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Abstract

The two-parameter of exponentiated Gumbel distribution is an important lifetime distribution

in survival analysis. This paper investigates the estimation of the parameters of this distribu-

tion by using lower records values. The maximum likelihood estimator (MLE) procedure of

the parameters is considered, and the Fisher information matrix of the unknown parameters

is used to construct asymptotic confidence intervals. Bayes estimator of the parameters and

the corresponding credible intervals are obtained by using the Gibbs sampling technique.

Two real data set is provided to illustrate the proposed methods.

1 Introduction

In engineering applications, a system may be subjected to several stresses such as extreme tem-

perature and pressure. The survival and performance of such systems strongly depend on their

resistance strength. The models which try to measure this resistance are called stress-strength

models, and in the simplest terms, it can be described as an evaluation of the experienced ran-

dom “stress” (Y) and the available “strength” (X) which overcomes the stress. This simple

explanation induces the definition of the reliability of a system as the probability that the sys-

tem is strong enough to overcome the stress that it is subjected to. Therefore, the reliability

parameter could be defined as R = P(X>Y).

The estimation of the reliability parameter has extensive literature. It has been studied

under different assumptions over the distribution of X and Y. [1] studied the ML estimation of

R under the assumption that the stress and strength variables follow a bivariate exponential

distribution. By considering a multivariate normal distribution, the MLE has been studied by

[2]. The estimation of R, when the distribution is Weibull, were considered by [3]. See [4] and

references therein for more details, works on the estimation of R and its applications. In some

recent works [5], estimated R under the assumption that the stress and strength variables are

independent and follow a generalized exponential distribution. [6] considered the estimation

of R, when X and Y are independent, and both follow a three parameter Weibull distributions.

Some other applications of the stress and strength models in the framework of transportation

problems, which were estimated by ML methods, include [7–9]. Other engineer applications

of these methods, which were applied in the Bayesian framework, could be found at [10–12].
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This is an open access article distributed under the

terms of the Creative Commons Attribution

License, which permits unrestricted use,

distribution, and reproduction in any medium,

provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

https://orcid.org/0000-0002-9548-6028
https://doi.org/10.1371/journal.pone.0249028
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249028&domain=pdf&date_stamp=2021-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249028&domain=pdf&date_stamp=2021-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249028&domain=pdf&date_stamp=2021-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249028&domain=pdf&date_stamp=2021-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249028&domain=pdf&date_stamp=2021-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249028&domain=pdf&date_stamp=2021-04-02
https://doi.org/10.1371/journal.pone.0249028
https://doi.org/10.1371/journal.pone.0249028
https://doi.org/10.1371/journal.pone.0249028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


The only difference in the above-mentioned works was the different distributions which

the authors have been chosen for the random quantities. In some situations, one could not

obtain the complete data and have to consider certain sampling schemes in order to get incom-

plete data for X and Y. [13–15] have been studied the problem of making inference on R based

on progressively Type II censored data. [16], based on the record data, by considering one

parameter generalized exponential distribution, has been studied ML and Bayesian estimation

of R.

Another type of incomplete data is record values which usually appear in many real-life

applications. Record values arise in climatology, sports, business, medicine, industry, and life

testing surveys, among others. These records are commemorating over the period of the time

that have been studied. The history of records may show the advancement in science and tech-

nology. By considering the record values in various areas of humankind activities, we can eval-

uate the performance of the societies. In 1952, [17] introduced the distribution of record

values into the statistical world. After six decades of his original work, hundreds of papers

were devoted to various aspects of the record’s theory. He provided a foundation for a mathe-

matical theory of records. He defined the record values as consecutive extremes appearing in a

sequence of independent identically distributed (i.i.d.) random variables. These smallest or

largest occurred values are called “lower” or “upper” record values, respectively. Let X1,. . .,Xn

be a sequence of i.i.d. continuous random variables with a cumulative distribution function

(CDF) F(x) and its corresponding probability density function (PDF) f(x). For every positive

integer k�1, the sequence of kth lower record times, {L(k), k�1}, is defined as follows

Lð1Þ ¼ 1; Lðkþ 1Þ ¼ minfjjj > LðkÞ;Xj < XLðkÞg: ð1Þ

Then the kth lower record value will be denoted by XL(k) and the sequence {XL(k), L(k)�1} is

called the lower record values. For the sake of simplicity, from now on, we shall refer to XL(k)

as Xk. As mentioned before, the record values have many applications in industry and engi-

neering. Consider an electronic system that is subject to some shocks like low or high voltage

in which both are dangerous for its predefined performance. These shocks could be considered

as realizations of i.i.d. variable, and then one can use the record values models to study them.

We refer the readers to [18, 19] for more details on the record values and their applications.

The Gumbel distribution is a well-known and popular model due to its wide application in

climatology, global warming problems, wind speed, and rainfall modeling, among others. The

book of [20] has an extensive list of applications of the Gumbel distribution in various fields of

science. [21] has generalized this distribution by exponentiating, in the form of F(x;α) = 1−[1

−G(x)]α, where G(x) is the Gumbel density and a>0. Note that exponentiating the standard

probability distributions cloud solves the problem of lack of fits that arise when using these dis-

tributions for modeling complex data [22]. They showed the power and ability of this general-

ized distribution in modeling the climatology data by applying it on rainfall data from

Orlando, Florida.

In this work, we use a slightly different way to define the exponentiated distributions, i.e., F
(x;α) = [G(x)]α, which are called the proportional reversed hazard rate models [23]. The ran-

dom variable X follows the two-parameter Exponentiated Gumbel distribution if it has the fol-

lowing CDF

Fðx; a; lÞ ¼ e� ae� lx ; � 1 < x < þ1 ð2Þ
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where α>0 and λ>0. The PDF corresponding to the CDF (2) is

f ðx; a; lÞ ¼ ale� lxe� ae� lx ; � 1 < x < þ1: ð3Þ

Here α and λ are the shape and scale parameters, respectively. We will denote this distribu-

tion by EG(α,λ).

2 Maximum likelihood estimation

In this section, we consider the maximum likelihood estimation of R = P(X>Y) when X~EG
(α,λ) and Y~EG(β,λ), and X and Y are independently distributed. Formal integration shows

that

R ¼ P X > Yð Þ ¼

Z 1

� 1

Z x

� 1

abl
2e� lxe� ae� lx e� lye� be� lydy dx ¼

a

aþ b
: ð4Þ

Let X1,X2,. . .,Xn and Y1,Y2,. . .,Ym be two independent sets of the lower records from EG(α,

λ) and EG(β,σ), respectively. Therefore, the likelihood function of parameters becomes (see

[19])

L a; b; lð Þ ¼ f ðxn; a; lÞ
Yn� 1

k¼1

f ðxk; a; lÞ
Fðxk; a; lÞ

" #

f ðym; b; lÞ
Ym� 1

j¼1

f ðyj; b; lÞ
Fðyj; b; lÞ

" #

From (2) and (3) the likelihood function is obtained as

Lða; b; lÞ ¼ anbm
l
ðmþnÞexp � l

Xn

k¼1

xk þ
Xm

j¼1

yj

 !

� ae� lxn � be� lym
( )

:

The log likelihood function is given by

‘ða; b; lÞ ¼ nlnaþmlnbþ ðmþ nÞlnl � l
Xn

k¼1

xk þ
Xm

j¼1

yj

 !

� ae� lxn � be� lym :

Then, the likelihood equations will be

@‘

@a
¼

n
a
� e� lxn ¼ 0 ð5Þ

@‘

@b
¼

n
b
� e� lym ¼ 0 ð6Þ

@‘

@l
¼

nþm
l
�
Pn

k¼1
xk �

Pm
j¼1

yj þ axne
� lxn þ byme

� lym ¼ 0 ð7Þ

From above equations, we get

l̂ ¼
nþm

nð�x � xnÞ þmð�y � ymÞ
; â ¼ nel̂xn ; b̂ ¼ mel̂ym : ð8Þ

Note that l̂ is the harmonic mean of l̂1 ¼ 1=ð�x � xnÞ and l̂2 ¼ 1=ð�y � ymÞ, which are the

MLEs of independent samples of sizes n and m, respectively.
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Therefore, by applying the invariant property of ML estimators, the ML estimation of R will

be

R̂ ¼
â

â þ b̂
: ð9Þ

In this section, we obtain the Fisher information matrix of the unknown parameters of EG

distribution, which can be used to construct asymptotic confidence intervals.

[19] showed that the PDF of the sth lower record, Xs, is given by

fXs
xð Þ ¼

f ðxÞ½� lnFðxÞ�s� 1

GðsÞ
¼

1

GðsÞ
asle� slx� ae� lx ; x 2 R:

Therefore, the Fisher information matrix of θ = (α,β,λ) will be

I θð Þ ¼ �

E
@2‘

@a2

� �

E
@2‘

@a@b

� �

E
@2‘

@a@l

� �

E
@2‘

@b@a

� �

E
@2‘

@b
2

� �

E
@2‘

@b@l

� �

E
@2‘

@l@a

� �

E
@2‘

@l@b

� �

E
@2‘

@l
2

� �

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

where

I11 ¼
n
a2
; I12 ¼ I21 ¼ 0; I13 ¼ I31 ¼

n
al

cðnþ 1Þ � lnað Þ; I22 ¼
m
b

2
;

I23 ¼ I32 ¼
m
bl

cðmþ 1Þ � lnbð Þ;

I33 ¼
mþ n
l

2
þ

n
l

2
c
0
ðnþ 1Þ þ ðcðnþ 1Þ � lnaÞ2

� �
þ

m
l

2
c
0
ðmþ 1Þ þ ðcðmþ 1Þ � lnbÞ2

� �
:

The asymptotic covariance matrix of the ML estimators could be achieved via inverting the

Fisher information matrix as following

I� 1 θð Þ ¼ U θð Þ ¼
1

detðIðθÞÞ

I22I33 � I2
23

I13I32 � I13I22

I23I31 I11I33 � I2
13
� I11I23

� I22I31 � I11I32 I11I22

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;

where

detðIðθÞÞ ¼ I11I22I33 � I11I
2

23
� I22I

2

13
:

Now, by using the delta method, the asymptotic variance of R̂ could be obtained as follows.

VðR̂Þ ¼ CTUC;

where CT ¼ @R
@a
; @R
@b
; @R
@l

� �
¼ 1

ðaþbÞ2
b; � a; 0ð Þ.

PLOS ONE Stress-strength reliability for two-parameter of exponentiated Gumbel distribution

PLOS ONE | https://doi.org/10.1371/journal.pone.0249028 April 2, 2021 4 / 12

https://doi.org/10.1371/journal.pone.0249028


Note that theVðR̂Þ is a function of unknown parameters, and it needs to be estimated. It

can be done by plunging the ML estimators of the parameters. Therefore, the (1−γ)% asymp-

totic confidence intervals of R will be in the form of R̂ � z1� g=2

ffiffiffiffiffiffiffi
VðR̂Þ
p

ffiffi
n
p .

3 Bayesian estimation

In this section, we attempt to find the Bayes estimator of the parameters. To do so, we consider

that the parameters are apriori independent, and they follow gamma distributions, i.e.,

α~Gamma(a1,b1), β~Gamma(a2,b2), and λ~Gamma(a3,b3). Therefore, the full posterior distri-

bution of the parameters will be

pða; b; ljdataÞ / anbm
l
ðmþnÞexpf� lð

Pn
k¼1

xk þ
Pm

j¼1
yjÞ � ae

� lxn � be� lymg ð10Þ

�aa1 � 1e� b1ab
a2 � 1e� b2bl

a3� 1e� b3l ð11Þ

The above posterior does not admit a closed-form and cannot be used directly in the esti-

mation procedure. Then to simulate a random sample from such distributions and perform an

approximated inference, the Gibbs sampler could be used. The full conditional distributions of

the parameters are as follows:

ajb; l; dataÞ � Gammaðnþ a1; b1 þ e� lxnÞ;

bja; l; dataÞ � Gammaðmþ a2; b2 þ e� lymÞ;

pðlja; b; dataÞ / lmþnþa3 � 1expf� lðb3 þ n�x þm�yÞ � ae� lxn � be� lymg:

As π(λ|α,β,data) does not have a closed and standard form, one could not produce a sample

from this density using direct methods. The Metropolis-Hastings algorithm is a method that

can be used to produce a sample from such distributions. As shown in Fig 1, the normal distri-

bution could be a good candidate for the proposal distribution of the Metropolis-Hastings

algorithm. Therefore, the algorithm of Gibbs sampling is as follows.

• Step 1: Start with an initial value λ(0).

• Step 2: Set t = 1.

• Step 3: Generate α(t) from Gammaðnþ a1; b1 þ e� lðt� 1ÞxnÞ.

• Step 4: Generate β(t) from Gammaðmþ a2; b2 þ e� lðt� 1ÞymÞ;.

• Step 5: Use the Metropolis-Hastings algorithm to generate λ(t) from π(λ|α(t−1),β(t−1),data) by

using the Nðlðt� 1Þ
; s2

0
Þ as a proposal distribution.

• Step 5.1: Generate candidate points λ� from Nðlðt� 1Þ
; s2

0
Þ and u from Uð0; 1Þ.
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• Step 5.2: Set λ(t) = λ� if u�ρ(λ(t−1),λ�) and λ(t) = λ(t−1) otherwise, when the acceptance prob-

ability is given by ρ(λ(t−1),λ�) = min{1,A}, and the acceptance rate is given by

A ¼
pðl

�
jaðtÞ; b

ðtÞ
; dataÞ

pðl
ðt� 1Þ
jaðtÞ; b

ðtÞ
; dataÞ

:
Nðlðt� 1Þ

jl
�
; s2

0
Þ

Nðl�jlðt� 1Þ
; s2

0
Þ

¼
pðl

�
jaðtÞ; b

ðtÞ
; dataÞ

pðl
ðt� 1Þ
jaðtÞ; b

ðtÞ
; dataÞ

:

• Step 6: Set t = t+1.

• Step 7: Repeat steps 3–6, T times.

Fig 1. Proposal and posterior density functions of scale parameter.

https://doi.org/10.1371/journal.pone.0249028.g001
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Once we get a sample from the posteriors, the approximate posterior mean of R, and its var-

iance could be computed as following

Ê Rjdatað Þ ¼
1

T � K

XT

t¼Kþ1

RðtÞ ¼
1

T � K

XT

t¼Kþ1

aðtÞ

aðtÞ þ b
ðtÞ

and

V̂ar Rjdatað Þ ¼
1

T � K

XT

t¼Kþ1

ðRðtÞ � ÊðRjdataÞÞ2

where K is the burn-in period of the chain, which helps to vanish the effect of the starting val-

ues of the generated Markov chain.

The approximate highest posterior density (HPD) credible interval of R could be con-

structed using the method proposed in [24].

Let R(K+1)<R(K+2)<� � �<R(T) be the ordered output of the chain, R(t). To construct a 100(1

−γ)% approximate HPD credible interval for R, we consider the following intervals,

fðRðKþ1Þ;R½ðð1� gÞTÞ�Þ; ðRðKþ2Þ;R½ðð1� gÞTþ1Þ�Þ; . . . ; ðR½ðKþgTÞ�;RðTÞÞg;

by choosing the interval with the shortest length, we obtain the HPD credible intervals.

4 Inference on R when λ is known

As we show in section 2, the ML estimation of λ does not depend on the value of other parame-

ters; therefore, by plunging the MLE of λ, one can assume that the model contains only two

parameters. This assumption makes the procedure of inference easier and straightforward. In

other words, we can assume that λ is known, and without loss of generality, we set λ = 1.

4.1 MLE of R
As mentioned in section 2, the ML estimator of R is

R̂ ¼
â

â þ b̂
¼

neXn

neXn þmeYm
: ð12Þ

By straight computation, one can see that

2a e� Xn � w2

2n and 2b e� Ym � w2

2m ð13Þ

By considering (13), and the fact that Xn and Ym are independent, one can show that

R
1 � R

:
1 � R̂
R̂
� F2n;2m:

Therefore, the 100(1−γ)% confidence interval for R could be obtained as

1

1þ m eYm
n eXn F1�

g
2
;2m;2n

;
1

1þ m eYm
n eXn Fg

2
;2m;2n

;

 !

ð14Þ

where Fg;d1 ;d2
is the 100γth percentile of the Fisher distribution with d1 and d2 degrees of

freedom.
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4.2 Bayesian estimation

Since we assumed that the parameters are apriori independent with gamma density, the poste-

rior density of α and β are independent Gammaða1 þ n; b1 þ e� xnÞ and

Gammaða2 þm; b2 þ e� ymÞ, respectively. Therefore, the posterior distribution of R will be

pðRjdataÞ ¼ c:ra1þn� 1ð1 � rÞa2þm� 1
ð1 � zrÞ� ða1þa2þnþmÞ; 0 < r < 1; ð15Þ

where

c ¼
Gða1 þ a2 þ nþmÞ
Gða1 þ nÞGða2 þmÞ

:
b1 þ e� xn
b2 þ e� ym

� �a1þn

and z ¼ 1 �
b1 þ e� xn
b2 þ e� ym

: ð16Þ

The Bayesian estimation is based on the obtained posterior distribution. According to the

assumed loss function, various aspects of the posterior distribution, such as the mean, median,

etc., can be used to estimate the parameters. See [25, 26] for more details. By assuming the qua-

dratic loss function, the Bayesian estimation will be the posterior mean which could be com-

puted by considering the following well-known equation

Bðb; c � bÞ2F1ða; b; c; zÞ ¼
Z 1

0

xb� 1ð1 � xÞc� b� 1
ð1 � zxÞ� adx c > b > 0; ð17Þ

in which B(b,c−b) and 2F1(a,b; c; z) are beta and hypergeometric functions, receptively.There-

fore, the Bayesian estimation of R is

R̂Bayes ¼ EðRjdataÞ ð18Þ

¼
Gða1 þ a2 þ nþmÞ
Gða1 þ nÞGða2 þmÞ

:
b1 þ e� xn
b2 þ e� ym

� �a1þn

B a1 þ nþ 1; a2 þmð Þ

�2F1 a1 þ a2 þ nþm; a1 þ nþ 1; a1 þ a2 þ nþmþ 1; 1 �
b1 þ e� xn
b2 þ e� ym

� �

:

The variance of the Bayesian estimator could be achieved by using

E R2jdatað Þ ¼
Gða1 þ a2 þ nþmÞ
Gða1 þ nÞGða2 þmÞ

:
b1 þ e� xn
b2 þ e� ym

� �a1þn

B a1 þ nþ 2; a2 þmð Þ

�2F1 a1 þ a2 þ nþm; a1 þ nþ 2; a1 þ a2 þ nþmþ 2; 1 �
b1 þ e� xn
b2 þ e� ym

� �

:

To construct the HPD intervals, as the posterior is not tractable, we can generate a sample

from the posterior by using an indirect sampling algorithm, such as the accept-reject method.

4.3 Real data analysis

In this section, we analyze a set of real strength data, which were taken from ([27], p. 574).

These data are originally from [28], which represent the lifetimes of steel specimens tested at

14 different stress magnitudes. Here, we pick up the dataset corresponding to 35.0 and 35.5

stress levels as Dataset 1 (x) and Dataset 2 (y) in Table 1, respectively.

We fitted the EG distribution models for two datasets separately and estimated the scale

and shape parameters. The Kolmogorov-Smirnov (K-S) goodness of fit test was applied on the

datasets. The reported results in Table 2 confirm the well-fitting of the EG distribution to
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model these data. Moreover, Figs 2 and 3 confirm the appropriate fit of the EG distribution by

comparing the empirical and fitted distributions for both datasets.

Now we can use the lower records based on the datasets to drive the ML and Bayesian esti-

mation of parameters. These records for Dataset 1 are 230,169,129,115 and based on Dataset 2

are 156, 125, 112. The corresponding results for ML methods are reported in Table 2. Accord-

ing to this table, it is clear that the scale parameters of the two data sets are almost the same. By

assuming equality of the scale parameter, the MLE and the 95% confidence interval of R based

on lower records values become 0.5927 and (0.4117,0.7737), respectively. Also, by using Gibs

Table 1. The real datasets which were reported in Lawless (2011) [27].

Dataset 1 (x) Dataset 2 (y)

230 169 178 271 129 156 173 125 852 559

568 115 280 305 326 442 168 286 261 227

1101 285 734 177 493 285 253 166 133 309

218 342 431 143 381 247 112 202 365 702

Dataset 1 (x) and Dataset 2 (y) correspond to 35.0 and 35.5 stress level, respectively.

https://doi.org/10.1371/journal.pone.0249028.t001

Table 2. The Kolmogorov-Smirnov test output for real datasets.

Dataset Scale Shape K-S p-value

1 0.0071 5.9717 0.1137 0.9326

2 0.0085 6.5564 0.1408 0.7726

https://doi.org/10.1371/journal.pone.0249028.t002

Fig 2. Empirical and fitted CDFs for Dataset 1.

https://doi.org/10.1371/journal.pone.0249028.g002
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sampling the Bayes estimate and credible interval of R are 0.5893 and (0.4236,0.7641),

respectively.

5 Conclusion

In this paper, we investigated the estimation of the parameters of the two-parameter of expo-

nentiated Gumbel distribution by using lower records values. The maximum likelihood was

used to estimate the parameters of the models, and the Fisher information matrix of the

unknown parameters is used to construct asymptotic confidence intervals. Furthermore, the

Bayes estimator of the parameters and the corresponding credible intervals were obtained by

using the Gibbs sampling technique. The methods of estimating (ML and Bayes) were com-

pared via two real data set and showed that the Bayesian estimations are slightly different from

the ML ones.

Supporting information

S1 Dataset. Minimal dataset.

(DOCX)

Author Contributions

Supervision: Serpil Kılıç Depren.
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