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We propose a method for registration of 3D fetal brain ultrasound with a reconstructed magnetic reso-
nance fetal brain volume. This method, for the first time, allows the alignment of models of the fetal brain
built from magnetic resonance images with 3D fetal brain ultrasound, opening possibilities to develop
new, prior information based image analysis methods for 3D fetal neurosonography. The reconstructed
magnetic resonance volume is first segmented using a probabilistic atlas and a pseudo ultrasound image
volume is simulated from the segmentation. This pseudo ultrasound image is then affinely aligned with
clinical ultrasound fetal brain volumes using a robust block-matching approach that can deal with inten-
sity artefacts and missing features in the ultrasound images. A qualitative and quantitative evaluation
demonstrates good performance of the method for our application, in comparison with other tested
approaches. The intensity average of 27 ultrasound images co-aligned with the pseudo ultrasound tem-
plate shows good correlation with anatomy of the fetal brain as seen in the reconstructed magnetic res-
onance image.
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1. Introduction
1.1. Motivation

Fetal ultrasound (US) is the imaging modality of choice in clin-
ical practice for assessing fetal development. Traditional methods
for assessment of fetal brain development rely on qualitative eval-
uation and manual measurements performed on 2D US scans,
where a pre-defined plane is manually selected by the sonogra-
pher, and several 2D measurements are taken to assess the size
of the fetal head and some brain structures (ISUOG, 2007). If a
brain abnormality is suspected, fetal magnetic resonance (MR)
imaging is often performed to confirm the finding. US does not al-
ways depict sufficient information about the structures within the
fetal brain, largely due to acoustic shadows caused by the fetal
skull, while MR imaging is unaffected by the presence of bone
(Pugash et al., 2008). Recent work, however, provides evidence that
in prospective studies fetal brain structures and anomalies can be
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visualised correctly in 90% of the cases by experienced operators
with 3D US (Gandolfi Colleoni et al., 2012). 3D fetal neurosonogra-
phy is currently one of the most active research fields in obstetric
imaging.

Recently, large databases of longitudinal 3D neurosonography
scans are becoming available thanks to initiatives Intergrowth-
21st' and Interbio-21st.? The Intergrowth-21st consortium col-
lected several thousands of normal fetal US scans, including 3D
brain US, containing several thousands of subjects scanned at up
to six time-points during pregnancy, from eight different sites
around the world. This database is to serve for development of
new “prescriptive” standards describing normal fetal growth. The
aim of Interbio-21st study is to collect similarly large number of
fetal scans, to improve the phenotypic characterisation of the
intrauterine growth restriction/small for gestational age and pre-
term birth syndromes, so as to develop better strategies to correct
the short and long-term effects of an adverse intrauterine environ-
ment. To fully exploit this wealth of information, development of
tools for image analysis of fetal 3D US becomes of very high
importance.

! http://www.intergrowth21.org.uk.
2 http://www.interbio21.org.uk.
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In this paper we propose a method for the alignment of fetal
brain 3D US and MR images, which will in future allow us to ex-
plore the idea, that models of brain anatomy build from more com-
plete MR images of fetal brain can be exploited to serve as prior
knowledge for automatic image analysis of fetal brain 3D US or
to assist in making clinical diagnosis from 3D fetal neurosonogra-
phy. Additionally, intra-subject alignment of fetal 3D US and MR
images can facilitate clinical studies to determine whether fusion
of information from fetal brain MR and US images could enhance
abnormality screening. It can also facilitate use of MR imaging
for validation of quantitative measurements performed using 3D
Us.

1.2. Related work

To our knowledge there is no prior literature on registration of
fetal brain MR and US images, except for our recent works (Kuklis-
ova-Murgasova et al., 2012b,a) on which this paper builds. The
methods proposed in literature mostly focus on registration of
pre-operative MRI/CT and real-time US, usually aimed at adult or-
gans, such as brain, liver or heart (Roche et al., 2001; Penney et al.,
2004; Arbel et al., 2004; Blackall et al., 2005; Mellor and Brady,
2005; Zhang et al., 2007; Brooks et al., 2008; Wein et al., 2008;
Hu et al,, 2009; Milko et al., 2009; King et al., 2009). The major
challenge in aligning MR (or CT) and US images is that there does
not exist a simple intensity mapping between the two modalities.
Authors therefore employ various strategies to extract correspond-
ing features from both modalities such as gradient magnitude
(Roche et al., 2001; Brooks et al., 2008), sheet-like features (Hu
et al., 2009), local phase (Mellor and Brady, 2005; Zhang et al.,
2007) or segmentation of different structures (Arbel et al., 2001;
Penney et al., 2004; Arbel et al., 2004; Blackall et al., 2005; Milko
et al., 2009; King et al., 2009). Wein et al. (2008) performs simula-
tion of US from CT of liver and registers simulated and real US
images.

Registration of brain MR and US images was previously pro-
posed for image guided neurosurgery in adults to non-rigidly cor-
rect for brain-shift during surgery (Arbel et al., 2001, 2004) as well
as for rigid alignment of adult or neonatal brains (Roche et al.,
2001; Ji et al., 2008; Mercier et al., 2012). Roche et al. (2001) sug-
gested to estimate a non-linear relationship between MR image
intensities and gradient magnitude, and US image intensities, using
generalised correlation ratio (CR) as a similarity measure. Arbel
et al. (2001, 2004) proposed to perform segmentation of the brain
MR image (MRI) followed by simulation of a pseudo US image
which is then non-rigidly registered with the US image using local
normalised cross-correlation (NCC) as a similarity measure. The ri-
gid alignment is performed by first aligning the MR image into the
patient space by manually selecting the landmark points in the MR
image and on the patient. The US images are then aligned with the
MRI using information from a tracker device. Arbel’s work was la-
ter extended by Mercier et al. (2012), who proposed to improve the
initial rigid alignment of pre-operative MRI with US using auto-
matic registration of pseudo US image with the real US image.
The authors show that this method improved the initial rigid align-
ment and also outperformed mutual-information-based automatic
alignment of original MRI and US, proposed by Ji et al. (2008).

US images contain intensity artefacts, such as acoustic shadows,
attenuation, and reverberations, which may negatively affect per-
formance of the registration methods. During cranial sonography
in adults and neonates, a sonographer can position the probe next
to the opening in the skull and thus avoid most artefacts which
cannot be avoided in fetal neurosonography. In fetal neurosonogra-
phy, on the other hand, the most pronounced artefacts appear due
to difficulties in positioning the probe and interference with
maternal tissues. These include shadows caused by presence of fe-

tal skull and reverberations - high signal corrupting the fetal brain
image, caused by multiple reflections of the US beam by fetal skull
and maternal tissues, resulting in missing features and variable
signal strength. Wein et al. (2008) suggested to estimate the atten-
uation and shadows from knowledge of physical properties of the
scanned organ. The method was developed for registration CT and
US images of liver and thus could take advantage of excellent vis-
ibility of bone in CT, creating ideal situation for estimation of shad-
ows. Additionally, the signal strength in CT can be directly related
to the acoustic impedance of the tissues. This property was also
exploited in their work for estimation of reflections of the US beam.
The echogeneity of different tissues, or speckle, however, cannot be
easily simulated from CT. Wein et al. (2008) therefore uses correla-
tion ratio to estimate functional relationship between regional ech-
ogeneity in US and CT signal, a similarity measure previously
proposed by Roche et al. (2001) for registration of adult and neona-
tal brain MRI and US during image-guided neurosurgery.

MRI, however, does not possess such favourable properties of
CT for simulation of US images and estimation of the artefacts.
Bone does not produce any MR signal and is therefore indistin-
guishable from the air or other tissues which appear dark. Addi-
tionally, the only partly calcified and not completely fused fetal
skull causes rather complex pattern of shadows and signal loss.
This, together with no currently existing models of developing fetal
skull which could be used as a prior knowledge, renders automatic
estimation of shadows (or reverberations) unfeasible at present.
Unlike the previously proposed methods, we will have to rely on
registration methodology robust towards missing features and
intensity artefacts in US images. We propose to employ robust
block-matching algorithm (Ourselin et al., 2001).

Another major challenge when aligning fetal brain MR and US
images is the choice of a suitable similarity measure. The relation-
ship between intensities in the fetal brain MR and US images is dif-
ficult to express. Features of the fetal brain visible in these
modalities in relation to the anatomy have been well described
in the clinical literature (Monteagudo and Timor-Tritsch, 2009;
Rutherford, 2009; Glenn, 2010). While MRI offers good contrast be-
tween soft tissues, especially white matter (WM), grey matter
(GM) and cerebro-spinal fluid (CSF), the WM-GM boundary does
not appear in US at all. Additionally, the anatomical structures that
dominate fetal US images, such as the choroid plexus, skull and falx
are relatively poorly defined in fetal MRI (see Section 2.1). One
strategy is to use simple multimodal similarity measure such as
normalised mutual information (e.g. Ji et al. (2008)). In this case
the similarity measure will match regional echogeneity of the US
image with the MR intensities of the tissues and high intensity sig-
nals at the boundaries of the structures, characteristic of US images
will be ignored. Mercier et al. (2012) showed that such approach
can be rather unstable, which is consistent with the results pre-
sented in our previous work (Kuklisova-Murgasova et al., 2012b).
Roche et al. (2001) proposed to include gradient of the MR image
in a generalised CR. Though gradient image would contain some
important features, such as brain surface, it would also include
WM/GM boundary which is not visible in fetal US.

Alternative multimodal approach is to use robust block-match-
ing algorithm with CR as a multimodal similarity measure (Ours-
elin et al, 2001). Our previous experiments (Kuklisova-
Murgasova et al., 2012a) demonstrated good performance of this
method, though we also showed that more tailored similarity mea-
sure can further improve the results.

Alternative to direct multimodal registration is simulation of
the US from MRI followed by mono-modal registration. As we al-
ready argued, realistic simulation of fetal brain US from MRI is cur-
rently unfeasible, but the main features of fetal brain US can be
created from segmented MRI and converted to a pseudo US image,
as proposed by Arbel et al. (2001, 2004) and Mercier et al. (2012)
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for adult brain in context of computer assisted neurosurgery.
Though this approach requires segmentation of the brain struc-
tures in MRI, which results in more complex pipeline of methods,
pseudo US image offers better correspondences for matching with
US than original MRI (Mercier et al., 2012; Kuklisova-Murgasova
et al., 2012b,a). Building on the knowledge of how fetal anatomy
typically appears in MRI and US (Monteagudo and Timor-Tritsch,
2009; Rutherford, 2009; Glenn, 2010), we are able to propose a
similar pseudo US image construction for fetal brain MRI. By care-
ful comparison of fetal brain MRI and US, we selected a set of struc-
tures important to be segmented for our task. This set is different
from those chosen by Arbel or Mercier, as it includes some addi-
tional structures such as skull, falx, choroid plexus, brainstem
and cerebellum. Segmentation of brain structures in fetuses and
pre-term neonates has been previously described by several
authors (Habas et al., 2010; Kuklisova-Murgasova et al., 2011a;
Serag et al., 2012). To create the pseudo US image we need to ex-
tend this methodology to non-brain structures that form important
landmarks in fetal brain US and help us to construct a more realis-
tic pseudo US image. Our pseudo US image is independent of the
position of the probe, unlike the one proposed in the work of Arbel,
which makes the application of the method simpler in the cases
like ours, where one of the goals is to process a large database of
fetal US scans and recovering position of the probe might prove a
rather difficult task.

The final consideration needs to be given to the registration
algorithm. During image-guided neurosurgery, the rigid alignment
of MR and US images is usually assisted using a tracking device.
This information is not available in our database of fetal US. During
fetal scanning, the sonographer attempts to acquire the 3D scan in
consistent orientation with respect to the fetal brain. This can only
be achieved with variable accuracy, depending on the position of
the fetus. We observed that in our dataset used for evaluation,
automatically recovered transformations contained rotations of
up to 30° compared to the position of the template MRI. As we
demonstrate in this paper, employing a block-matching algorithm
(Ourselin et al., 2001), as opposed to registration using gradient
descent optimisation, proves essential for a robust performance
at this task.

1.3. The proposed method

In this paper we propose a method for the alignment of fetal
brain US and MR volumes, designed to resolve the difficulties de-
scribed in the previous section. We present a complete pipeline
which successfully fulfils this task, by putting together building
blocks of recently developed state-of-the-art methodology of fetal
imaging, namely 3D US imaging of the fetal brain, structural MR
imaging of the fetal brain, and reconstruction of fetal MRI volumes,
with carefully chosen image analysis methodology for segmenta-
tion of fetal brain structures in MRI using fetal/pre-term brain at-
lases, and registration using a robust block-matching algorithm.

High-resolution fetal brain MRI is first reconstructed from thin-
slice acquisitions using our previously proposed method (Kuklis-
ova-Murgasova et al., 2012c), see Section 2.2. The structures se-
lected in Section 2.1 are then segmented in MRI. The brain
structures are segmented using EM-based method and a probabi-
listic atlas (Kuklisova-Murgasova et al., 2011a), see Section 2.3,
which is followed by segmentation of non-brain structures (Sec-
tion 2.4). Though the segmentation of an MR template includes
some manual steps, this needs to be done only once and the addi-
tional MR images can be segmented using fully automatic pipeline
presented in Section 2.5. Segmentation of brain and non-brain
structures is then converted into the pseudo US image, as de-
scribed in Section 2.6. In this paper we use the term pseudo US im-
age to refer to an image containing anatomical brain and head

structures typically visible in fetal US but without speckle and arte-
facts such as shadows, attenuation and intensity variations due to
angle of the ultrasound beam. This pseudo US image is then regis-
tered to the fetal neurosonography (Section 2.7), using robust
block-matching algorithm (Ourselin et al., 2001). Our experiments
presented in Sections 4 and 5 show good performance of the pro-
posed method in inter-subject alignment of clinical 3D neuroso-
nography images with fetal brain MRI. An overview of the
method is presented in Fig. 1.

The methodology and results described in this paper were
partly presented in our previous conference papers (Kuklisova-
Murgasova et al., 2012b,a). In the first paper (Kuklisova-Murgasova
et al., 2012b) we presented the idea to convert fetal MRI into pseu-
do US image. The pseudo US image was then registered with real
US images using global NCC as a similarity measure and gradient
descent as optimisation method. Our preliminary results on four
US and one MR image of gestational age (GA) 28-29 weeks showed
that performance was superior to multi-modal registration using
NMI, conclusion similar to the one reached by Mercier et al.
(2012). In the second paper (Kuklisova-Murgasova et al., 2012a)
we described creation of pseudo US images at earlier GA (around
20 weeks) and improved robustness of the method by introducing
robust block-matching algorithm (Ourselin et al., 2001), which em-
ploys local NCC as a similarity measure to deal with intensity and
contrast variation and robust least trimmed squares to remove
outliers produced by incorrectly matched blocks, which is helpful
in situations when the corresponding features in US image is miss-
ing. We showed that this method performed better than multi-
modal block-matching with CR as a similarity measure. The
segmentation pipeline proposed in this previous work contained
some manual steps. In this paper we further develop this method
(Kuklisova-Murgasova et al., 2012a) by presenting a fully auto-
matic segmentation pipeline (Section 2.5) which has also been
quantitatively evaluated in Section 5.3. The method, originally ap-
plied to images of approximately 20 weeks GA, has now also been
applied to another time-point, approximately 29 weeks GA (Sec-
tion 5.4). In Section 5.2 we also show, that the proposed method,
registration using pseudo US image and block-matching algorithm
with local NCC as similarity measure, outperforms pseudo US im-
age-based methods with gradient descent optimisation and global
as well as local NCC as a similarity measure, for our fetal
application.

2. Methods
2.1. Features of fetal brain US and MRI

Alignment of fetal brain US and MRI requires a similarity mea-
sure describing the relationship between the structures visible in
these two modalities. However, fetal brain MRI and US often depict

Pseudo US
image

Reconstructed EM Final
MRI segmentation

segmentation

Probabilistic

Real US image

Fig. 1. Overview of the proposed method.
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complementary features. The MR signal is related to intrinsic tissue
properties described by T1 and T2 relaxation times and usually of-
fers good contrast between WM, GM and CSF. The US signal, on the
other hand, is mainly created by the reflection of the acoustic beam
due to the difference in acoustic impedance between different tis-
sues, or the microstructure of the tissue. The features best detected
using US are often hard to detect on MRI, because of its lower spa-
tial resolution. Conversely, the WM-GM boundary does not appear
in US at all. The features of the two modalities are compared in
Fig. 2. To be able to correctly relate MR and US images, we create
a pseudo US image from an MR image. For this purpose we choose
the most pronounced features of a fetal brain depicted in 3D US
(Monteagudo and Timor-Tritsch, 2009):

1. the skull,

. the falx (midline membrane separating the two halves of the
brain),

. the brain surface,

. the choroid plexus (located in the ventricles),

. septi pellucidi (membranes separating ventricles),

. cerebellum,

. deep GM.

N

NOoO bW

These anatomical structures are segmented in a fetal MRI and
the segmentation is then converted into a pseudo US image. The
features of the pseudo US image can then be correlated with the
features of the real US image using a standard similarity measure,
such as local NCC.

2.2. Reconstruction of fetal brain MRI

Fetal brain US often depicts structures that are difficult to visu-
alise on MRI (e.g. falx), thus a high resolution reconstruction of a
fetal brain MR image is essential for the creation of a pseudo US
image. The MRI volume is therefore reconstructed from thin-slice
data by iterating between a super-resolution reconstruction and
a slice-to-volume rigid registration using our previously developed
fetal MR reconstruction method (Kuklisova-Murgasova et al.,
2011b, 2012c). The similarity measure used for slice-to-volume
registration is normalised mutual information (Studholme et al.,
1999). Our super-resolution reconstruction is designed to deal
with the common artefacts of MR acquisition, namely exclusion
of motion-corrupted slices, intensity matching and bias field cor-
rection. The volume is obtained by iterative minimisation of the
following objective function:

Swiy - x)’ 1)
]

where y; denotes voxel intensities of scaled and bias-corrected ac-
quired slices, y? = >~;myx; denotes voxel intensities of slices simu-
lated from the latest estimate of the volume with voxel intensities

x; using the point-spread function of MR acquisition sampled into
values m;;. The weights w; are obtained as posteriors of classification
of intensity errors between simulated and corrected acquired voxels
or slices into outliers and inliers using an EM algorithm (more spe-
cifically, w; is a product of the voxel and slice posteriors). The recon-
struction is regularized wusing edge-preserving smoothing
(Charbonnier et al., 1997). The reconstructed volume, scaling factors
and bias fields are estimated by minimising the objective function
(1) using gradient descent. A high signal to noise ratio was achieved
by carefully choosing the point-spread-function (PSF) to match the
real acquisition. The PSF is approximated by a 3D Gaussian with full
width at half maximum (FWHM) equal to slice thickness in
through-plane direction to approximate the slice selection profile
(truncated sinc function) and 1.2 x resolution for in-plane direction
to approximate the sinc function. The combination of this compre-
hensive and robust reconstruction method together with high sam-
pling and relatively small slice thickness of the acquired dataset
results in a high quality fetal head volume suitable for segmentation
of the structures visible in fetal US (illustrative examples are shown
in Figs. 2a and 5, top row).

2.3. Segmentation of brain structures in MRI template

A widely used approach for segmentation of brain structures is
the EM algorithm in combination with a probabilistic atlas (Leem-
put et al,, 1999; Ashburner and Friston, 2005; Pohl et al., 2006).
This approach has been also successfully used for segmentation
of structures in the developing brain (Habas et al., 2010; Kuklis-
ova-Murgasova et al., 2011a; Serag et al., 2012). In this work we as-
sume that age-matched probability maps for six structures - WM,
cortex, deep GM, brainstem, cerebellum and CSF - are available to
perform EM classification.

We first upsample the reconstructed MRI into high resolution
(isotropic voxels with size 0.33 mm) to obtain a high resolution
segmentation. The probabilistic atlas is then aligned with the MR
image and used as a spatial prior for the segmentation. The MR im-
age is then segmented into 7 classes (white matter (WM), cortex,
deep grey matter (DGM), brainstem, cerebellum, cerebro-spinal
fluid (CSF) and background) using the EM algorithm (Leemput
et al.,, 1999), by iterating between equations

o bl opt
P (X |, 0k) P

2 iXiPik
— &k 3
H > iPi ®)
2ilx — :“k)zpik
or =& Tk P 4
k 2Pk @

where x; denotes bias-corrected voxel intensities, pj, the posteriors,
and p¥ss the priors from the probabilistic atlas. P(x;|4, k) are like-
lihoods modelled by Gaussians with means p and variances oy. The

Fig. 2. Features visible in fetal brain US in axial view: skull, cortical surface, midline (falx), DGM, choroid plexus (CP) and septum pellucidum (SP). Positions of these features
in MRI (a) and in US (b). The MR and US images presented here are scans of different subjects with similar GA.
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exception is the background class, where a mixture of two Gaussi-
ans is used to model the likelihood due to the presence of amniotic
fluid in the background. The bias field is also iteratively corrected
during segmentation. The posteriors, means and variances can be
used to model the estimate of the bias-free image with voxel inten-
sities e; = >_, 2% 1, />, % (Leemput et al., 1999). The bias field can
then be estimdted by cémparing the image intensities to the esti-
mate followed by weighted Gaussian smoothing (Wells III et al.,
1996). Unlike previous approaches (Leemput et al., 1999; Wells III
et al., 1996), we avoid a logarithmic transformation of the intensi-
ties in the pre-processing step to make the bias field additive, and
work directly with a multiplicative bias field instead. At each itera-
tion we calculate the bias residual r; = log (x; /e;). This is followed
by weighted Gaussian smoothing of the residual r; with weights
XY, 2 to calculate the bias field b}’ still present at the nth iteration.
The bias-corrected image is then updated as follows:
(%) = ()" exp (~b).

Segmentation of the brain structures is further processed to ob-
tain the structures listed in Section 2.1. In fetal brain US, the brain
tissue (with exception of the corpus callosum) is clearly divided
into a right and left hemisphere. However, this is only partially vis-
ible on MRI due to its lower resolution and partial volume effects
along the midline. Therefore we artificially separate the WM seg-
mentation into two parts (by removing the voxels closer than
1.5 mm to the WM surface) and calculate distance transforms from
these two eroded WM components (cores). All the brain structures
(except for WM) are thus separated into right or left, depending on
their distance to the right or left WM core. The distances from both
cores are then regularized using Gaussian blurring (¢ = 10 mm).
Voxels with roughly the same distance from both cores (difference
in regularized distances less or equal to voxel size 0.33 mm) are re-
moved to simulate the presence of a small amount of CSF between
the right and left parts of the brain, as visible in US. Since the WM-
cortex boundary is not visible on fetal US, these two structures are
joined to create the segmentation of cortical hemispheres.

The appearance of the cerebellum in fetal US significantly
changes between 20 and 30 weeks GA (Timor-Tritsch et al.,
1996; Hashimoto et al., 2001). For younger fetuses, the cerebellum
does not appear as one homogeneous structure in US, but hypoe-
chogenic WM of cerebellar hemispheres can be distinguished from
hyperechogenic cerebellar cortex, see Fig. 5. By 30 weeks GA, how-
ever, the process of folding has already occurred in cerebellar
hemispheres. Because this folding is of a very small scale, the cer-
ebellum appears mainly bright on US images, with microstructure
recognisable on US but not on MRI due to its lower resolution. We
have therefore chosen to consider the cerebellum as a homoge-
neous structure for older fetuses. In younger fetuses, WM of cere-
bellar hemispheres has to be considered separately. We therefore
manually segmented the WM of cerebellar hemispheres in the
younger subject.

2.4. Segmentation of non-brain structures in MRI template

Some of the most echogenic landmarks in fetal US depict the
non-brain structures, especially the skull, choroid plexus, septi pel-
lucidi and membrane of the falx in the brain midline (see Figs. 2b
and 5b). These structures are usually not of interest in MR studies
and therefore not included in existing atlases and automatic seg-
mentations methods. However, they play an important role in
guiding the alignment of fetal brain US and MRI. We therefore per-
formed segmentation of these four structures in MRIL.

Segmentation of the skull in MRI is difficult as it appears dark
and often borders other tissues also appearing dark on T2w MRI.
Additionally, the fetal skull is rather thin compared to the resolu-
tion during acquisition, making it difficult to delineate due to the
partial volume effect. The skull appears to closely follow the shape

of the brainmask, if extra-cerebral CSF is included (see Figs. 2a and
5a). We took advantage of this fact for initial estimation of the skull
segmentation in one subject. First we created the brain-mask by
joining automatic segmentations of five brain tissues and CSF. A
distance transform from this brain-mask was then calculated,
and it was visually determined that the voxels with distance up
to 2 mm could be labelled as the skull. The segmentation of the
skull was then manually corrected using the manual segmentation
tool provided in the IRTK package.’

The choroid plexus and septum pellucidum were segmented
manually in one MR scan. These, as well as the skull, were then
automatically transferred to new images using registration-based
segmentation.

The midline voxels were estimated automatically as described
in Section 2.3, and were added as another structure to simulate
the falx visible on fetal brain US.

2.5. Automatic segmentation of unseen MRI

After segmentation of one template MRI, the segmentation of
previously unseen MR images belonging to the same age-group
can be performed in fully automatic manner. The template MRI
is first registered to the unseen reconstructed MRI using non-rigid
B-spline registration (Rueckert et al., 1999) with final control point
spacing 5 mm. The segmentations of the six structures brain struc-
tures listed in Section 2.3 are transformed from the space template
to the space of the new subject, blurred and used as prior probabil-
ity maps for EM segmentation detailed in Section 2.3. The segmen-
tation of non-brain structures (choroid plexus, septi pellucidi and
skull) is simply transferred from the atlas using the estimated
non-rigid transformation. Finally, registration-based estimation of
midline is used to separate the WM into left and right hemisphere,
and segmentation of falx is performed by the procedure described
in Section 2.3.

2.6. Converting the segmentation into pseudo US image

US B-mode images are created by reflections at tissue interfaces
where the two tissues differ in acoustic impedances and speckle
patterns produced by interference of tissue microstructure with
the sound waves. These intensity patterns are further affected by
signal attenuation (or signal loss along the beam direction), shad-
ows, which occur when a beam is fully reflected by a strong reflec-
tor, and other artefacts such as reverberations. In this work we
assume that the fetal brain US is mainly composed of echogenicity
of the tissues and neglect the reflections at the tissue boundaries
and intensity artefacts. The visibility of the brain surface is also
due to a presence of a highly echogenic thin tissue layer (Monte-
agudo and Timor-Tritsch, 2009) not visible in MRI. We therefore
convert the segmentation to an artefact-free pseudo US image in
which each region of interest is assigned a uniform intensity repre-
senting the average echogenicity of this region. As it is not possible
to estimate speckle patterns from MR image, the speckle cannot be
used to guide the MR-US registration. We therefore did not include
a model of speckle in the pseudo US image, but rather smoothed US
images using Gaussian blurring with a small kernel. The pseudo US
image is then registered with a smoothed real US image using a
method robust to the artefacts and missing features (Section 2.7).

Due to the complex attenuation patterns of the fetal brain US
images (and its incomplete correction by the US machine), inten-
sity and contrast of the fetal brain US images varies according to
the spatial location. However, the order of brightness of different
structures in a local neighbourhood is always fixed, as documented

3 http://www.doc.ic.ac.uk/~dr/software.
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in the clinical literature (Timor-Tritsch et al., 1996; Monteagudo
and Timor-Tritsch, 2009) and also observed by us. The local NCC
therefore seems to be the most suitable similarity measure for
matching US images. It follows that when constructing the pseudo
US image, the exact value of tissue intensity is not important, but
the correctness of the order of brightness is essential. The seg-
mented anatomical structures were assigned an empirically deter-
mined intensity value in order from brightest to darkest: 1. skull, 2.
choroid plexus, septi pellucidi and midline, 3. brain surface, 4. cer-
ebellum, 5. DGM and brainstem, 6. cerebral hemispheres. The
pseudo US image is shown in Fig. 4c.

2.7. Alignment of MRI and US

While a pseudo US image represents the ideal artefact-free US,
real clinical US images are affected by attenuation and shadows,
resulting in variable contrast and missing features. We therefore
employ a robust block-matching strategy (Ourselin et al., 2001),
which estimates a rigid or affine transformation by matching only
blocks which contain features, and the similarity of the images is
measured locally, between blocks, to make it independent of image
contrast.

The block-matching algorithm iteratively estimates the align-
ment T between two images by alternating between two steps.
In the first stage, for each block in the source image bg, the most
similar (homologous) block b, is found in the corresponding search
neighbourhood (determined by the latest estimate of the transfor-
mation T) in the target image. We use NCC to find the most similar
blocks, as the construction of the pseudo US image from MRI effec-
tively changes our registration problem from multi-modal to
mono-modal. NCC is calculated independently for each pair of
blocks, ensuring low sensitivity to intensity artefacts. The set of
vectors defined by centroids of the pairs of the homologous blocks
form a displacement field which is regularized in the second stage.
The blocks with variance smaller than a pre-defined threshold are
excluded in the first stage.

In the second stage, rigid or affine transformation is estimated
from the displacement field using least trimmed squared regres-
sion (LTS) proposed by Rousseeuw (1984):

T" = arg Tmini” (cg + d(i)> - T[cg} & (5)

The LTS estimator reduces the influence of outliers by minimising
the sum of a given number (h) of smallest squared residuals. A
residual error is obtained as the difference between the displace-
ment d; at centroid C; and the one obtained by applying the esti-
mated transformation to it. Such robust estimation of the
transformation is essential to remove influence of displacements
for the source blocks which have no corresponding target block
due to missing features in the US images.

3. Implementation
3.1. The MR data and pseudo US image construction

The MR images” were acquired at Hammersmith Hospital, Impe-
rial College London, on a Philips Achieva 1.5 T scanner with param-
eters TR = 15,000, TE = 140-180 and excitation pulse of 90 degrees.
The datasets consist of eight stacks of thin slices, with in-plane res-
olution 1.176 mm, the slice thickness 2.5 mm and slice overlap
1.25 mm. The images were reconstructed using the super-resolution
method proposed in our previous work (Kuklisova-Murgasova et al.,

4 We thank the Department of Neonatal Imaging, Imperial College London for
providing these datasets.

2011b, 2012c¢) into isotropic resolution 0.75 mm and the re-oriented
and re-sampled to resolution 0.33 mm. The reconstructed MRI is
shown in Figs. 2a and 5, top row.

We first segmented two MRI of single subjects with GA 23 and
28 weeks, which will also serve as templates for segmenting addi-
tional MR images. The EM segmentation of brain structures was
performed in a subject of 28 GA using the publicly available pre-
term neonatal probabilistic atlas® (Kuklisova-Murgasova et al.,
2011a), for which the time-point 29 weeks GA was chosen. As cur-
rently there is no fetal atlas available to us with the structures we
need to segment, we used the segmentation of the older subject’s
MRI as a prior for the segmentation of the younger subject’s MRI.
The difference in shape and cortical folding for these GAs requires
a flexible non-rigid registration and for this we used B-spline regis-
tration (Rueckert et al., 1999) with final control point spacing
2.5 mm and normalised mutual information. We found that registra-
tion of a blurry probabilistic template with such resolution is unsta-
ble, but subject-to-subject registration across such age-range
produces good results for the kind of structures we are interested
in. The segmentation of the older subject was transferred to the
younger subject and used as a prior for the EM segmentation.

For the choroid plexus, septi pellucidi and skull, manual seg-
mentation of these structures in one subject was needed to serve
as a template for registration-based segmentation of these struc-
tures in MR scans. We manually segmented the choroid plexus
and septi pellucidi in the younger subject. In the same subject,
the skull was first automatically estimated using the approach pre-
sented in Section 2.4 followed by manual editing. The segmenta-
tions of these three structures were then transferred to the older
subject using the B-spline registration with final control point
spacing 2.5 mm. WM of cerebellar hemispheres was also manually
segmented in the younger subject, but its transfer to the older sub-
ject was not necessary, as the cerebellar hemispheres do not ap-
pear hypoechogenic by 28 weeks gestation any more.

The falx was automatically segmented in both images indepen-
dently using the approach described in Section 2.3.

To demonstrate the feasibility of fully automatic segmentation
of unseen MRI using constructed templates, another MR image of
fetal brain (22 weeks GA) was reconstructed and automatically
segmented using the pipeline described in Section 2.5.

The segmentations of MR images were then converted to pseu-
do US images, as described in Section 2.6. An example of a pseudo
US images is shown in Fig. 4c.

The complete (unoptimised for speed) segmentation and con-
version pipeline takes approximately 25 min on a regular PC with
Intel i7 3.4 GHz processor.

3.2. The US data and registration

The proposed registration method was applied to 27 US vol-
umes of the fetal head, with GA 18-22 weeks. Additionally it was
also tested on 7 US volumes with GA