the circulation and increase in their
heterogeneity (e.g., Salvagno et al., 2015; Feng et al., 2017; Ahmad
et al., 2018; Ko et al., 2018; Yin et al., 2018; Parizadeh et al.,
2019; Wang et al., 2019). The causes and consequences as well as
predictive power of this increase in variability of RBC properties
is out of the scope of this review but deserve special attention.

SUMMARY AND THE STANDING
CHALLENGES

The present collection of information on the possible causes
and consequences of inter-cellular heterogeneity justifies the
increasing attention of researchers to the RBC sub-populations
and individual cells. It appears that vast amount of information
on the near and distant (within months) past is lost when
RBC properties are reduced to a set of single “mean” values.
This information appears to be of substantial importance when

severity of disease or efficacy of therapy are to be assessed for
individual patients. At present we do not have the commercially
available and standardized methodologies and machines to be
able to compare the data obtained of the single cell features
in different labs. These challenges are already addressed by
some researchers and will drive the transformation of our
understanding of red blood cell biology in the nearest future.
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