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Abstract

The second wave of next generation sequencing technologies, referred to as single-molecule sequencing (SMS), carries the
promise of profiling samples directly without employing polymerase chain reaction steps used by amplification-based
sequencing (AS) methods. To examine the merits of both technologies, we examine mRNA sequencing results from single-
molecule and amplification-based sequencing in a set of human cancer cell lines and tissues. We observe a characteristic
coverage bias towards high abundance transcripts in amplification-based sequencing. A larger fraction of AS reads cover
highly expressed genes, such as those associated with translational processes and housekeeping genes, resulting in
relatively lower coverage of genes at low and mid-level abundance. In contrast, the coverage of high abundance transcripts
plateaus off using SMS. Consequently, SMS is able to sequence lower- abundance transcripts more thoroughly, including
some that are undetected by AS methods; however, these include many more mapping artifacts. A better understanding of
the technical and analytical factors introducing platform specific biases in high throughput transcriptome sequencing
applications will be critical in cross platform meta-analytic studies.
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Introduction

Sequencing samples at single-molecule resolution is seen as the

next step in the evolution of Next Generation Sequencing (NGS).

These technologies have already produced unprecedented

amounts of data at nucleotide-level resolution, and are transform-

ing our ability to observe biological systems. NGS technology has

had a particular impact in the study of transcriptomes through

mRNA sequencing, or RNA-Seq. Offering a wide dynamic range

and truly global view, this NGS application is quickly supplanting

existing approaches for monitoring complex transcriptomes where

both transcript lengths and concentrations are highly heteroge-

neous. The multi-faceted nature of RNA-Seq has enabled in-depth

analysis of transcript abundance [1,2,3], alternative splicing

[4,5,6,7], novel transcript detection [8], biomarker discovery

[9,10,11], pathogen detection and characterization [12,13,14],

and gene fusion discovery [15,16,17].

The first wave of ‘next generation’ sequencing platforms such

as those from Applied Biosystems, Illumina, Ion Torrent, and

Roche/454, utilize PCR based amplification steps in sample

preparation and sequencing and are thus categorized as

amplification based sequencing (AS) methods. A second set of

platforms, described as ‘single molecule sequencing’ (SMS) [18]

by Helicos and Pacific Biosciences, eliminate the amplification

steps involved in the sample preparation and sequencing process

and thus profess to provide a more accurate view of the

transcriptome.

AS techniques typically involve two amplification steps; the first

amplification occurs during the creation of the double-stranded

cDNA library from the fragmented mRNA. The cDNAs are

ligated to a pair of adapter molecules, and PCR amplified. A

second amplification step is carried out with the adapter-ligated

single cDNA strands hybridized to primers bound to a glass or

silicon substrate to produce local clusters of identical molecules

using isothermal amplification or emulsion PCR. Taken together,

these two steps have the potential to selectively introduce over-

represented segments and genes into AS data. It has been observed

that this bias exists [19,20,21,22], however its effect on transcript

coverage and quantification has not been thoroughly explored in

complex samples with transcripts at variable concentration. The

Helicos SMS protocol involves creation of single-stranded cDNA

templates directly from mRNA and hybridization of these poly-
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adenylated templates to complementary oligomers bound to a

glass slide for sequencing (Figure S1).

Results

Assessment of SMS RNA-Seq through transcript profiling
To systematically assess the differences between the two

sequencing technologies, we analyzed RNA-Seq results from

amplification-based sequencing (AS) and single-molecule sequenc-

ing (SMS) across a set of twelve cancer cell lines and tissue

samples. In particular, our approach attempted to discover

recurrent biases that may be introduced by the amplification

steps implicit in AS. Our initial dataset used to evaluate

quantification performance is comprised of samples from the

prostate cancer cell lines DU145, RWPE, VCaP, and LnCaP, and

one prostate cancer tumor tissue with a matched adjacent normal

sample. Out of our set, three samples each of VCaP and LnCaP

were structured as a time course study with 0 h, 24 h, and 48 h

time points.

In our analysis of the two technologies, we chose to use the

preferred alignment tool for each technology in a ‘‘best vs. best’’

approach. AS reads were aligned with the Bowtie aligner [23]

while SMS reads were aligned with IndexDP [24] (Figure S2).

Reads aligning to known biological contaminants such as

mitochondrial DNA, ribosomal RNA, and technology-specific

contaminants such as adapter sequences and long oligomers, were

filtered out of the data set prior to analysis.

To assess the variation between SMS and AS technologies, we

adopted a simple read counting procedure similar to other RNA-

Seq quantification methodologies [1,2]. Reads from single lanes of

AS and SMS technologies run in parallel, were aligned to 56,722

University of California Santa Cruz (UCSC) transcripts (version

hg18). We then enumerated reads per-transcript and normalized

based on the number of high quality, non-contaminant reads per

sample to obtain values in reads per million (RPM). To avoid

uncertainty associated with multi-mappings to gene isoforms, only

single-best mapping methods were used to quantify the genes for

comparison. Single best mappings were derived from AS reads by

setting Bowtie to report only the single highest quality alignment

per read. Single best alignments were derived from SMS reads by

accepting alignments with the highest quality scores. Values from

all gene transcript isoforms, as defined by UCSC, were summed to

yield values in terms of alignments per million reads for each of the

29,416 genes. Coverage values in reads per kilobase per million

(RPKM) were computed by summing RPKM values of the

isoforms of each gene. Through a head to head comparison

between AS and SMS reads of identical samples run in parallel on

the two platforms, we observed a systematic over-representation of

high expressing transcripts in AS as compared to SMS. This bias

resulted in reduced coverage of mid- and lower-level expression

genes leading to overall lower transcript detection sensitivity in AS.

Reprocessing a subset of AS samples using IndexDP and repeating

the analysis ruled out technical differences in read assignment as

the cause of this representation bias. As the sequencing

technologies and chemistries continue to advance, we expect AS

platforms will overcome the limitation of low expressed transcript

detection by enhanced throughput.

Global properties of AS and SMS results
Transcriptome sequencing was carried out in parallel on AS

and SMS platforms for 12 samples including 10 prostate cancer

cell lines and 2 prostate cancer tissues. Overall, we generated 2.8

to 19.7 million raw AS and SMS reads in each of the 12 samples.

Approximately 30–60% of these reads passed initial filtering steps

and aligned to our transcriptome reference. SMS reads were

produced in two separate machine runs while AS reads were

produced across 6 independent machine runs. This procedure

resulted in 2.1–15 million and 2.8–8 million reads for SMS and

AS, respectively, which aligned to our transcriptome reference. In

10 out of the 12 samples used in the evaluation, SMS produced

more alignable reads in absolute terms, with a median of 1.39x

across all 12 samples. SMS results contained more reads aligning

to known contaminants, ranging from 12% to 51% of total reads,

with a median of 22%. The fraction of reads aligning to

contaminants in AS ranged from 2.6% to 14% with a median of

4.2%. SMS read length was variable and a filtering step restricted

usable reads to a length range between 24 bp and 57 bp in the first

run, and 25 bp and 64 bp in our second run, yielding a read

count-weighted mean length of approximately 33 bp in each of the

twelve samples (Table S1). A median of 97% of all SMS reads

had lengths between 25 bp and 47 bp across all 12 samples

(Figure S3). AS reads were generated at a minimum length of

36 bp in each sample, although the first and last several bases were

ignored to produce high quality reads at least 34 bp in length. All

AS reads were considered to have a maximum of 36 bp length.

Reproducibility between technical replicates of the DU145 cell

line was high for both AS and SMS methods, with a Pearson

correlation of r = .98 for both technologies (Figure S4). Reads

from both AS and SMS were also aligned allowing for 25

maximum mappings to assess the distribution between uniquely-

and multiply- mapped reads at the gene level, although only

single-best mappings were used for quantification and comparison

purposes. Both technologies achieved very similar unique mapping

rates of 72% and 75% in AS and SMS, respectively. From this raw

aligned data, we examined the relative distribution of reads across

genes observed in our samples by comparing their normalized

read counts. As expected, we observed broad agreement in terms

of gene expression values between the technologies (Figure S5).

However, we observed a recurrent pattern of over-representation

of high-abundance transcripts by the AS methodology as

compared to SMS.

Coverage bias in amplification-sequencing
Comparison of transcriptome reads of the same samples

quantified in parallel from AS and SMS platforms reveals a

distinct bias in AS results towards a slight overrepresentation of

highly expressed genes as compared to SMS, as shown in

Figure 1A. This difference was qualitatively assessed by dividing

the genes into quartiles of equal number, ordered by observed

values in AS, with the first quartile representing the highest

expressing genes, the second quartile representing mid-level

expression genes, and the third and fourth quartile defining the

genes with the lowest levels of transcripts (Figure 1B). Highly

expressed transcripts tended to have more read coverage in AS,

whereas SMS tended to cover the lower expressed transcripts

more effectively (Table S3). This additional coverage of high-

concentration transcripts consistently appeared to be at the

expense of lower-expressed transcripts, which tended to be more

thoroughly sequenced using SMS (Table S4).

In order to ensure that these biases were not the result of using a

different aligner for each technology, AS reads were re-aligned

using the IndexDP aligner used for SMS reads for a subset of the

samples, composed of the VCaP-24 h, VCaP-48 h, LnCaP-24 h,

LnCaP-48 h, and DU145_1 samples (Figure S6). Very high

correlation of gene-level values comparing Bowtie and IndexDP

alignments for the set of AS reads ruled out differences between

alignment tools as the source of the observed biases. For example,

correlation of gene-level values in the LnCaP-24 h sample was

Sequencing of Cancer Transcriptomes
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high between alignment methods at r = 0.97. Similarly high

correlation levels above r = 0.95 were observed in the remaining

samples. Similar patterns of high-expressor over-representation in

AS were observed using IndexDP alignments of AS reads in place

of standard alignments using Bowtie as shown in Figure S7. With

methodological differences essentially ruled out, we attempted to

observe the effects of this high-concentration coverage bias by

examining the detection of transcripts at low levels.

Increased SMS sensitivity results from high coverage of
low-abundance transcripts

To evaluate the effects of increased coverage in mid- to low- level

transcripts in SMS, we calculated the number of genes observed

above a noise threshold in only one of the two technologies. Using

the 0.3 RPKM noise level cutoff based on Ramskold, et al. [25], the

number of genes detected in only a single technology varied

between a high of 4,851 and a low of 2,048 and a high of 1,276 and

a low of 145 in SMS and AS (Figure 1C), respectively, across the

set of samples. A log-fold difference between the numbers of genes

detected in only one of the SMS vs. AS technology was observed as

we varied the cutoff value between 0.1 RPKM and 3.0 RPKM

(Figure S8) in 0.1 RPKM increments. These limits were chosen to

examine the sensitivity of the two methods across a range of values

starting from a near-zero noise level to an order of magnitude larger

than previously reported. Stratification of the genes observed in a

single technology into length classes of 0–300 bp, 300–3000 bp, and

3000+bp demonstrated that this was not due to differences in

technology-specific sample preparation, as the AS protocol specifies

a ,300 bp size selection step that the SMS procedure does not

require. This class shows relatively low representation across noise

thresholds in both AS and SMS. We then took this evaluation one

step further and examined the results from both SMS and AS

techniques attempting to find genes detectable only in one

technology.

Uniquely detected genes in SMS
In order to substantiate potential representation biases in the

two platforms and the suggested additional sensitivity of SMS, we

Figure 1. Observed bias in amplification-based sequencing. (A) Single-best mapping method-based quantile-quantile plot demonstrates
evidence of over-representation of highly expressed transcripts in amplification-based sequencing compared to single-molecule methods. (B)
Distribution of reads across genes by transcript concentration shows decreased SMS coverage of the most highly expressed genes, with those reads
going to mid- and low-level expressors. (C) Differences in the distribution of reads lead to increased sensitivity of low-expressing transcripts. (D) Nine
of the candidate genes seen above the 0.3 RPKM noise level demonstrated any amplification by RT-PCR, although only HIST1H4C showed high
abundance.
doi:10.1371/journal.pone.0017305.g001
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next queried for genes which were detected above a noise

threshold by SMS, but were below that threshold in AS. We chose

to analyze the DU145 sample as it was the most thoroughly

sequenced sample with two replicates run using each technology.

Using a 0.3 RPKM threshold, we chose to test the expression of 23

genes in our DU145 samples using RT-PCR, ten of which

demonstrated detectable amplification. Additionally, we se-

quenced the DU145 cell line much more thoroughly in order to

ensure that our detections were not due to technical factors in a

single machine run. As shown in Figure S9, this set of genes had

better sequencing coverage in SMS as compared to AS across the

total 94,427,789 reads generated in our second set of runs. This list

was generated by examining the distribution of reads and coverage

maps of the top 50 genes whose RPKM coverage showed the

largest difference between AS and SMS techniques and had

official HUGO names [26]. Candidates were chosen for the

presence of long (.36 bp) mapping reads and well-distributed

read alignments across the length of the transcripts. Of the

validated genes detected only by SMS, only HISTH1H4C was

found to be present in the DU145 sample with high confidence, as

shown in Figure 1D. Nine other candidate genes AK5, ACVRL1,

AMHR2, CERKL, MAFA, MAGI2, PIP5K1B, FAM49A, and TPRXL

showed weak amplification. In this set of genes, amplification was

only seen beyond cycle 30 making it difficult to confirm their

presence. We next sought to examine the over-represented genes

that may contribute to the reduction of sensitivity using

amplification-based sequencing techniques.

Consistent over-representation of high-expression genes
in amplification-based sequencing

Overall, 393 genes were found to be consistently within the set

of the top 500 over-represented genes according to normalized

read mapping count in at least 40% of our samples (Table S2). Of

these 393 genes, ten genes were found to be over-represented by

normalized read mapping count across all 12 of the samples

considered in the study. The coverage maps of RPLP0 and RPL31,

over-represented in all 12 samples, and SPINT2, over-represented

in 11 samples, demonstrate this coverage bias in these three high

expressing transcripts (Figure 2A,B,C). We then examined the

composition and distribution of reads in some of these highly over-

represented transcripts.

Impact of duplicated reads in amplification-based
sequencing

The gene RPLP0 had much greater total mapping coverage in

AS across all twelve samples (Figure S10). To aggressively

mitigate the effect of amplification in the coverage of this gene,

duplicate reads were removed (allowing only 1 read per unique

start location) for both technologies as done in previous studies

[21,22]. This resulted in suppression of many of the observed

peaks in AS. In contrast, SMS coverage of the gene appeared to be

relatively consistent across the length of the RPLP0 transcript

before and after this procedure. This substantial difference in

behavior between pre- and post- duplicate read removal for AS in

comparison to SMS suggests that amplification is a significant

contributory factor in the observed bias. Similar behavior is

observed in the RPL31 and SPINT2 genes as well.

We considered both alignment locus and read length in our

definition of read duplication, allowing one read at each locus

with a unique read length. Looking across the transcriptome

using this definition of read duplication, we observed a roughly

normal distribution along the length of all transcripts captured.

A 3-fold difference in the median number of duplicate reads

between AS and SMS across all transcripts observed in all

samples was maintained across the majority of the transcript

length (Figure 2D). This pattern of read duplication is similar

to that observed in the literature between standard amplifica-

tion-dependent and amplification-free sequencing methodologies

[27]. Removal of duplicate reads, allowing only one read per

locus, yielded inconsistent results across the sample set (Figure
S11). In some cases, the procedure reduced the over-

representation in the highest expressing genes, however the bias

appeared to remain in other samples. The procedure also

drastically reduced the number of usable reads by a median of

47% across the 12 sample set (Figure S12). While this naı̈ve

methodology of duplicate read removal had some positive effect

in reducing the discrepancies between AS and SMS in terms of

transcript quantification, the drastic effects it has on the number

of usable reads in AS suggests a different approach may be

desirable. With this understanding of the impact of duplicated

reads, we analyzed the set of recurrently over-represented genes

to see if they sequenced biologically interesting categories of

genes.

Gene Ontology analysis of the set of 393 recurrently
over-expressed genes

Across the samples, genes associated with the cell’s replicative

machinery comprised the largest portion of over-represented

transcripts by total normalized number of mapping reads in most

samples. Gene Ontology analysis of the set of 393 consistently

over-represented genes shows that they are components of the

cell’s translational machinery (Figure 3), a class generally found at

high levels in all twelve samples used in this evaluation. This again

suggests that the amplification procedure implicit in AS library

preparation exaggerates a particular bias towards these already-

abundant transcripts. The total number of reads falling into each

of the classes observed to be over-represented in AS was a mean of

2.23x higher as compared to SMS, although genes overlap

between the classes. With less of a focus on high-concentration

translational machinery and housekeeping genes, we then

attempted to apply SMS in finding gene fusions in the

transcriptome.

Re-discovery of known gene fusions using single-
molecule sequencing

We evaluated the applicability of single read SMS in gene fusion

discovery by attempting to re-discover known gene fusions in the

VCaP cell line, known to harbor TMPRSS2-ERG, in a de novo

process. As shown in Figure S13, we first aligned all possible

reads against the transcriptome and genome using IndexDP. The

non-mapping reads, which harbor chimeras, were subsequently

aligned against the transcriptome returning those reads that had a

partial alignment of at least 18 nucleotides. The portion of the

read that fails to align is defined as the overhang. All reads having

the same partial alignments, suggesting a common breakpoint,

were clustered. All clusters were then compared to determine if the

overhang from one breakpoint region had similarity to the

overhang of an independent breakpoint thereby reconstructing the

fusion junction. Lastly, all remaining non-mapping reads were

aligned against the novel fusion junctions.

For this purpose, a sample of the VCaP cell line was sequenced

more extensively in 2 channels, generating 31,198,128 reads

aligned to the transcriptome or genome. The VCaP sample was

prepared with one channel each with and without fragmentation.

The benchmark fusion between prostate-specific gene TMPRSS2

and ETS oncogenic family member, ERG [28], was found to be

Sequencing of Cancer Transcriptomes
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Figure 2. High-concentration transcript bias leads to differences in gene coverage in amplification-based sequencing. Coverage
maps from amplification-based and single molecule sequencing demonstrate significantly greater coverage of (A) RPLP0, (B) RPL31, and (C) SPINT2.
Removal of reads with the same start positions, strictly suppressing amplification of specific mRNA fragments, significantly reduces the ‘‘spikiness’’
seen in these cases. (D) Duplicate reads, defined as reads in excess of one per start locus and read length, are relatively evenly distributed along the
length of all observed transcripts across all samples in our evaluation set.
doi:10.1371/journal.pone.0017305.g002
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covered by 53 reads from generating 65 million reads in the VCaP

cell line (Figure 4).

Discussion

This is the first study assessing the performance of RNA-Seq using

single-molecule sequencing in comparison to existing amplification-

based techniques. While the characteristics of the SMS reads will

vary depending on platform, we expect that the distribution of reads

across varying transcript concentrations to remain relatively

consistent. The SMS technique was able to generate more usable

reads in ten of the twelve samples considered in the RNA-Seq

quantification and coverage evaluation, producing a mean 78%

more reads in these 10 samples. More importantly, these reads

tended to be less concentrated at the very highest abundance

transcripts as shown in Figure 1B, where fraction of total reads

mapping to the highest abundance transcripts in SMS are 4% below

that of AS. Because the AS technique amasses a large fraction of

reads sequencing high-abundance transcripts, detection of lower

abundance genes are reduced. The large differences between the

highest and second-highest quartile of expressed transcripts suggests

that this effect is non-linear as transcript abundance increases in the

sample. The wide range of transcript expression in biological

samples makes this skewed read distribution of coverage an

important factor when profiling mRNAs at the nucleotide level,

departing from models that may assume a linear correlation between

transcript abundance and sequencing coverage.

The number of duplicated reads observed in the samples across

all transcripts was, not surprisingly, 3-fold higher in AS compared

to SMS. The removal of duplicate reads is a well-defined

procedure in experiments involving DNA sequencing but is less

clear-cut when sequencing the transcriptome where varying

transcript concentrations naturally lead to reads of identical

mRNA segments. This caveat is due to highly expressed

transcripts contributing false positive duplicate reads due to

random sampling of read start locations along the transcript.

However, highly expressed transcripts in SMS would likely

generate a large number of these false positives as well. As a

result, this source of false positive duplicated reads is unlikely to be

the major factor behind the large observed differences in the

number of duplicates between AS and SMS. The removal of

duplicated reads by filtering out all reads in excess of a single read

for a single locus appears to be an incomplete solution that

introduces several confounding factors when using single reads.

First, the process of removing duplicates is inconsistent, affecting

the biased representation of reads in only a subset of the cases we

Figure 3. Global representation of Gene Ontology classes in Amplification-based sequencing. GO analysis of the 393 most over-
represented genes found using our recurrence analysis in the Molecular Function (MF) and Biological Process (BP) subtrees demonstrates that
translational processes and components of the ribosome are over-represented across samples in amplification-based sequencing.
doi:10.1371/journal.pone.0017305.g003
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observe. Second, the duplicate removal process also reduced the

usable sequence yield from each experimental run by nearly half,

although this is an overestimation due to the naı̈ve nature of the

method. Finally, these duplicate removal methods impose a peak

coverage limit for each transcript that is equivalent to the read

length. The naı̈ve process we applied for the elimination of

duplicates is most certainly over-aggressive and this issue may be

partially alleviated using more sophisticated bioinformatic and

statistical methods. However, these processes impose additional

confounding factors into the data that SMS avoids entirely due to

the direct nature of the sequencing methodology. Alternatively,

the use of paired-end reads also produces additional mapping and

sequence information that improves the process of duplicate

identification and removal. The differences that result from the

characteristics of these two methodologies can lead to disparities in

the coverage of genes along the spectrum of expression.

Small differences in the distribution of reads at the highest

quartile of expressed genes have a large effect on the coverage of

the remaining expressed genes. For example, the lowest quartile of

all genes seen in both technologies in the VCaP-24 h sample

composes 0.4% of the sum total of normalized reads seen in the

highest expressed quartile by AS. A 1% reduction in the number

of reads used to sequence the highest expressing genes in the forth

quartile can be used to triple the coverage of the lowest expressing

genes when reads are applied within the set. The result of shifting

the read distribution to lower expressing genes is seen between the

VCaP-0 h and VCaP AS samples. Both samples yielded a

relatively similar number of reads, with 3,636,454 and 3,352,960

reads in VCaP-0 h and VCaP, respectively. However, the VCaP-

0 h sample has more than twice the fraction of the total reads

falling into the lowest 2 quartiles with 2.2% and 0.9%, in the

respective VCaP-0 h and VCaP samples. It comes as no surprise

that in the VCaP-0 h sample, we are able to observe 16,813 genes

above the 0.3 RPKM noise threshold whereas in VCaP, we only

observe 13,866 genes above this threshold. Similarly, the reduced

high-abundance coverage bias across variable concentrations

allows the SMS approach 2- to 6-fold more coverage in the lower

half of all expressed genes. The variable read length of the SMS

reads contributes to quantification noise, compared to AS, due to

the number of short reads which map ambiguously. These mis-

mappings may contribute to the larger number of genes observed

at the very lowest expression levels. Examination of the reads

mapping to genes only found in SMS shows the presence of more

than 30% of long SMS reads (.36 bp in length) in a median of

17% of the genes (approximating the read length distribution

across all samples), leaving a 1.7-fold advantage in favor of SMS

sensitivity if genes detected with only short 24- to 35-mer reads are

all considered detections due to noise. While a significant

proportion of this noise is directly attributable to ambiguities in

accurately mapping short reads, the presence of long (.36 bp)

aligned reads is not a guarantee of transcript presence. In a large

number of the cases where detected genes have long reads aligned

to them, false positives were attributable to these long reads

mapping to repetitive elements or low complexity regions within

the transcripts.

Our PCR validation results suggest that using amplification to

confirm transcripts exclusively detected by single-molecule se-

quencing (and missed by AS sequencing) is not ideal, since any

sequence that is difficult to amplify will be hard to detect using AS

RNA-Seq and hard to validate using an amplification-based

system. Therefore, we cannot verify such transcripts unless an

amplification-free technology is employed. Sample preparation

differences may also contribute to differential representation of

transcripts in the sequencing libraries, as AS involves a size

selection step that SMS does not. In addition, the two protocols

use differing fragmentation procedures which may affect the

prevalence of detectable transcript fragments. This is one

significant factor that may contribute to the detection of some

genes above the noise threshold exclusively by AS. There may be

other reasons for differences in the relative representation of

transcripts in each technology. Some transcripts may be under-

represented because they are hard to capture using SMS.

Conversely, the amplification procedure may alter the apparent

transcript abundance as some sequences may amplify highly

leading to over-representation in AS, which may increase their

candidate transcript counts above the noise threshold. For some

candidates seen in only one technology, increasing sequencing

depth may be the most straightforward solution to the lack of

resolution for low abundance transcripts. Some candidates may

require modification of the library preparation protocol to ensure

sufficient library complexity to capture these low-abundance

transcripts. For example, the use of a normalized AS RNA-Seq

library preparation protocol or the introduction of a greater

amount of input RNA may increase the complexity of the library,

possibly enabling higher sensitivity as a result. However, the

paucity of published data addressing these topics at this time

precludes a thorough examination of potential solutions.

However, while SMS confers the advantages of higher

sensitivity and abrogation of issues stemming from read duplica-

tion, the technology has a number of confounding characteristics.

First, SMS produces reads that are, on average, shorter than their

AS counterparts, magnifying the issue of accurately mapping reads

to their correct positions. While the inclusion of long 64 bp reads

confers an advantage, these are the minority of all reads produced.

Approximately 60% of all SMS reads were 36 bp or smaller across

all samples. Second, the SMS methodology used in this evaluation

produces reads that include randomly introduced gaps due to the

incorporation of ‘‘dark bases’’ which do not produce photo-

detectable fluorescence. This characteristic requires the use of

alignment algorithms that allow for the inclusion of insertions and

deletions relative to the reference, and may complicate the

detection of structural variation. We also observed a higher

proportion of contaminant-alignable reads in SMS compared to

AS, although it is unclear whether this is a product of either the

sample preparation procedure or a characteristic of the sequencing

process.

Altogether, these differences suggest that SMS has advantages

in quantitative expression profiling and nucleotide-level assessment

such as polymorphism detection in mid- to low- abundance

transcripts although the lowest levels of detection are subject to

noise due to mapping. However, the log-fold advantage SMS

holds may be overcome as rapid advances in sequencing

technology result in the production of increasing numbers of

usable reads.

Methods

Preparation and sequencing of samples
Sequencing libraries for the RNA-Seq evaluation set were

prepared from a DU145 cell line (ATCC; HTB-81), an RWPE cell

Figure 4. Single molecule sequencing ‘‘re-discovers’’ known gene fusions. Schematic of the intra-chromosomal rearrangement on
chromosome 21 fusing TMPRSS2 (yellow) to ERG (purple).
doi:10.1371/journal.pone.0017305.g004
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line (ATCC; CRL-11609), an androgen-induced VCaP cell line

time course at 0 h, 24 h, 48 h, an identical time course in the

LnCaP (ATCC; CRL-1740) cell line, and a tissue sample from a

prostate tumor paired with an adjacent normal sample. Sample

preparation of the entire 12-sample set included the RNA

fragmentation step to ensure consistency. Two replicates of a

normal untreated VCaP cell line were run for gene fusion

discovery evaluation, one each of fragmented and un-fragmented

RNA. The fragmented sample was included in the 12-sample

evaluation set. The VCaP cell line was derived from a vertebral

metastasis from a patient with hormone-refractory metastatic

prostate cancer, and was provided by Ken Pienta (University of

Michigan, Ann Arbor, MI). LNCaP or VCaP [29] cells were

starved in phenol red free media supplemented with charcoal-

dextran filtered FBS and 5% penicillin/streptomycin for 48 h

before the addition of 1 nM synthetic androgen (R1881) as

indicated. RNA was then isolated using the miRNeasy kit (Qiagen)

according to the manufacturer’s instructions. Prostate tumor tissue

was obtained from the University of Michigan tissue core.

Identical samples were submitted for SMS and AS sequencing in

all cases with the exception of the VCaP and LnCaP time course

samples. The DU145, VCaP, RWPE, as well as the VCaP and

LNCaP AS-sequenced time course samples were treated with

DNAse. The VCaP and LNCaP time course samples submitted

for SMS, as well as the PrCa and PrCa-Adjacent normal samples,

were not treated with DNAse during sample preparation. Poly-A

containing mRNA for these samples was isolated by two rounds of

binding to Sera-Mag Magnetic Oligo(dT) beads, wash and elution

in 10 mM Tris buffer pH 7.5, according to manufacturer’s

instructions (Thermo Scientific, Indianapolis). The purified

mRNA was immediately processed for library preparation. The

VCaP and LNCaP time course AS sample mRNA was selected

with oligodT linked beads according to manufacturer’s instruc-

tions (Invitrogen).

Amplification-based sequencing was done in paired-end mode

run to a minimum of 36 bp per read and trimmed to a minimum

of 34 bp to remove low quality bases. For amplification-based

sequencing, messenger RNA (2 mg) was fragmented at 85uC for

5 min in a fragmentation buffer (Ambion) and converted to single

stranded cDNA using SuperScript II reverse transcriptase

(Invitrogen), followed by second-strand cDNA synthesis using

Escherichia coli DNA polymerase I (Invitrogen). The double

stranded cDNA was further processed by Illumina mRNA

sequencing Prep kit. Briefly, double-stranded cDNA was end

repaired by using T4 DNA polymerase and T4 polynucleotide

kinase, monoadenylated using an exo minus Klenow DNA

polymerase I (39to 59 exonucleotide activity), and ligated with

adaptor oligo mix (Illumina) using T4 DNA ligase. The adaptor-

ligated cDNA library was then fractioned on a 3% agarose gel,

and fragments corresponding to 280–320 bp were excised,

purified, and PCR amplified (15 cycles) by Phusion polymerase

(NEB). The PCR product was again size selected on a 3% agarose

gel by cutting out the fragments in the 300 bp range. The library

was then purified with the Qiaquick Minelute PCR Purification

Kit (Qiagen) and quantified with the Agilent DNA 1000 kit on the

Agilent 2100 Bioanalyzer following the manufacturer’s instruc-

tions. Library (5–8 pM) was used to prepare flowcells for analysis

on the Illumina Genome Analyzer II.

Single-molecule sequencing was done on a Helicos HeliScope in

single-read mode, resulting in useful reads ranging between 24 bp

and 61 bp for the first set and 25 bp and 64 bp in length in the

second set. polyA+ RNA was purified on an RNeasy MinElute

column (Qiagen). Then 100 ng of RNA (on average, between

86 ng–130 ng) was heat fragmented by incubation at 95C for 10

minutes or left un-fragmented. First strand cDNA was then made

using the SuperScript III reagent kit (Invitrogen, Carlsbad CA) as

follows: 500 ng random hexamers, 2 ul of 10 mM dNTP, and

DEPC water were added to the RNA up to a volume of 25 ul. The

mixture was then incubated at 65C for 5 min and placed directly

on ice for 2 minutes. Next, 5 ul 10X buffer, 5 ul 0.1 M DTT, and

10 ul 25 mM MgCl were added to each sample, and the, now

45 ul, sample was incubated at 15C for 30 minutes. After this

incubation time 2.5 ul of RNaseOut (100 U), and 2.5 ul of

SuperScript III (500 U) were added to each sample and the

samples were incubated at 42C for 30 minutes, 55C for 50

minutes, and 85C for 5 minutes. After the reverse transcription

reaction, 1 ul RNase H and 1 ul of RNase I were added to each

sample, followed by a 30 minute incubation at 37C.

Samples were twice purified on DyeEx columns (Qiagen).

cDNA samples were then Poly-A tailed using the Helicos DGE

assay reagent kit (Helicos, Cambridge MA), and the terminal

transferase kit (NEB, Ipswich MA) as follows: 5 ul Helicos Tailing

control Oligonucleotide A was added to 20 ul of each cDNA and

the volume was adjusted to 35.5 ul with water. This mixture was

then denatured for 5 minutes at 95C and placed directly on ice for

2 minutes. Then, 5 ul 2.5 mM CoCl, 5 ul 10X terminal

transferase buffer, 2 ul Helicos polyA tailing dATP, and 1.2 ul

terminal transferase (24 U) were added to each samples, followed

by incubation at 42C for 1 hour, and then 70C for 10 minutes.

After the tailing reaction the samples were 39 blocked as follows:

samples were denatured for 5 minutes at 95C and placed directly

on ice for 2 minutes, 300 pmoles biotin-dideoxy ATP (Perkin

Elmer, Waltham MA) and 1.2 ul terminal transferase (24 U) were

then added, followed by 1 hour incubation at 37C, and a final 10

minute heat inactivation step at 70C. 39 biotinylation of samples

was used to assess sample molarity to inform HeliScope sample-

loading for the sequencing reaction (according to manufacturer’s

instructions).

Alignment of reads
The first read of AS read pairs was used in this study to compare

to the single reads derived from SMS. SMS reads were aligned

with the IndexDP aligner, while amplification-based sequencing

reads were aligned with both the Bowtie and IndexDP aligners as

shown in Figure S2. IndexDP alignments were filtered by

NScore, defined as (5*#_match-4*#_error)/read_length) with a

minimum of score 4, reporting at most 25 alignments per read.

Reads between 24 bp and 57 bp and 25 bp and 64 bp in length

were used for sets 1 and 2, respectively. Bowtie was set to report

alignments with at most two mismatches within a 32-base seed

region, reporting at most 25 multiple alignments per read. The

first base of all AS reads was trimmed to maximize quality. Single-

best quality alignments were derived using Bowtie by setting the

–best and –k 1 parameters to report only the single highest quality

alignment per read. Reads were aligned to the set of UCSC

transcripts defined in hg18, downloaded from the UCSC Genome

Browser at http://genome.ucsc.edu. Known contaminants were

also included in the set of references. Bowtie alignments included

references for mitochondrial DNA, adapter sequence, and

ribosomal RNA. IndexDP alignments included references for

poly-A, poly-T, poly-C, and poly-G oligomers. Re-alignment of

AS reads using IndexDP was done using the same parameters as

SMS reads, using the full length of the read. Reads from the PrCa

sample were trimmed to 50 bp from 75 bp to meet technical

limitations of the alignment program. Sequence reads from this

study have been deposited into the NCBI Short Read Archive with

accession number SRA028835.1.
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Duplicate read removal
Duplicate reads were removed from the data by analyzing the

alignments to each UCSC transcript in the transcriptome

reference. One read was allowed to align at each start locus (with

and without consideration of read length). Reads with alignments

to locations along the reference transcript in excess to those were

marked as duplicates and removed from the data set.

Relative quantification of genes and coverage calculation
Reads aligning to each UCSC transcript were counted at

transcript level resolution and then summarized at the gene level

using transcript to gene symbol mappings from the kgXref table

downloaded from the UCSC Genome Browser at http://genome.

ucsc.edu. Reads aligning to the known contaminant references

were marked and not considered in the analysis. Genes were

quantified using only the single-best mapping methodology.

Single-best mappings were derived from IndexDP alignments by

choosing alignments with the highest NScore, or an alignment

randomly picked from the set of highest scores when multiple

alignments are present with the same NScore value. Gene-level

RPM values were derived by summing the number of aligned

reads from each gene’s constituent transcript isoforms and dividing

by the total number of usable reads. Read sums were calculated

using R Statistical Environment [30]. RPKM values were

computed for each observed UCSC transcript and summed for

all isoforms of a gene to derive a gene-level RPKM expression

value. Coverage levels were calculated by summing the read

lengths of all reads aligning to all isoforms of each gene and

dividing by the mean isoform length.

Detection of genes observed in a single technology
We derived a list of genes observed in only SMS or AS for the

DU145 samples in this study by comparing the mean gene-level

RPKM expression values of each pair of samples run on AS and

SMS. A list of candidates was nominated by then sorting the list of

genes with expression values above the noise threshold in SMS

and below the threshold in AS by the observed differences. These

genes were evaluated for mis-mappings by examining secondary

and alternate alignments of the reads aligning to each candidate as

shown in Figure S14. The list was filtered to remove genes

detected only by short reads and the top 50 remaining genes

manually evaluated to have well-defined HUGO names, diffuse

read distribution along the transcript length, and the presence of

long (.36 bp) reads in both SMS technical replicates.

Validation of Detected Single-Technology Transcripts by
PCR

RNA was extracted from the cells using Qiazol based on

Qiagen’s miRNeasy Minikit following the manufacturer’s instruc-

tions (Qiagen). 1 mg of total RNA was reverse transcribed into

cDNA using SuperScript III (Invitrogen) in the presence of oligo

dT and random primers. Quantitative PCR was carried out by

Taqman assay method using gene specific primers and probes

from the Universal Probe Library (UPL), Human (Roche) as the

internal oligonucleotide, according to manufacturer’s instructions.

GAPDH was used as housekeeping control gene for UPL based

Taqman assay (Roche), as per manufacturer’s instructions.

All assays were performed in duplicate using the primer

sequences in Table S5.

Gene Ontology analysis of reads
Gene Ontology (GO) analysis of over-represented genes was

done in order to assess the most highly represented GO classes and

determine the relative abundance of reads attributable to each GO

class. This analysis was done with GeneCoDis2 tool [31]. Single

GO classes resulting from this process were evaluated for their

representation in terms of fraction of total sequenced reads across

the 12-sample set. Relative representation of reads attributable to

each GO class was done by summing the number of single-best

mapping alignments for each gene in each GO class as defined in

the GO annotations for Homo Sapiens, downloaded from http://

www.geneontology.org and dividing the total by the total number

of reads in each sample.

Gene fusion discovery in single-molecule sequencing
The VCaP cell line was sequenced in two additional channels to

evaluate the suitability of single molecule sequencing for the task of

gene fusion detection. This was done by mining the reads in an

effort to re-discover known gene fusions. All possible reads were first

aligned against the transcriptome and genome using IndexDP.

Non-mapping reads, which harbor chimeras, were subsequently

aligned against the transcriptome returning those reads that had a

partial alignment of at least 18 nucleotides. All reads having the

same partial alignments, suggesting a common breakpoint, were

clustered. All clusters were then compared to see determine if the

overhang (portion of the read that fails to align) from one breakpoint

region had similarity to the overhang of an independent breakpoint,

thereby reconstructing the fusion junction. Finally, all remaining

non-mapping reads were aligned against the novel fusion junctions.

This de novo approach enabled the re-discovery of the TMPRSS2-

ERG gene fusion across two channels of SMS reads.

Supporting Information

Figure S1 Single-molecule mRNA-sequencing. mRNAs

are purified using poly-A selection and then fragmented. 1st-strand

cDNA is synthesized from the fragmented mRNA, and then poly-

A tailed using terminal transferase. Polyadenylated cDNA

fragments are hybridized to poly-T oligomers bound to a glass

substrate, excess A bases are ‘‘filled,‘‘ and then ‘‘locked’’ with an A,

C, or G base attached to a virtual terminator. The sequencing

process then occurs with repeated cycles of virtual terminator

cleavage, bases addition, and image readout.

(TIF)

Figure S2 Read alignment with Bowtie and IndexDP.
Bowtie was used for amplification-based sequencing read align-

ment and IndexDP for single molecule read alignment. While

different in their parameters, the effective alignments and

specificity between the aligners are similar, although Bowtie has

a slightly higher cutoff.

(TIF)

Figure S3 Length distribution of aligned SMS reads.
Aligned SMS read lengths varied between 24 bp to 57 bp in our

first set of samples and 25 bp to 63 bp in our second set. The

majority of reads are between 25 bp and 45 bp in length.

(TIF)

Figure S4 Sample Profiling Reproducibility in SMS and
AS. Bowtie was used for amplification-based sequencing read

alignment and IndexDP for single molecule read alignment.

Pearson correlation for log2-transformed, normalized tag counts is

r = 0.98 for both SMS and AS.

(TIF)

Figure S5 Log2 correlation between amplification-
based and single-molecule sequencing. Log2 correlation
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between single-molecule and amplification-based RNA-Seq single-

best read mappings in these samples show that in broad terms the

two sequencing methods yield similar results, suggesting the

observed bias is not due to sample differences.

(TIF)

Figure S6 Correlation between IndexDP and Bowtie
alignment of amplification-based sequencing reads. The

correlation between Bowtie and IndexDP within the subset of

samples was relatively high, with Pearson correlation values above

r = 0.95 in all samples.

(TIF)

Figure S7 IndexDP realignment of amplification-based
sequencing reads. Alignment of amplification-based sequenc-

ing reads using the IndexDP alignment tool used to align single-

molecule reads shows persistence of the observed bias in

amplification-based technology. This provides evidence that the

alignment method is not responsible for this bias towards high-

concentration transcripts.

(TIF)

Figure S8 Unique gene detection in AS and SMS across
threshold values, by transcript length. The pattern of

increased sensitivity in SMS is uniform as the baseline noise level is

varied from 0.1 to 3.0 RPKM. Low representation by short

transcripts show that this effect is not due to the lack of a size-

selection step in SMS.

(TIF)

Figure S9 Expression values of validation candidate
genes showing amplification. Out of the set of genes chosen

for RT-PCR validation for their detection over the 0.3 RPKM

noise threshold by only SMS, diffuse read alignment pattern, and

the presence of long reads aligned to their transcripts, these ten

genes showed detectable amplification.

(TIF)

Figure S10 RPLP0 coverage in other samples. Coverage

plots of the over-represented gene RPLP0 in the LNCaP-24 h,

LNCaP-48 h, VCaP-24 h, VCaP-48 h, and PrCa-Met samples

show that this gene is often more highly sequenced using the

amplification-based method.

(TIF)

Figure S11 Quantile-quantile plot of AS and SMS reads
with duplicates removed. Reads in excess of a single read per

aligned locus were removed from both AS and SMS data sets. The

result of this procedure was inconsistent across the data set; some

samples saw reduced representation of high expressing genes while

the high-concentration bias remained in others.

(TIF)

Figure S12 Effect of duplicate removal in AS. Reads in

excess of a single read per aligned locus were removed from both

AS and SMS data sets, resulting in (A) a median 47% drop in the

number of usable reads across the 12 samples in the evaluation set

and (B) the loss of dynamic range for genes in with high coverage

levels.

(TIF)

Figure S13 Gene Fusion Discovery Using SMS Reads. All

possible reads were aligned against the transcriptome and genome

using IndexDP. The set of non-mapping reads (some of which

harbor chimeras) were subsequently aligned against the transcrip-

tome, returning reads that had a partial alignment of at least 18

nucleotides. All reads having the same partial alignments,

suggesting a common breakpoint, were clustered. All clusters

were then compared to determine if the non-aligning ‘‘overhang’’

portion of the read from one breakpoint region had similarity to

the overhang of an independent breakpoint, thereby reconstruct-

ing the fusion junction. Finally, all remaining non-mapping reads

were aligned against the candidate novel fusion junctions.

(TIF)

Figure S14 Alternate mappings for genes detected by
SMS only in DU145. We analyzed alternate mappings for the

reads attributable to each of the nine genes we observed to be

detectable only by SMS in DU145 using reads from both

replicates. In all nine cases, reads mapped most strongly to the

genes of interest, suggesting that the detection of these genes is not

an artifact of mismapping. The top 20 alternate mappings,

ordered by mapping read count, are shown in the graph.

(TIF)

Table S1 Sample statistics in (A) amplification-based sequencing

and (B) single-molecule sequencing technologies.

(TIF)

Table S2 Recurrently over-represented genes in amplification-

based sequencing in ten or more samples. Of the 393 genes are

recurrently within the top 500 over-represented genes by total read

count in five (40%) or more samples, these 59 are seen most often,

occurring in at least 10 samples.

(TIF)

Table S3 Sum of normalized expression values per quartile by

sample in AS and SMS. We observe that the number of reads

aligning to transcripts seen in the third and fourth quartiles is

consistently greater in SMS than AS across the sample set.

(TIF)

Table S4 Gene-level read coverage of observed transcripts. (A)

and (B) illustrate the number of genes with coverage values at

various depths in single molecule and amplification-based

sequencing, respectively.

(TIF)

Table S5 Primers used for validating transcripts seen only by

SMS. All experiments were performed in duplicate using two

primer pairs per candidate gene when possible.

(TIF)
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