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We propose a method for registration of 3D fetal brain ultrasound with a reconstructed magnetic reso-
nance fetal brain volume. This method, for the first time, allows the alignment of models of the fetal brain
built from magnetic resonance images with 3D fetal brain ultrasound, opening possibilities to develop
new, prior information based image analysis methods for 3D fetal neurosonography. The reconstructed
magnetic resonance volume is first segmented using a probabilistic atlas and a pseudo ultrasound image
volume is simulated from the segmentation. This pseudo ultrasound image is then affinely aligned with
clinical ultrasound fetal brain volumes using a robust block-matching approach that can deal with inten-
sity artefacts and missing features in the ultrasound images. A qualitative and quantitative evaluation
demonstrates good performance of the method for our application, in comparison with other tested
approaches. The intensity average of 27 ultrasound images co-aligned with the pseudo ultrasound tem-
plate shows good correlation with anatomy of the fetal brain as seen in the reconstructed magnetic res-
onance image.

� 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

1.1. Motivation

Fetal ultrasound (US) is the imaging modality of choice in clin-
ical practice for assessing fetal development. Traditional methods
for assessment of fetal brain development rely on qualitative eval-
uation and manual measurements performed on 2D US scans,
where a pre-defined plane is manually selected by the sonogra-
pher, and several 2D measurements are taken to assess the size
of the fetal head and some brain structures (ISUOG, 2007). If a
brain abnormality is suspected, fetal magnetic resonance (MR)
imaging is often performed to confirm the finding. US does not al-
ways depict sufficient information about the structures within the
fetal brain, largely due to acoustic shadows caused by the fetal
skull, while MR imaging is unaffected by the presence of bone
(Pugash et al., 2008). Recent work, however, provides evidence that
in prospective studies fetal brain structures and anomalies can be
visualised correctly in 90% of the cases by experienced operators
with 3D US (Gandolfi Colleoni et al., 2012). 3D fetal neurosonogra-
phy is currently one of the most active research fields in obstetric
imaging.

Recently, large databases of longitudinal 3D neurosonography
scans are becoming available thanks to initiatives Intergrowth-
21st1 and Interbio-21st.2 The Intergrowth-21st consortium col-
lected several thousands of normal fetal US scans, including 3D
brain US, containing several thousands of subjects scanned at up
to six time-points during pregnancy, from eight different sites
around the world. This database is to serve for development of
new ‘‘prescriptive’’ standards describing normal fetal growth. The
aim of Interbio-21st study is to collect similarly large number of
fetal scans, to improve the phenotypic characterisation of the
intrauterine growth restriction/small for gestational age and pre-
term birth syndromes, so as to develop better strategies to correct
the short and long-term effects of an adverse intrauterine environ-
ment. To fully exploit this wealth of information, development of
tools for image analysis of fetal 3D US becomes of very high
importance.
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In this paper we propose a method for the alignment of fetal
brain 3D US and MR images, which will in future allow us to ex-
plore the idea, that models of brain anatomy build from more com-
plete MR images of fetal brain can be exploited to serve as prior
knowledge for automatic image analysis of fetal brain 3D US or
to assist in making clinical diagnosis from 3D fetal neurosonogra-
phy. Additionally, intra-subject alignment of fetal 3D US and MR
images can facilitate clinical studies to determine whether fusion
of information from fetal brain MR and US images could enhance
abnormality screening. It can also facilitate use of MR imaging
for validation of quantitative measurements performed using 3D
US.

1.2. Related work

To our knowledge there is no prior literature on registration of
fetal brain MR and US images, except for our recent works (Kuklis-
ova-Murgasova et al., 2012b,a) on which this paper builds. The
methods proposed in literature mostly focus on registration of
pre-operative MRI/CT and real-time US, usually aimed at adult or-
gans, such as brain, liver or heart (Roche et al., 2001; Penney et al.,
2004; Arbel et al., 2004; Blackall et al., 2005; Mellor and Brady,
2005; Zhang et al., 2007; Brooks et al., 2008; Wein et al., 2008;
Hu et al., 2009; Milko et al., 2009; King et al., 2009). The major
challenge in aligning MR (or CT) and US images is that there does
not exist a simple intensity mapping between the two modalities.
Authors therefore employ various strategies to extract correspond-
ing features from both modalities such as gradient magnitude
(Roche et al., 2001; Brooks et al., 2008), sheet-like features (Hu
et al., 2009), local phase (Mellor and Brady, 2005; Zhang et al.,
2007) or segmentation of different structures (Arbel et al., 2001;
Penney et al., 2004; Arbel et al., 2004; Blackall et al., 2005; Milko
et al., 2009; King et al., 2009). Wein et al. (2008) performs simula-
tion of US from CT of liver and registers simulated and real US
images.

Registration of brain MR and US images was previously pro-
posed for image guided neurosurgery in adults to non-rigidly cor-
rect for brain-shift during surgery (Arbel et al., 2001, 2004) as well
as for rigid alignment of adult or neonatal brains (Roche et al.,
2001; Ji et al., 2008; Mercier et al., 2012). Roche et al. (2001) sug-
gested to estimate a non-linear relationship between MR image
intensities and gradient magnitude, and US image intensities, using
generalised correlation ratio (CR) as a similarity measure. Arbel
et al. (2001, 2004) proposed to perform segmentation of the brain
MR image (MRI) followed by simulation of a pseudo US image
which is then non-rigidly registered with the US image using local
normalised cross-correlation (NCC) as a similarity measure. The ri-
gid alignment is performed by first aligning the MR image into the
patient space by manually selecting the landmark points in the MR
image and on the patient. The US images are then aligned with the
MRI using information from a tracker device. Arbel’s work was la-
ter extended by Mercier et al. (2012), who proposed to improve the
initial rigid alignment of pre-operative MRI with US using auto-
matic registration of pseudo US image with the real US image.
The authors show that this method improved the initial rigid align-
ment and also outperformed mutual-information-based automatic
alignment of original MRI and US, proposed by Ji et al. (2008).

US images contain intensity artefacts, such as acoustic shadows,
attenuation, and reverberations, which may negatively affect per-
formance of the registration methods. During cranial sonography
in adults and neonates, a sonographer can position the probe next
to the opening in the skull and thus avoid most artefacts which
cannot be avoided in fetal neurosonography. In fetal neurosonogra-
phy, on the other hand, the most pronounced artefacts appear due
to difficulties in positioning the probe and interference with
maternal tissues. These include shadows caused by presence of fe-
tal skull and reverberations – high signal corrupting the fetal brain
image, caused by multiple reflections of the US beam by fetal skull
and maternal tissues, resulting in missing features and variable
signal strength. Wein et al. (2008) suggested to estimate the atten-
uation and shadows from knowledge of physical properties of the
scanned organ. The method was developed for registration CT and
US images of liver and thus could take advantage of excellent vis-
ibility of bone in CT, creating ideal situation for estimation of shad-
ows. Additionally, the signal strength in CT can be directly related
to the acoustic impedance of the tissues. This property was also
exploited in their work for estimation of reflections of the US beam.
The echogeneity of different tissues, or speckle, however, cannot be
easily simulated from CT. Wein et al. (2008) therefore uses correla-
tion ratio to estimate functional relationship between regional ech-
ogeneity in US and CT signal, a similarity measure previously
proposed by Roche et al. (2001) for registration of adult and neona-
tal brain MRI and US during image-guided neurosurgery.

MRI, however, does not possess such favourable properties of
CT for simulation of US images and estimation of the artefacts.
Bone does not produce any MR signal and is therefore indistin-
guishable from the air or other tissues which appear dark. Addi-
tionally, the only partly calcified and not completely fused fetal
skull causes rather complex pattern of shadows and signal loss.
This, together with no currently existing models of developing fetal
skull which could be used as a prior knowledge, renders automatic
estimation of shadows (or reverberations) unfeasible at present.
Unlike the previously proposed methods, we will have to rely on
registration methodology robust towards missing features and
intensity artefacts in US images. We propose to employ robust
block-matching algorithm (Ourselin et al., 2001).

Another major challenge when aligning fetal brain MR and US
images is the choice of a suitable similarity measure. The relation-
ship between intensities in the fetal brain MR and US images is dif-
ficult to express. Features of the fetal brain visible in these
modalities in relation to the anatomy have been well described
in the clinical literature (Monteagudo and Timor-Tritsch, 2009;
Rutherford, 2009; Glenn, 2010). While MRI offers good contrast be-
tween soft tissues, especially white matter (WM), grey matter
(GM) and cerebro-spinal fluid (CSF), the WM-GM boundary does
not appear in US at all. Additionally, the anatomical structures that
dominate fetal US images, such as the choroid plexus, skull and falx
are relatively poorly defined in fetal MRI (see Section 2.1). One
strategy is to use simple multimodal similarity measure such as
normalised mutual information (e.g. Ji et al. (2008)). In this case
the similarity measure will match regional echogeneity of the US
image with the MR intensities of the tissues and high intensity sig-
nals at the boundaries of the structures, characteristic of US images
will be ignored. Mercier et al. (2012) showed that such approach
can be rather unstable, which is consistent with the results pre-
sented in our previous work (Kuklisova-Murgasova et al., 2012b).
Roche et al. (2001) proposed to include gradient of the MR image
in a generalised CR. Though gradient image would contain some
important features, such as brain surface, it would also include
WM/GM boundary which is not visible in fetal US.

Alternative multimodal approach is to use robust block-match-
ing algorithm with CR as a multimodal similarity measure (Ours-
elin et al., 2001). Our previous experiments (Kuklisova-
Murgasova et al., 2012a) demonstrated good performance of this
method, though we also showed that more tailored similarity mea-
sure can further improve the results.

Alternative to direct multimodal registration is simulation of
the US from MRI followed by mono-modal registration. As we al-
ready argued, realistic simulation of fetal brain US from MRI is cur-
rently unfeasible, but the main features of fetal brain US can be
created from segmented MRI and converted to a pseudo US image,
as proposed by Arbel et al. (2001, 2004) and Mercier et al. (2012)



Fig. 1. Overview of the proposed method.
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for adult brain in context of computer assisted neurosurgery.
Though this approach requires segmentation of the brain struc-
tures in MRI, which results in more complex pipeline of methods,
pseudo US image offers better correspondences for matching with
US than original MRI (Mercier et al., 2012; Kuklisova-Murgasova
et al., 2012b,a). Building on the knowledge of how fetal anatomy
typically appears in MRI and US (Monteagudo and Timor-Tritsch,
2009; Rutherford, 2009; Glenn, 2010), we are able to propose a
similar pseudo US image construction for fetal brain MRI. By care-
ful comparison of fetal brain MRI and US, we selected a set of struc-
tures important to be segmented for our task. This set is different
from those chosen by Arbel or Mercier, as it includes some addi-
tional structures such as skull, falx, choroid plexus, brainstem
and cerebellum. Segmentation of brain structures in fetuses and
pre-term neonates has been previously described by several
authors (Habas et al., 2010; Kuklisova-Murgasova et al., 2011a;
Serag et al., 2012). To create the pseudo US image we need to ex-
tend this methodology to non-brain structures that form important
landmarks in fetal brain US and help us to construct a more realis-
tic pseudo US image. Our pseudo US image is independent of the
position of the probe, unlike the one proposed in the work of Arbel,
which makes the application of the method simpler in the cases
like ours, where one of the goals is to process a large database of
fetal US scans and recovering position of the probe might prove a
rather difficult task.

The final consideration needs to be given to the registration
algorithm. During image-guided neurosurgery, the rigid alignment
of MR and US images is usually assisted using a tracking device.
This information is not available in our database of fetal US. During
fetal scanning, the sonographer attempts to acquire the 3D scan in
consistent orientation with respect to the fetal brain. This can only
be achieved with variable accuracy, depending on the position of
the fetus. We observed that in our dataset used for evaluation,
automatically recovered transformations contained rotations of
up to 30� compared to the position of the template MRI. As we
demonstrate in this paper, employing a block-matching algorithm
(Ourselin et al., 2001), as opposed to registration using gradient
descent optimisation, proves essential for a robust performance
at this task.

1.3. The proposed method

In this paper we propose a method for the alignment of fetal
brain US and MR volumes, designed to resolve the difficulties de-
scribed in the previous section. We present a complete pipeline
which successfully fulfils this task, by putting together building
blocks of recently developed state-of-the-art methodology of fetal
imaging, namely 3D US imaging of the fetal brain, structural MR
imaging of the fetal brain, and reconstruction of fetal MRI volumes,
with carefully chosen image analysis methodology for segmenta-
tion of fetal brain structures in MRI using fetal/pre-term brain at-
lases, and registration using a robust block-matching algorithm.

High-resolution fetal brain MRI is first reconstructed from thin-
slice acquisitions using our previously proposed method (Kuklis-
ova-Murgasova et al., 2012c), see Section 2.2. The structures se-
lected in Section 2.1 are then segmented in MRI. The brain
structures are segmented using EM-based method and a probabi-
listic atlas (Kuklisova-Murgasova et al., 2011a), see Section 2.3,
which is followed by segmentation of non-brain structures (Sec-
tion 2.4). Though the segmentation of an MR template includes
some manual steps, this needs to be done only once and the addi-
tional MR images can be segmented using fully automatic pipeline
presented in Section 2.5. Segmentation of brain and non-brain
structures is then converted into the pseudo US image, as de-
scribed in Section 2.6. In this paper we use the term pseudo US im-
age to refer to an image containing anatomical brain and head
structures typically visible in fetal US but without speckle and arte-
facts such as shadows, attenuation and intensity variations due to
angle of the ultrasound beam. This pseudo US image is then regis-
tered to the fetal neurosonography (Section 2.7), using robust
block-matching algorithm (Ourselin et al., 2001). Our experiments
presented in Sections 4 and 5 show good performance of the pro-
posed method in inter-subject alignment of clinical 3D neuroso-
nography images with fetal brain MRI. An overview of the
method is presented in Fig. 1.

The methodology and results described in this paper were
partly presented in our previous conference papers (Kuklisova-
Murgasova et al., 2012b,a). In the first paper (Kuklisova-Murgasova
et al., 2012b) we presented the idea to convert fetal MRI into pseu-
do US image. The pseudo US image was then registered with real
US images using global NCC as a similarity measure and gradient
descent as optimisation method. Our preliminary results on four
US and one MR image of gestational age (GA) 28–29 weeks showed
that performance was superior to multi-modal registration using
NMI, conclusion similar to the one reached by Mercier et al.
(2012). In the second paper (Kuklisova-Murgasova et al., 2012a)
we described creation of pseudo US images at earlier GA (around
20 weeks) and improved robustness of the method by introducing
robust block-matching algorithm (Ourselin et al., 2001), which em-
ploys local NCC as a similarity measure to deal with intensity and
contrast variation and robust least trimmed squares to remove
outliers produced by incorrectly matched blocks, which is helpful
in situations when the corresponding features in US image is miss-
ing. We showed that this method performed better than multi-
modal block-matching with CR as a similarity measure. The
segmentation pipeline proposed in this previous work contained
some manual steps. In this paper we further develop this method
(Kuklisova-Murgasova et al., 2012a) by presenting a fully auto-
matic segmentation pipeline (Section 2.5) which has also been
quantitatively evaluated in Section 5.3. The method, originally ap-
plied to images of approximately 20 weeks GA, has now also been
applied to another time-point, approximately 29 weeks GA (Sec-
tion 5.4). In Section 5.2 we also show, that the proposed method,
registration using pseudo US image and block-matching algorithm
with local NCC as similarity measure, outperforms pseudo US im-
age-based methods with gradient descent optimisation and global
as well as local NCC as a similarity measure, for our fetal
application.
2. Methods

2.1. Features of fetal brain US and MRI

Alignment of fetal brain US and MRI requires a similarity mea-
sure describing the relationship between the structures visible in
these two modalities. However, fetal brain MRI and US often depict
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complementary features. The MR signal is related to intrinsic tissue
properties described by T1 and T2 relaxation times and usually of-
fers good contrast between WM, GM and CSF. The US signal, on the
other hand, is mainly created by the reflection of the acoustic beam
due to the difference in acoustic impedance between different tis-
sues, or the microstructure of the tissue. The features best detected
using US are often hard to detect on MRI, because of its lower spa-
tial resolution. Conversely, the WM-GM boundary does not appear
in US at all. The features of the two modalities are compared in
Fig. 2. To be able to correctly relate MR and US images, we create
a pseudo US image from an MR image. For this purpose we choose
the most pronounced features of a fetal brain depicted in 3D US
(Monteagudo and Timor-Tritsch, 2009):

1. the skull,
2. the falx (midline membrane separating the two halves of the

brain),
3. the brain surface,
4. the choroid plexus (located in the ventricles),
5. septi pellucidi (membranes separating ventricles),
6. cerebellum,
7. deep GM.

These anatomical structures are segmented in a fetal MRI and
the segmentation is then converted into a pseudo US image. The
features of the pseudo US image can then be correlated with the
features of the real US image using a standard similarity measure,
such as local NCC.

2.2. Reconstruction of fetal brain MRI

Fetal brain US often depicts structures that are difficult to visu-
alise on MRI (e.g. falx), thus a high resolution reconstruction of a
fetal brain MR image is essential for the creation of a pseudo US
image. The MRI volume is therefore reconstructed from thin-slice
data by iterating between a super-resolution reconstruction and
a slice-to-volume rigid registration using our previously developed
fetal MR reconstruction method (Kuklisova-Murgasova et al.,
2011b, 2012c). The similarity measure used for slice-to-volume
registration is normalised mutual information (Studholme et al.,
1999). Our super-resolution reconstruction is designed to deal
with the common artefacts of MR acquisition, namely exclusion
of motion-corrupted slices, intensity matching and bias field cor-
rection. The volume is obtained by iterative minimisation of the
following objective function:

X
j

wj y�j � ys
j

� �2
ð1Þ

where y�j denotes voxel intensities of scaled and bias-corrected ac-
quired slices, ys

j ¼
P

imijxi denotes voxel intensities of slices simu-
lated from the latest estimate of the volume with voxel intensities
Fig. 2. Features visible in fetal brain US in axial view: skull, cortical surface, midline (falx
in MRI (a) and in US (b). The MR and US images presented here are scans of different su
xi using the point-spread function of MR acquisition sampled into
values mij. The weights wi are obtained as posteriors of classification
of intensity errors between simulated and corrected acquired voxels
or slices into outliers and inliers using an EM algorithm (more spe-
cifically, wi is a product of the voxel and slice posteriors). The recon-
struction is regularized using edge-preserving smoothing
(Charbonnier et al., 1997). The reconstructed volume, scaling factors
and bias fields are estimated by minimising the objective function
(1) using gradient descent. A high signal to noise ratio was achieved
by carefully choosing the point-spread-function (PSF) to match the
real acquisition. The PSF is approximated by a 3D Gaussian with full
width at half maximum (FWHM) equal to slice thickness in
through-plane direction to approximate the slice selection profile
(truncated sinc function) and 1.2 � resolution for in-plane direction
to approximate the sinc function. The combination of this compre-
hensive and robust reconstruction method together with high sam-
pling and relatively small slice thickness of the acquired dataset
results in a high quality fetal head volume suitable for segmentation
of the structures visible in fetal US (illustrative examples are shown
in Figs. 2a and 5, top row).

2.3. Segmentation of brain structures in MRI template

A widely used approach for segmentation of brain structures is
the EM algorithm in combination with a probabilistic atlas (Leem-
put et al., 1999; Ashburner and Friston, 2005; Pohl et al., 2006).
This approach has been also successfully used for segmentation
of structures in the developing brain (Habas et al., 2010; Kuklis-
ova-Murgasova et al., 2011a; Serag et al., 2012). In this work we as-
sume that age-matched probability maps for six structures – WM,
cortex, deep GM, brainstem, cerebellum and CSF – are available to
perform EM classification.

We first upsample the reconstructed MRI into high resolution
(isotropic voxels with size 0.33 mm) to obtain a high resolution
segmentation. The probabilistic atlas is then aligned with the MR
image and used as a spatial prior for the segmentation. The MR im-
age is then segmented into 7 classes (white matter (WM), cortex,
deep grey matter (DGM), brainstem, cerebellum, cerebro-spinal
fluid (CSF) and background) using the EM algorithm (Leemput
et al., 1999), by iterating between equations

pik ¼
P x�i jlk;rk
� �

patlas
ikP

kP x�i jlk;rk
� �

patlas
ik

ð2Þ

lk ¼
P

ix
�
i pikP

ipik
ð3Þ

r2
k ¼

P
i x�i � lk

� �2pikP
ipik

ð4Þ

where x�i denotes bias-corrected voxel intensities, pik the posteriors,
and patlas

ik the priors from the probabilistic atlas. P x�i jlk;rk

� �
are like-

lihoods modelled by Gaussians with means lk and variances rk. The
), DGM, choroid plexus (CP) and septum pellucidum (SP). Positions of these features
bjects with similar GA.
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exception is the background class, where a mixture of two Gaussi-
ans is used to model the likelihood due to the presence of amniotic
fluid in the background. The bias field is also iteratively corrected
during segmentation. The posteriors, means and variances can be
used to model the estimate of the bias-free image with voxel inten-
sities ei ¼

P
k

pik
r2

k
lk=

P
k

pik
r2

k
(Leemput et al., 1999). The bias field can

then be estimated by comparing the image intensities to the esti-
mate followed by weighted Gaussian smoothing (Wells III et al.,
1996). Unlike previous approaches (Leemput et al., 1999; Wells III
et al., 1996), we avoid a logarithmic transformation of the intensi-
ties in the pre-processing step to make the bias field additive, and
work directly with a multiplicative bias field instead. At each itera-
tion we calculate the bias residual ri ¼ log x�i =ei

� �
. This is followed

by weighted Gaussian smoothing of the residual ri with weights
x�i
P

k
pik
r2

k
to calculate the bias field bn

i still present at the nth iteration.
The bias-corrected image is then updated as follows:
x�i
� �nþ1 ¼ x�i

� �n exp �bn
i

� �
.

Segmentation of the brain structures is further processed to ob-
tain the structures listed in Section 2.1. In fetal brain US, the brain
tissue (with exception of the corpus callosum) is clearly divided
into a right and left hemisphere. However, this is only partially vis-
ible on MRI due to its lower resolution and partial volume effects
along the midline. Therefore we artificially separate the WM seg-
mentation into two parts (by removing the voxels closer than
1.5 mm to the WM surface) and calculate distance transforms from
these two eroded WM components (cores). All the brain structures
(except for WM) are thus separated into right or left, depending on
their distance to the right or left WM core. The distances from both
cores are then regularized using Gaussian blurring (r = 10 mm).
Voxels with roughly the same distance from both cores (difference
in regularized distances less or equal to voxel size 0.33 mm) are re-
moved to simulate the presence of a small amount of CSF between
the right and left parts of the brain, as visible in US. Since the WM-
cortex boundary is not visible on fetal US, these two structures are
joined to create the segmentation of cortical hemispheres.

The appearance of the cerebellum in fetal US significantly
changes between 20 and 30 weeks GA (Timor-Tritsch et al.,
1996; Hashimoto et al., 2001). For younger fetuses, the cerebellum
does not appear as one homogeneous structure in US, but hypoe-
chogenic WM of cerebellar hemispheres can be distinguished from
hyperechogenic cerebellar cortex, see Fig. 5. By 30 weeks GA, how-
ever, the process of folding has already occurred in cerebellar
hemispheres. Because this folding is of a very small scale, the cer-
ebellum appears mainly bright on US images, with microstructure
recognisable on US but not on MRI due to its lower resolution. We
have therefore chosen to consider the cerebellum as a homoge-
neous structure for older fetuses. In younger fetuses, WM of cere-
bellar hemispheres has to be considered separately. We therefore
manually segmented the WM of cerebellar hemispheres in the
younger subject.

2.4. Segmentation of non-brain structures in MRI template

Some of the most echogenic landmarks in fetal US depict the
non-brain structures, especially the skull, choroid plexus, septi pel-
lucidi and membrane of the falx in the brain midline (see Figs. 2b
and 5b). These structures are usually not of interest in MR studies
and therefore not included in existing atlases and automatic seg-
mentations methods. However, they play an important role in
guiding the alignment of fetal brain US and MRI. We therefore per-
formed segmentation of these four structures in MRI.

Segmentation of the skull in MRI is difficult as it appears dark
and often borders other tissues also appearing dark on T2w MRI.
Additionally, the fetal skull is rather thin compared to the resolu-
tion during acquisition, making it difficult to delineate due to the
partial volume effect. The skull appears to closely follow the shape
of the brainmask, if extra-cerebral CSF is included (see Figs. 2a and
5a). We took advantage of this fact for initial estimation of the skull
segmentation in one subject. First we created the brain-mask by
joining automatic segmentations of five brain tissues and CSF. A
distance transform from this brain-mask was then calculated,
and it was visually determined that the voxels with distance up
to 2 mm could be labelled as the skull. The segmentation of the
skull was then manually corrected using the manual segmentation
tool provided in the IRTK package.3

The choroid plexus and septum pellucidum were segmented
manually in one MR scan. These, as well as the skull, were then
automatically transferred to new images using registration-based
segmentation.

The midline voxels were estimated automatically as described
in Section 2.3, and were added as another structure to simulate
the falx visible on fetal brain US.
2.5. Automatic segmentation of unseen MRI

After segmentation of one template MRI, the segmentation of
previously unseen MR images belonging to the same age-group
can be performed in fully automatic manner. The template MRI
is first registered to the unseen reconstructed MRI using non-rigid
B-spline registration (Rueckert et al., 1999) with final control point
spacing 5 mm. The segmentations of the six structures brain struc-
tures listed in Section 2.3 are transformed from the space template
to the space of the new subject, blurred and used as prior probabil-
ity maps for EM segmentation detailed in Section 2.3. The segmen-
tation of non-brain structures (choroid plexus, septi pellucidi and
skull) is simply transferred from the atlas using the estimated
non-rigid transformation. Finally, registration-based estimation of
midline is used to separate the WM into left and right hemisphere,
and segmentation of falx is performed by the procedure described
in Section 2.3.
2.6. Converting the segmentation into pseudo US image

US B-mode images are created by reflections at tissue interfaces
where the two tissues differ in acoustic impedances and speckle
patterns produced by interference of tissue microstructure with
the sound waves. These intensity patterns are further affected by
signal attenuation (or signal loss along the beam direction), shad-
ows, which occur when a beam is fully reflected by a strong reflec-
tor, and other artefacts such as reverberations. In this work we
assume that the fetal brain US is mainly composed of echogenicity
of the tissues and neglect the reflections at the tissue boundaries
and intensity artefacts. The visibility of the brain surface is also
due to a presence of a highly echogenic thin tissue layer (Monte-
agudo and Timor-Tritsch, 2009) not visible in MRI. We therefore
convert the segmentation to an artefact-free pseudo US image in
which each region of interest is assigned a uniform intensity repre-
senting the average echogenicity of this region. As it is not possible
to estimate speckle patterns from MR image, the speckle cannot be
used to guide the MR-US registration. We therefore did not include
a model of speckle in the pseudo US image, but rather smoothed US
images using Gaussian blurring with a small kernel. The pseudo US
image is then registered with a smoothed real US image using a
method robust to the artefacts and missing features (Section 2.7).

Due to the complex attenuation patterns of the fetal brain US
images (and its incomplete correction by the US machine), inten-
sity and contrast of the fetal brain US images varies according to
the spatial location. However, the order of brightness of different
structures in a local neighbourhood is always fixed, as documented

http://www.doc.ic.ac.uk/~dr/software
http://www.doc.ic.ac.uk/~dr/software
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in the clinical literature (Timor-Tritsch et al., 1996; Monteagudo
and Timor-Tritsch, 2009) and also observed by us. The local NCC
therefore seems to be the most suitable similarity measure for
matching US images. It follows that when constructing the pseudo
US image, the exact value of tissue intensity is not important, but
the correctness of the order of brightness is essential. The seg-
mented anatomical structures were assigned an empirically deter-
mined intensity value in order from brightest to darkest: 1. skull, 2.
choroid plexus, septi pellucidi and midline, 3. brain surface, 4. cer-
ebellum, 5. DGM and brainstem, 6. cerebral hemispheres. The
pseudo US image is shown in Fig. 4c.

2.7. Alignment of MRI and US

While a pseudo US image represents the ideal artefact-free US,
real clinical US images are affected by attenuation and shadows,
resulting in variable contrast and missing features. We therefore
employ a robust block-matching strategy (Ourselin et al., 2001),
which estimates a rigid or affine transformation by matching only
blocks which contain features, and the similarity of the images is
measured locally, between blocks, to make it independent of image
contrast.

The block-matching algorithm iteratively estimates the align-
ment T between two images by alternating between two steps.
In the first stage, for each block in the source image bi

S, the most
similar (homologous) block bj

T is found in the corresponding search
neighbourhood (determined by the latest estimate of the transfor-
mation T) in the target image. We use NCC to find the most similar
blocks, as the construction of the pseudo US image from MRI effec-
tively changes our registration problem from multi-modal to
mono-modal. NCC is calculated independently for each pair of
blocks, ensuring low sensitivity to intensity artefacts. The set of
vectors defined by centroids of the pairs of the homologous blocks
form a displacement field which is regularized in the second stage.
The blocks with variance smaller than a pre-defined threshold are
excluded in the first stage.

In the second stage, rigid or affine transformation is estimated
from the displacement field using least trimmed squared regres-
sion (LTS) proposed by Rousseeuw (1984):

T� ¼ arg min
T

Xh

1

k Ci
S þ dðiÞ

� �
� T Ci

S

h i
k2 ð5Þ

The LTS estimator reduces the influence of outliers by minimising
the sum of a given number (h) of smallest squared residuals. A
residual error is obtained as the difference between the displace-
ment di at centroid Ci

S and the one obtained by applying the esti-
mated transformation to it. Such robust estimation of the
transformation is essential to remove influence of displacements
for the source blocks which have no corresponding target block
due to missing features in the US images.

3. Implementation

3.1. The MR data and pseudo US image construction

The MR images4 were acquired at Hammersmith Hospital, Impe-
rial College London, on a Philips Achieva 1.5 T scanner with param-
eters TR = 15,000, TE = 140–180 and excitation pulse of 90 degrees.
The datasets consist of eight stacks of thin slices, with in-plane res-
olution 1.176 mm, the slice thickness 2.5 mm and slice overlap
1.25 mm. The images were reconstructed using the super-resolution
method proposed in our previous work (Kuklisova-Murgasova et al.,
4 We thank the Department of Neonatal Imaging, Imperial College London for
providing these datasets.
2011b, 2012c) into isotropic resolution 0.75 mm and the re-oriented
and re-sampled to resolution 0.33 mm. The reconstructed MRI is
shown in Figs. 2a and 5, top row.

We first segmented two MRI of single subjects with GA 23 and
28 weeks, which will also serve as templates for segmenting addi-
tional MR images. The EM segmentation of brain structures was
performed in a subject of 28 GA using the publicly available pre-
term neonatal probabilistic atlas5 (Kuklisova-Murgasova et al.,
2011a), for which the time-point 29 weeks GA was chosen. As cur-
rently there is no fetal atlas available to us with the structures we
need to segment, we used the segmentation of the older subject’s
MRI as a prior for the segmentation of the younger subject’s MRI.
The difference in shape and cortical folding for these GAs requires
a flexible non-rigid registration and for this we used B-spline regis-
tration (Rueckert et al., 1999) with final control point spacing
2.5 mm and normalised mutual information. We found that registra-
tion of a blurry probabilistic template with such resolution is unsta-
ble, but subject-to-subject registration across such age-range
produces good results for the kind of structures we are interested
in. The segmentation of the older subject was transferred to the
younger subject and used as a prior for the EM segmentation.

For the choroid plexus, septi pellucidi and skull, manual seg-
mentation of these structures in one subject was needed to serve
as a template for registration-based segmentation of these struc-
tures in MR scans. We manually segmented the choroid plexus
and septi pellucidi in the younger subject. In the same subject,
the skull was first automatically estimated using the approach pre-
sented in Section 2.4 followed by manual editing. The segmenta-
tions of these three structures were then transferred to the older
subject using the B-spline registration with final control point
spacing 2.5 mm. WM of cerebellar hemispheres was also manually
segmented in the younger subject, but its transfer to the older sub-
ject was not necessary, as the cerebellar hemispheres do not ap-
pear hypoechogenic by 28 weeks gestation any more.

The falx was automatically segmented in both images indepen-
dently using the approach described in Section 2.3.

To demonstrate the feasibility of fully automatic segmentation
of unseen MRI using constructed templates, another MR image of
fetal brain (22 weeks GA) was reconstructed and automatically
segmented using the pipeline described in Section 2.5.

The segmentations of MR images were then converted to pseu-
do US images, as described in Section 2.6. An example of a pseudo
US images is shown in Fig. 4c.

The complete (unoptimised for speed) segmentation and con-
version pipeline takes approximately 25 min on a regular PC with
Intel i7 3.4 GHz processor.
3.2. The US data and registration

The proposed registration method was applied to 27 US vol-
umes of the fetal head, with GA 18–22 weeks. Additionally it was
also tested on 7 US volumes with GA 28 weeks.6 Images were ac-
quired with a Philips machine using a 3D transabdominal probe with
mechanical steer (HD9 machine with V3-7 transducer or iU22 ma-
chine with V6-2 transducer). The acquired data were reconstructed
into volumes with isotropic resolution 0.33 mm.

The images were first manually re-oriented and scaled to a sim-
ilar size using a scaling factor derived from the age of the subject.
The block-matching algorithm was then used to align the pseudo
US image derived from the MR image with each US image. We
determined the rigid alignment first, followed by the affine align-
ment. The block-matching was applied in two resolution levels
5 http://www.brain-development.org.
6 We thank the Intergrowth-21st Consortium for providing the US images.

http://www.brain-development.org
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(isotropic voxel size 2 mm and 1 mm). We used blocks of 3 � 3 � 3
voxels and neighbourhoods with 7 voxels in each direction. The
variance threshold used to exclude blocks was 0.04 � intensity
range in the US images, while for pseudo US images all blocks with
non-zero variance were kept. The LTS transformation was esti-
mated using 75% of the displacements. The registration of pseudo
US image using block-matching method took approximately
1.25 min per subject on a regular PC with Intel i7 3.4 GHz proces-
sor, using Java implementation which has not been optimised for
speed.
4. Results

4.1. Visual inspection

Registrations of all 27 US images of the younger subjects with
the MR image of 23 weeks GA, as well as registrations of 7 US
images of GA 29 weeks with MRI of 28 GA were visually inspected
and we found that visually reasonable alignment was achieved in
all cases. An example of the alignment of the younger subjects with
the MRI of 23 weeks GA is shown in Fig. 3.

The alignment results of three US images with GA 29 weeks
with MRI with 28 GA are presented in Fig. 4. The figure depicts
the transventricular plane (ISUOG, 2007) in the pseudo US image
(Fig. 3c). This plane is often selected for clinical assessment of fetal
brain development. While before alignment the individual US vol-
umes show variable features in this plane (Fig. 3a), after the align-
ment all appear to show the transventricular plane. In this plane
CP, CSP and VC should be visible, while cerebellum should not ap-
pear in this view (ISUOG, 2007). To further illustrate the quality of
alignment, Fig. 5 presents the average of all 27 US volumes from
the younger dataset aligned with the younger MR template using
the estimated transformations.
Fig. 3. Alignment of a subject from the younger dataset with the MR template in transv
row: MR image. Middle row: US image aligned with the MR image. Bottom row: Superp
4.2. Qualitative evaluation of the younger dataset alignment

Alignment of the 27 US images with GA 18–22 weeks with the
MR image with GA 23 weeks is a challenging task, as the size and
shape of the brain changes rapidly at this GA. Example of such
change is deepening of the Sylvian fissure. We therefore performed
a detailed qualitative assessment of the affine alignment of these
US volumes with the MRI.

A senior neuroradiologist (GQ) and a senior obstetrician (AP),
evaluated the alignment. Six landmarks were chosen for qualita-
tive assessment, see Table 1. The clinicians assessed alignment of
each landmark by assigning them into one of the four categories:
Good, Acceptable, Unacceptable or Not visible. The decision was
reached by consensus agreement between both experts. The qual-
itative results for Corpus Callosum, Cerebellar Hemisphere and Ca-
vum Septum Pellucidum were excellent, with all except one
subject showing good alignment when the landmark was visible.
The alignment for the remaining one subject (which was different
for each landmark) was assessed as acceptable. The Sylvian fissure
and anterior lateral ventricle scored slightly less well, with 75% and
81% of subjects having good alignment. These two structures are
most affected by shape and location change between 18 and
23 weeks GA. In most cases, the MR image well predicted the loca-
tion of Sylvian fissure in the US subject at 23 weeks GA, in opinion
of both experts. The performance of the method was overall judged
as good by both experts.

5. Quantitative evaluation

The traditional approach for quantitative assessment of the
alignment is to use manually placed landmarks – the anatomical
location points which can be reliably identified in both source
and target image – and calculating the distance of these landmarks
after alignment. Such strategy has been also used in some of the
CT/MR-US registration works (e.g. Arbel et al., 2004; Wein et al.,
ersal (first column), coronal (second column) and sagittal (third column) view. Top
osition of the US image (rainbow colour-coding) over the MR image.



Fig. 4. A 2D view of 3D US of three fetuses with GA around 29 weeks before (a) and after (b) alignment with the MRI. After alignment the view shows the transventricular
plane in all three cases. Compare to pseudo US image (c). Note that CP, CSP and VC are visible, while cerebellum does not appear, as expected in transventricular plane.

Fig. 5. Axial, coronal and sagittal view of brain MRI of a fetus with GA 23 weeks (first row) and the average of the 27 fetal brain 3D US with GA 18–22 weeks, aligned with the
MRI.

Table 1
Qualitative assessment of MR-US alignment of six landmarks (Column 1) as observed in one of the standard views (Column 2). The table shows the number of subjects with
quality of alignment for each landmark assigned to one of the four categories (Columns 3–6).

Structure View Good Acceptable Unacceptable Not visible

Corpus callosum Sagittal 23 1 0 3
Cerebellar hemisphere Sagittal 26 1 0 0
Cerebellar hemisphere Axial 26 1 0 0
Cavum septum pellucidum Axial 26 1 0 0
Sylvian fissure Coronal 18 6 0 3
Anterior lateral ventricle Coronal 22 4 1 0
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2008). In the brain imaging community, however, the landmark
based evaluation approach is less frequently used due to the diffi-
culties in unambiguously defining anatomical landmarks on the
complex shape of the 3D brain. Consequently surrogate measures,
such as tissue/structure overlaps or similarity measures are com-
monly used. A recent paper by Rohlfing (2012) questioned the reli-
ability of these measures and concluded that only volume overlaps
of localised anatomical structures provide a reliable surrogate
measure of registration accuracy, as they can serve as an approxi-
mation of the landmark-based approach when the anatomical
landmark points cannot be reliably identified.
Reliable identification of anatomical locations in 3D US images
of fetal brain is further complicated by artefacts resulting from
shadows, reverberations and blurring caused by the anisotropic
point-spread function. Because of these limitations, four small re-
gions which can be relatively well identified in the fetal brain US
images were chosen and manually delineated in the younger data-
set (around 20 weeks GA), and their overlaps with the MRI seg-
mentation were used for evaluation. In the older dataset (around
29 weeks GA) such segmentations were not available, and we
therefore placed five landmarks in both the US and MR images of
the older dataset to quantitatively evaluate the alignment perfor-
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mance. While the regional overlaps in the younger dataset showed
adequate sensitivity to distinguish between the performances of
the different alignment methods investigated, for the landmark-
based approach used for the older dataset the intra-rater variabil-
ity of manual placement was not statistically significantly different
from differences in the automatic (performed by affine alignment
and transferring the landmarks from MRI) and manual landmark
placement.
Fig. 6. Average dice overlaps of manual segmentation of structures in the MR
template and 27 US images in the younger dataset, depending on the threshold
used during LTS optimisation.
5.1. Evaluation of younger dataset alignment

In each of the 27 ultrasound volumes, four small structures –
choroid plexus (CP), cavum septi pellucidi (CSP), posterior ventric-
ular cavity (VC) and cerebellar hemisphere (CH) – were manually
delineated by a clinical expert (RN). All these structures were also
delineated in the MR image. The average size of these structures as
estimated from the manual segmentations ranges between 0.2 and
1.1 cm3 after transfer to the space of the MR template (see Table 2,
first row). This can be compared to the size of the cranial cavity of
the MR template, with volume of 194 cm3. These structures are
therefore sufficiently localised for evaluation of registration accu-
racy. Due to the small size of these structures, the low flexibility
of the affine transformation, and inter-subject registration prob-
lem, we do not expect high Dice overlaps even for high quality
alignment.

To estimate the maximal possible average overlap for each of
these structures, we registered the manual segmentations of the
US images with the manual segmentation of the MR template
using label consistency as a similarity measure and gradient des-
cent as the optimisation method. The registrations were initialised
with the transformations estimated using the proposed method to
ensure full success rate of the gradient descent optimisation. The
second row of Table 2 shows that the estimated maximum ex-
pected average Dice overlaps range from 0.4 to 0.66. The third
row of Table 2 shows the Dice overlaps for our proposed method,
ranging from 0.43 to 0.58. We can conclude that the performance
of our proposed method reaches the estimated maximum possible
performance, by being very similar or even better for three out of
four structures, with some margin for improvement for the choroid
plexus. For all tested US scans, all four structures were overlapping
after the alignment using our proposed method. We can therefore
conclude, given the very small size of the delineated structures,
that none of the 27 registrations failed.

We also present another measure of accuracy of the registration
to quantitatively evaluate the geometric error. We calculated the
barycentres of the manual segmentations to approximate manual
placement of landmarks. Distances of these barycentres give an
estimate of the target registration error (TRE). We perform a simi-
lar experiment as for Dice overlaps to estimate the lower bound of
the TRE. The fourth and fifth row of Table 2 state the TRE for label-
consistency and our proposed method, respectively. While with la-
bel consistency we achieved a mean TRE (mTRE) over the four
landmarks of 2.04 mm, the proposed method gives only a slightly
larger mTRE of 2.36 mm.
Table 2
Evaluation of alignment using manual delineation of four small structures. The first row sho
The second row shows the average Dice overlaps and their standard deviations after re
similarity measure. The third row shows Dice overlaps after alignment using our pro
segmentations after alignment using label consistency and the proposed method, respecti

CP V

Structure volume 1.10 cm3 0
Dice overlaps using label consistency 0.66 ± 0.07 0
Dice overlaps using proposed method 0.58 ± 0.10 0
Distance of barycentres using label consistency 1.76 ± 0.95 1
Distance of barycentres using proposed method 2.38 ± 1.06 2
We further investigated the influence of the block-matching
parameters on the performance of the method. In our experiments
we found that varying the block-matching parameters resulted in
only a very minor variation of the performance. The influence of
the value for the threshold in the LTS optimisation on the perfor-
mance is presented in Fig. 6. Varying the LTS threshold resulted
in no statistically significant differences in performance if kept
within reasonable bounds, e.g. between 0.5 and 0.9. Setting this
threshold to value 1 (which is equivalent to replacing robust LTS
with standard least square optimisation), resulted in a drop in per-
formance, which was statistically significant for three out of four
structures and one of the registrations failed (three out of four
structures had a zero overlap). This suggests that excluding outlier
displacement is essential for achieving a good performance for the
method. We found that excluding blocks with small variance did
not result in statistically significant improvement of the perfor-
mance when the chosen threshold 0.75 was used for LTS. This is
most likely due to the effectiveness of the robust LTS optimisation,
which seems to be sufficient for exclusion of inconsistent displace-
ments assigned to blocks with missing features. Increasing the size
of the blocks from our chosen size 3 � 3 � 3 to values 5 � 5 � 5 or
7 � 7 � 7 did not result in statistically significant differences in
performance, however the average Dice overlaps dropped slightly
for three out of four structures and the computational time in-
creased. These results show the stability of the registration method
with respect to the block-matching parameters and confirm the
suitability of the parameter choice as presented in Section 3.2.
5.2. Quantitative comparison with direct multi-modal and other
pseudo US image based registration methods

To demonstrate that converting MRI into a pseudo US image is
essential for good alignment, we compared our proposed method
with two recognised approaches that can perform multi-modal
registration of the original MRI with US volumes: Registration
using normalised mutual information (NMI); and th block-match-
ing method using correlation ratio (CR). NMI (Studholme et al.,
ws volumes of these structures. Compare to the volume of the cranial cavity 194 cm3.
gistration of manual segmentations of these structures using label consistency as a
posed method. The fourth and fifth row show distance of barycentres of manual
vely.

C CH CSP Average

.35 cm3 0.41 cm3 0.19 cm3 0.51 cm3

.47 ± 0.17 0.61 ± 0.11 0.40 ± 0.16 0.54 ± 0.13

.46 ± 0.15 0.57 ± 0.09 0.43 ± 0.10 0.51 ± 0.11

.98 ± 1.25 1.59 ± 0.77 2.83 ± 1.24 2.04 ± 1.05

.42 ± 1.30 1.87 ± 0.70 2.77 ± 1.40 2.36 ± 1.11



Table 3
Registration of 27 US images of younger dataset with MR template. Average volume overlaps of four manually segmented structures and their standard deviations after
registration of the source image (third column) to the US images. We also present p-value showing statistical significance when compared to the proposed method. The best
performance is highlighted in bold.

Registration Similarity Source CP VC CH CSP Average

No alignment 0.18 ± 0.14 0.10 ± 0.15 0.09 ± 0.13 0.09 ± 0.14 0.12 ± 0.14
Gradient descent NMI MRI 0.28 ± 0.19 0.18 ± 0.18 0.27 ± 0.19 0.22 ± 0.17 0.24 ± 0.18
p-value 1 � 10�8 2 � 10�9 2 � 10�7 3 � 10�6 6 � 10�12

Gradient descent NCC Pseudo US 0.45 ± 0.16 0.34 ± 0.19 0.31 ± 0.20 0.40 ± 0.17 0.37 ± 0.18
p-value 2 � 10�4 0.022 1 � 10�6 0.21 7 � 10�5

Gradient descent LNCC Pseudo US 0.42 ± 0.25 0.35 ± 0.26 0.45 ± 0.25 0.32 ± 0.18 0.38 ± 0.23
p-value 3 � 10�4 1 � 10�3 0.021 4 � 10�3 5 � 10�4

Block-matching CR MRI 0.54 ± 0.13 0.43 ± 0.17 0.46 ± 0.15 0.39 ± 0.13 0.46 ± 0.14
p-value 0.048 0.30 3 � 10�4 6 � 10�3 5 � 10�3

Block-matching CR Pseudo US 0.58 ± 0.11 0.42 ± 0.17 0.54 ± 0.16 0.39 ± 0.11 0.48 ± 0.14
p-value 0.92 0.043 0.31 0.010 0.13
Block-matching NCC Pseudo US 0.58 ± 0.10 0.46 ± 0.15 0.57 ± 0.09 0.43 ± 0.10 0.51 ± 0.11

1146 M. Kuklisova-Murgasova et al. / Medical Image Analysis 17 (2013) 1137–1150
1999) is a statistical similarity measure based on the normalised
entropy of the joint intensity histogram of the two images and is
widely accepted as a suitable multi-modal similarity measure for
various applications. In our experiments we used the registration
tool implemented in IRTK,7 where rigid and affine transformations
are found using gradient descent optimisation and NMI as a similar-
ity measure. The multimodal block-matching method with CR as
similarity measure was proposed in the original paper describing
the block-matching algorithm by Ourselin et al. (2001). When using
CR as a similarity measure, the functional relationship between
intensities of the target and source image can be implemented by
a statistical (non-parametric) or parametric model. Due to the small
size of the blocks in our approach, the parametric affine relationship
of the intensities can be considered as a reasonable assumption. In
this case CR is equivalent to squared NCC.

Additionally, we compare the proposed block-matching regis-
tration of the pseudo US image with gradient descent optimisation
using local normalised cross-correlation (LNCC) or global norma-
lised cross-correlation (NCC), to demonstrate that block-matching
alignment with robust LTS optimisation plays an essential role in
achieving good performance when applied to alignment of fetal
brain US and MRI. Gradient descent based registration using NCC
and LNCC were previously utilised in works of Arbel et al. (2004)
and Mercier et al. (2012) to align a pseudo US image with US of
the adult brain. It is important to point out though, that the meth-
od of Arbel et al. (2004) was used for non-rigid alignment of the
brain-shift during neurosurgery and included a directional gradi-
ent component, so it cannot be directly compared to the methods
considered here.

The average volume overlaps of the segmented structures for
each tested alignment method are presented in Table 3. We also
present the statistical significance of differences in average over-
laps compared to the proposed method, calculated using paired
t-test. All the tested methods improved the dice overlaps compared
to the intitial alignment. In the first multimodal approach (NMI
and gradient descent) the average volume overlaps were much
smaller than for our proposed method. The performance was
boosted when the pseudo US image and LNCC or NCC were used.
However, the performance using both similarity measures was sig-
nificantly below the proposed method, measured by both average
Dice overlaps and by t-test. All tested gradient descent approaches
were outperformed using block-matching methods. In the multi-
modal block-matching approach the average overlaps were smaller
than for our proposed method and these differences were statisti-
cally significant for three out of four structures. Statistical signifi-
cance was not proven for the posterior ventricular cavity, the
7 http://www.doc.ic.ac.uk/�dr/software.
structure with the largest variance in overlap across subjects,
which is very often poorly visible in the US images of younger sub-
jects. In the last experiment we compared the performance of NCC
and CR when registering the pseudo US image with real US vol-
umes. Mono-modal NCC yields better performance for the block-
matching of the pseudo US image with real US images than the less
constrained multimodal CR, with statistically significant improve-
ment for two out of four structures, though the overall improve-
ment was only marginal. These results demonstrate that
converting MRI into a pseudo US image and using locally adaptable
monomodal similarity measure offers better correspondences for
estimation of a good alignment compared to the direct multimodal
MR/US case.

Fig. 7 presents a scatter-plot that relates average Dice overlaps
over all four structures against the maximum Euler rotation angle
that needs to be recovered to align US images to MRI. This plot
indicates that the larger rotations are a significant factor for the
worse performance of the other methods compared to the pro-
posed method, showing that one of the main advantages of our
method lies in its extended robustness towards unfavourable ini-
tialisation. The trend lines are also included in Fig. 7 o show pat-
terns of performance of the different methods. For the proposed
method, the performance is largely sustained with rotations of
up to 30�. Multimodal block-matching performs poorly for several
subjects for which larger rotations need to be recovered. The gradi-
ent descent registration results in a significant number of poorly
aligned images for rotations higher than 10�.

Table 4 presents the comparison similar to the Table 3, except
that we here calculate the distance of the barycentres of manual
segmentations. We can observe that patterns of performance are
similar to the results obtained using Dice overlaps, which clearly
confirms superior performance of block-matching compared to
the gradient-descent based methods. However, the proposed
method achieved statistically significant improvement for only
two out of four structures compared to multimodal block-match-
ing. Exchanging NCC for CR when pseudo US based block-matching
is used results in significantly reduced performance only for one
structure, indicating that the choice between the two similarity
measures is the least important factor contributing to the quality
of the registration for the pseudo US image based block-matching.
5.3. Influence of fully automatic segmentation of MRI on registration
performance

In Section 2.5 we described a fully automated pipeline for seg-
mentation of unseen fetal MRI using the MR template described in
Sections 2.3 and 2.4. In this section we investigate whether the
performance of the proposed registration method can be sustained

http://www.doc.ic.ac.uk/~dr/software
http://www.doc.ic.ac.uk/~dr/software


Fig. 7. Registration of 27 US images of younger dataset with MR template.
Performance of the four methods in relation to the maximum Euler rotation angle
that needs to be recovered for correct alignment. Each point represents average dice
overlap for four structures in a single subject. We also show a trendline for each of
the four methods, calculated using Gaussian kernel regression (r = 7.5�).
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when an unseen MRI is to be aligned with US images, rather than
the original template, using four unseen MR images of fetuses with
various GA, ranging from 20 to 23 weeks. We compare the pro-
posed method to three other methods, namely a multimodal
block-matching algorithm, and pseudo US imaged based gradient
descent algorithms using NCC and LNCC as similarity measures.
This experiment also offers more extensive evaluation of the per-
formance of the tested methods, as we register each of the 27 US
images in the younger dataset to each of the four unseen MR
images, with 108 registrations in total. We calculated average Dice
overlaps for each of the four structures as well as the average dis-
tance of barycentres of the manual segmentations for these four
structures, over all 108 registrations. The results presented in Ta-
bles 5,6 show better performance of the proposed method using
both measures compared to other three tested methods. The in-
crease in performance is statistically significant, with exception
of the ventricular cavity for multimodal and pseudo US based
block-matching. We can also observe that average Dice overlaps
for our proposed method are still in a similar range (0.40–0.56)
as when using the original MR template. Similarly, the distance
of barycentres of the manual segmentations (mTRE 2.52 mm), is
still close to the lower bound of 2.04 mm, see Table 2. Though reg-
istration error and anatomical variability cannot be decoupled in
inter-subject registration (especially in case of affine registration),
Table 4
Registration of 27 US images of younger dataset with MR template. Average distance of
deviations after registration of the source image (third column) to the US images. We al
method.

Registration Similarity Source CP

No alignment 6.50 ± 2.65
Gradient descent NMI MRI 5.66 ± 3.19
p-value 4 � 10�6

Gradient descent NCC Pseudo US 3.51 ± 2.06
p-value 6 � 10�3

Gradient descent LNCC Pseudo US 4.33 ± 2.95
p-value 5 � 10�4

Block-matching CR MRI 2.79 ± 1.57
p-value 0.077
Block-matching CR Pseudo US 2.45 ± 1.29
p-value 0.63
Block-matching NCC Pseudo US 2.38 ± 1.06
these results were obtained using variety of anatomies and ages
(within 18–24 weeks GA interval), indicating that the basic pattern
of performance for the four tested methods does not change with
normal variation of fetal brain anatomy. These experiments dem-
onstrate the feasibility of the proposed method for the alignment
of unseen MRI and US fetal brain image volumes.
5.4. Evaluation of the older dataset alignment

In each of the seven US images in the older dataset (29 weeks
GA) and the MR template of 28 weeks GA, five landmarks were
placed under supervision of a clinical expert (GQ). The chosen
landmarks were: 1. Posterior wall of cavum septi pellucidi (CSP);
2. Fourth ventricle (FV); 3. Sylvian fissure (SF); 4. Temporal horn
of lateral ventricle (THLV); 5. Occipital horn of lateral ventricle
(OHLV). Since the placement of landmarks was found to be very
difficult in 3D US, they were placed twice to estimate the intra-
rater error. The landmarks were also placed in the MR template,
which was registered using our proposed method to all seven 3D
US images. Landmarks from the MR image were then propagated
to the US images using the estimated affine transformation (re-
ferred to as automatic landmark placement). The mean target reg-
istration error (mTRE), calculated as average distance of the five
landmarks in US and MRI after the alignment was used for
evaluation.

The results of this experiment are presented in Table 7. The
mTRE for the proposed method was 2.52 mm, slightly larger than
the intra-rater mTRE at 2.14 mm. Although the absolute mTRE va-
lue of the intra-rater error is smaller than the registration error for
the proposed method, the paired two-tailed t-test did not show
statistically significant difference between registration and intra-
rater error, with a large p-value of 0.81. This is probably due to
the large standard deviation of the intra-rater error. We therefore
conclude that landmark placement in 3D US of the fetal brain is
not more reliable than the proposed automatic registration, as
placing them automatically using our proposed method performs
comparably to a manual rater. However, this result also shows that
the proposed method succeeded in alignment of the seven 3D US
scans of fetal brain with MRI.

We also compared the proposed method to the three additional
methods (multi-modal blockmatching and pseudo US based gradi-
ent descent registration using NCC and LNCC), see Table 7. The
mTRE was higher in all three methods compared to the proposed
method, with the drop in performance of the gradient-descent
based methods being statistically significant. Statistical signifi-
cance of the difference between multimodal and pseudo US image
based block-matching was not proven (p = 0.15), however, the fur-
ther decrease in performance in multi-modal blockmatching com-
pared to the proposed method meant, that automatic landmark
barycentres (in mm) of the four manually segmented structures and their standard
so present p-value showing statistical significance when compared to the proposed

VC CH CSP Average

7.75 ± 3.43 7.15 ± 2.52 7.37 ± 2.75 7.19 ± 2.84
6.54 ± 3.85 5.68 ± 4.37 4.80 ± 2.46 5.67 ± 3.47
7 � 10�6 2 � 10�4 6 � 10�5 1 � 10�6

3.68 ± 2.86 4.67 ± 2.87 3.20 ± 2.24 3.76 ± 2.51
0.041 3 � 10�5 0.32 1 � 10�3

4.69 ± 4.13 3.36 ± 3.41 3.87 ± 2.36 4.06 ± 3.21
4 � 10�3 0.033 0.011 2 � 10�3

2.74 ± 01.58 2.95 ± 1.91 3.54 ± 2.14 3.00 ± 1.80
0.28 3 � 10�3 5 � 10�3 0.02
2.82 ± 1.71 2.19 ± 1.56 3.11 ± 1.58 2.64 ± 1.54
0.089 0.25 4 � 10�3 0.11
2.42 ± 1.30 1.87 ± 0.70 2.77 ± 1.40 2.36 ± 1.11



Table 5
Registration of 27 US images of younger dataset with four unseen MR subjects. Average volume overlaps of four manually segmented structures and their standard deviations
after registration of the source images (third column) to the US images. We also present p-value showing statistical significance when compared to the proposed method.

Registration Similarity Source CP VC CH CSP Average

No alignment 0.15 ± 0.14 0.08 ± 0.12 0.07 ± 0.11 0.07 ± 0.12 0.09 ± 0.07
Gradient descent NCC Pseudo US 0.41 ± 0.15 0.33 ± 0.15 0.35 ± 0.16 0.37 ± 0.16 0.37 ± 0.10
p-value 5 � 10�25 1 � 10�7 2 � 10�20 0.01 1 � 10�22

Gradient descent LNCC Pseudo US 0.33 ± 0.22 0.29 ± 0.19 0.35 ± 0.23 0.29 ± 0.17 0.31 ± 0.17
p-value 3 � 10�20 1 � 10�13 3 � 10�11 2 � 10�12 2 � 10�18

Block-matching CR MRI 0.51 ± 0.13 0.42 ± 0.15 0.48 ± 0.12 0.38 ± 0.13 0.45 ± 0.09
p-value 2 � 10�8 0.09 6 � 10�3 4 � 10�5 9 � 10�6

Block-matching NCC Pseudo US 0.56 ± 0.11 0.43 ± 0.14 0.51 ± 0.09 0.40 ± 0.10 0.48 ± 0.06

Table 6
Registration of 27 US images of younger dataset with four unseen MR subjects. Average distance of barycentres (in mm) of the four manually segmented structures and their
standard deviations after registration of the source images (third column) to the US images. We also present p-value showing statistical significance when compared to the
proposed method.

Registration Similarity Source CP VC CH CSP Average

No alignment 7.12 ± 2.88 7.87 ± 3.29 7.55 ± 2.55 7.65 ± 2.91 7.55 ± 1.92
Gradient descent NCC Pseudo US 3.49 ± 1.41 3.25 ± 1.47 3.24 ± 1.47 3.47 ± 2.81 3.36 ± 1.26
p-value 1 � 10�14 8 � 10�3 1 � 10�13 0.03 4 � 10�12

Gradient descent LNCC Pseudo US 4.89 ± 2.76 4.78 ± 3.43 3.92 ± 3.37 4.31 ± 2.93 4.48 ± 2.5
p-value 3 � 10�20 1 � 10�13 3 � 10�11 2 � 10�12 2 � 10�18

Block-matching CR MRI 2.82 ± 1.34 2.97 ± 1.68 2.33 ± 1.41 3.35 ± 1.62 2.87 ± 0.98
p-value 1 � 10�5 0.25 2 � 10�3 3 � 10�9 6 � 10�5

Block-matching NCC Pseudo US 2.37 ± 1.11 2.83 ± 1.42 1.95 ± 0.76 2.93 ± 1.46 2.52 ± 0.54

Table 7
Evaluation of the alignment using five manually placed landmarks. The landmarks were place twice in US images and the last row shows the intra-rater error. The mTRE is
calculated over the five landmarks for each of the tested methods. In the last two columns we present p-values showing the statistical significance when compared to the manual
rater and the proposed method, respectively.

Registration Similarity Source mTRE (mm) p-value with intra-rater p-value with proposed

No alignment 7.49 6 � 10�4 6 � 10�4

Gradient descent NCC Pseudo US 3.18 0.03 0.03
Gradient descent LNCC Pseudo US 4.73 0.02 0.03
Block-matching CR MRI 2.83 0.03 0.15
Block-matching NCC Pseudo US 2.52 0.81
Intra-rater error 2.14 0.81
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placement using multi-modal blockmatching was not comparable
to the manual rater any more (p = 0.03). Thus only the proposed
method was as successful in automatically placing the landmarks
as the manual rater.

6. Discussion

The methodology described in this paper was developed with
anticipation of 3D US and multi-modal studies of fetal brain devel-
opment. The major drawback of 3D US as a modality for phenotyp-
ical description of the fetal brain is incompleteness of the image, as
position of the fetus is not always ideal for scanning and field of
view is always at least partially restricted by fetal skull. Therefore
template images of fetal brain built from MRI, such as pseudo US
image presented in this paper, can be very valuable in a sense that
they offer models of complete fetal brain anatomy, unlike a single
3D US scan. Such templates can thus offer correspondences for any
US image independent of the position of the probe, shadows and
missing anatomical regions. In this paper we demonstrated that
pseudo US image constructed from fetal MRI can be successfully
used for co-alignment of a set of US images, an important initial
step for further processing of the medical images. The average of
these 3D US images in turn revealed, that 3D US can depict the fetal
brain anatomy in great detail, highlighting the potential of this
modality in large population studies, such as for phenotypical com-
parison of normal and growth-restricted fetal populations, in spite
of missing anatomical features in any single 3D US scan.
The method thus can be readily used for the alignment of the
fetal brain US images into the standard orientation, which can as-
sist visual interpretation of the US. Automatic orientation of 3D US
can also assist in clinical 2D measurements by automatically deter-
mining the biometric plane, which is normally manually selected
by the sonographer during 2D acquisition.

The affine transformation of the US image to the MR template
can be also used for estimating the head volume, a 3D equivalent
of routine 2D measurements such as head diameter and circumfer-
ence, which heavily depend on the correct selection of the biome-
try plane.

When looking for biomarkers of healthy brain development,
size is not always the best indicator of normal brain growth. The
affine co-alignment of 3D US images with an atlas of the normal
brain anatomy can thus form a basis for finding size-independent
US-based biomarkers of the brain maturity. In Fig. 8b,c we demon-
strate that choosing a template of a similar age results in improved
alignment of the brain features after affine registration. This indi-
cates that an age-matched template might be suitable for identify-
ing deviations from normal development. As more high quality
fetal MRI of young fetuses become available, we will be able to
construct a spatio-temporal pseudo US template of normal brain
development. By looking at features such as the deepening Sylvian
fissure (highlighted by the green arrow in Fig. 8), such an atlas
could provide a tool for 3D US-based identification of developmen-
tal delay, intra-uterine growth restrictions or other conditions
affecting brain growth.



Fig. 8. Ultrasound images of two fetuses of different GA registered to the MR template, with superimposed isolines of the pseudo US image simulated from MRI. The older
fetus (approximatelly 22 weeks GA) is presented in (a) and (d) and the younger fetus (approximately 18 weeks GA) in (b), (c), (e) and (f). The pseudo US was simulated from
MRI of a subject with (a,b) 23 weeks GA and affinely aligned with the US; (d,e) 23 weeks GA and non-linearly aligned with the US; (c) 20 weeks GA and affinely aligned with
the US; (f) 20 weeks GA and non-linearly aligned with the US. The arrows point to features indicative of brain maturity, namely Sylvian fissure (green) and Choroid plexus
(red). The images illustrate that choosing a template that matches the age of the subject more closely (c) can be as effective for alignment of these features as non-linear
registration (e). The non-linear registration might improve feature alignment for MR/US of the similar ages, as shown in (d). However, when features are not clearly visible,
the non-linear registration might not be an effective solution to the aligment problem, such as for Sylvian fissure of the younger fetus shown by the green arrow in (e) and to a
lesser extent in (f). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The quantitative landmark-based evaluation of age-matched
dataset presented in Section 5.4 revealed that the proposed meth-
od was as good in automatically placing the landmarks in 3D US by
propagation from MRI as the manual rater. Though this result re-
flects good performance of the proposed alignment method, it also
shows how difficult the task of navigation of fetal US by sonogra-
pher can be, thus highlighting the potential benefit of automatic
localisation of structures in the fetal brain, which could be
achieved using age-matched MR template. When considering tasks
such as anatomical localisation or navigation, it might be beneficial
to develop methodology for non-linear alignment of the pseudo US
image with 3D US. However, increasing degrees of freedom for the
spatial alignment also increases the susceptibility of the method
for overfitting due to the imaging artefacts and missing features,
making a design of robust non-linear alignment methodology a
very challenging task. Fig. 8d-f shows a result for non-linear align-
ment of a pseudo US template with a 3D US using a locally adaptive
extension of the block-matching algorithm (Pitiot and Guimond,
2008). In this example we used a radius of 3 mm to calculate a lo-
cally affine transformation. Though the alignment of the features
visibly improved, using a more closely age-matched affinely regis-
tered template can have similar effect to non-linear registration
(compare Fig. 8c and e). Additionally non-linear registration is
not an effective solution in areas where features are not clearly vis-
ible, such as Sylvian fissure of the younger fetus (see Fig. 8e and f).
To make a more flexible non-linear registration feasible, it might
be beneficial to improve on the imaging techniques for 3D US of
the fetal brain, in order to minimise the shadows in the image,
for example by scanning through the fontanel. Additionally, non-
linear registration methodology could be used to improve the
alignment with the age-matched atlas, as demonstrated in
Fig. 8d, as this would allow the registration to be less susceptible
to misalignment due to missing features and artefacts.

Another possible application of the proposed methodology is
intra-subject MR-US rigid registration. We demonstrated that an
unseen fetal brain MRI can be segmented using the constructed
MR template and segmentation further converted to the pseudo
US image. MR and US of the same subject can thus be aligned using
a fully automatic pipeline. The intra-subject MR-US alignment tool
can be used in applications such as detailed comparison of the fea-
tures in both modalities, to determine whether fusion of infor ma-
tion from fetal brain MRI and US could enhance abnormality
screening. As manual measurements obtained from 3D US exhibit
rather high degree of uncertainty, intra-subject MR-US alignment
can also facilitate use of MRI for validation of methods for auto-
matic image analysis of 3D US, such as quantitative measurements,
identification of key fetal structures and finding biometry planes.

It remains for the future work to establish the role of the pre-
sented work in clinical practice, such as making the alignment
real-time, accuracy needs to be established for different potential
tasks, such as detection, localisation or quantification, and clinical
studies need to be conducted.

7. Conclusion

In this paper we have presented a novel method for rigid or af-
fine registration of fetal brain MR and US volumes. The method was
successfully applied to affinely align US volumes with an age-
matched MRI at two different time-points of gestation. In our
experiments we achieved good qualitative results as well as vol-
ume overlaps for four small structures. The average of the co-
aligned US volumes revealed near-complete anatomy of the fetal
brain. Our results suggest that 3D US in conjunction with an MR
prior has potential for enhancement of ultrasonic visualisation of
fetal brain anatomy. The proposed registration tool can now facil-
itate utilisation of models of fetal brain anatomy extracted from
MRI to enhance image analysis of fetal brain 3D US. Good multi-
modal alignment between MRI and US can also facilitate validation
of automatic image analysis of 3D US using MRI and fusion of infor-
mation from both modalities.
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