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Sclerosing skin diseases represent a large number of distinct disease entities, which 
include systemic sclerosis, localized scleroderma, and scleredema adultorum. These 
pathologies have a common clinical appearance and share histological features.
However, the specific interplay between cytokines and growth factors, which activate 
different mesenchymal cell populations and production of different extracellular matrix 
components, determines the biomechanical properties of the skin and the clinical 
features of each disease. A better understanding of the mechanisms underlying these 
events is prerequisite for developing novel targeted therapeutic approaches.
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inTRODUCTiOn

Sclerosing skin diseases are a very heterogeneous group of diseases, which are characterized by 
excessive accumulation of extracellular matrix (ECM) constituents in the dermis or the subcutane-
ous tissue (Table  1). The common clinical characteristic is skin hardening often associated with 
thickening of the skin and firm adherence to the underlying fascia.

This group of diseases includes systemic sclerosis with its main subsets, the diffuse and the limited 
form (1–7). Overlap syndromes are complex diseases, also characterized by sclerosis of the skin as in 
systemic sclerosis but also associated with additional symptoms of other autoimmune diseases such 
as lupus erythematosus, dermatomyositis, Sjörgen’s syndrome, or rheumatoid arthritis (8). Localized 
scleroderma remains limited to the skin and also occurs in different subsets covering a wide spectrum 
of clinical aspects (2, 9). Some patients have minor involvement of the skin with a few fibrotic areas, 
whereas others show extensive involvement of large areas of the integument, which can lead to severe 
contractures and disabilities. The clinical diagnosis is easy if all characteristic symptoms are present. 
However, sclerodermatous features also occur in patients with scleromyxedema, scleredema, and 
sometimes in paraneoplastic processes. Also patients with porphyria cutanea tarda can develop 
an extensive sclerosing skin involvement. Therefore, all these diagnoses have to be considered in 
the differential diagnosis as well as other metabolic diseases such as amyloidosis or scleredema 
diabeticorum including Stiff skin syndrome, which is a rare inborn disease that develops extensive 
thickening of the dermis due to an underlying mutation in fibrillin, a major component of the elastic 
fiber network in the dermis (10–13). The clinical characteristics of all these diseases are similar to 
severe localized scleroderma but distinct, and the disease entities can be clearly distinguished. There 

Abbreviations: αSMA, alpha smooth muscle actin; BMP, bone morphogenetic protein; CTGF, connective tissue growth factor; 
dcSSc, diffuse cutaneous systemic sclerosis; ECM, extracellular matrix; FGF, fibroblast growth factor; lcSSc, limited cutaneous 
systemic sclerosis; PDGF, platelet-derived growth factor; TGFβ, transforming growth factor beta.
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Table 1 | Heterogeneity of sclerosing skin diseases.

Groups Subsets variants

Systemic 
sclerosis

Diffuse cutaneous systemic sclerosis
Limited cutaneous systemic 
sclerosis
SSc overlap
SSc sine scleroderma

Localized 
scleroderma 
and its subsets

Limited form Plaque type
Guttata morphea
Atrophoderma of 
Pasini and Pierini

Generalized form Generalized 
localized 
scleroderma
Disabling 
pansclerotic 
morphea

Linear form Linear localized 
scleroderma
En coup de sabre
Parry Romberg 
syndrome

Deep form
Mixed form
Eosinophilic fasciitis

Scleredema 
adultorum

Type I postinfectious
Type II with paraproteinemia
Type III with diabetes mellitus

Other

Scleromyxedema
Nephrogenic systemic fibrosis
Sclerodermiform porphyria cutanea 
tarda
Stiff skin syndrome
Toxic oil syndrome and others
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are also some common but distinct features at the histological and 
ultrastructural level.

PaTHOPHYSiOlOGY OF SCleRODeRMa 
anD RelaTeD DiSeaSeS

The activation of mesenchymal cells in the dermis is a common 
pathophysiological hallmark in all these diseases; however, the 
initial trigger mechanisms, the origin of these cells, and also 
the exact characteristics of the biosynthetic products (proteins, 
cytokines, proteases, etc.) that are deposited into the dermis by 
these activated mesenchymal cells, differ considerably depending 
on the specific disease entity (Figure 1) (14–17).

In this mini-review, we want to discuss the mechanisms lead-
ing to the excessive deposition of various ECM constituents in 
these different diseases and highlight both the common but also 
the disease-specific characteristics.

The histology of skin lesions in patients with localized sclero-
derma, systemic sclerosis, or the overlap syndromes reveals the 
presence of early perivascular lymphohistiocytic infiltrates that 
are probably subsequent to an early endothelial damage (1, 5, 18). 
These consist of activated mononuclear cells that release a large 
number of proinflammatory and fibrogenic cytokines. In some of 
these diseases, e.g., the Shulman syndrome, eosinophils represent 

a high percentage of cells in the early inflammatory infiltrates. 
Also, macrophages are thought to play an important role in the 
initial phases of these diseases. These observations are supported 
by recent gene profiling results from the analysis of skin biopsies 
(19, 20).

Following the initial inflammatory reaction, fibrogenic 
cytokines are generated and released from the cells. These include 
transforming growth factor beta (TGFβ), connective tissue 
growth factor, platelet-derived growth factor, the interleukins, 
and others, which are thought to be the key players contributing 
to the activation of fibroblasts and/or mesenchymal cells that then 
produce excessive amounts of ECM molecules (5, 18). Although it 
is still unclear whether tissue-resident fibroblasts, bone marrow-
derived circulating progenitor cells, or tissue-derived progenitor 
cells are activated, the resulting cell type is called “myofibroblast,” 
and it is characterized by the incorporation of alpha smooth 
muscle actin into prominent stress fibers (21, 22). These cells are 
capable of producing excessive amounts of ECM and exerting 
considerable force against this matrix. They were first identified 
at the ultrastructural level by their extraordinary cytoskeletal 
properties in healing wounds, where they are responsible for 
reconstituting the dermal tissue (23).

ROle OF THe eCM anD biOMeCHaniCS 
in THe MiCROenviROnMenT

Alterations in quantity as well as organization of the ECM are 
a prime hallmark of sclerosing skin disorders. In physiological 
conditions, the ECM is a highly organized structure containing a 
large number of different constituents. These include fibrils such 
as fibrillins and many different types of collagens mixed with non-
fibrillar components such as proteoglycans, fibulins, fibronectin, 
matrilins, thrombospondins, and many others (24–27). The rela-
tive amounts of these components and the interactions among the 
diverse constituents determine the type of extracellular networks 
(28), which in turn control the biomechanical quality, the rigidity, 
and stiffness of the connective tissues (29, 30).

The interstitial fibrillar collagens represent the main struc-
tural component of connective tissues; their macromolecular 
organization, however, is regulated by their interaction with the 
fibril-associated collagens and with non-collagenous ECM com-
ponents (31, 32). Biosynthesis of collagens is complex; the triple 
helical molecules are produced in a precursor form that contains 
the characteristic triple helix featuring repeats of the amino 
acids glycine-x-y, where y, is either proline or hydroxyproline. 
Intracellularly, several posttranslational modifications take place, 
which include the hydroxylation of prolyl and lysyl residues (33). 
The molecular mechanisms how these large collagen molecules 
are secreted are not fully understood and may comprise special-
ized carriers (34, 35). Once in the extracellular space, procollagen 
propeptides present at both ends of the molecules are removed to 
enable the aggregation of individual molecules into higher order 
supramolecular structures. Collagen fibrils are then cross-linked 
to form insoluble structures that provide tensile strength and 
stability to tissues (36). This requires the activity of the intracel-
lular lysyl hydroxylase and the lysyl oxidase in the extracellular 
space, which is responsible for cross-link formation between 
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FiGURe 1 | Triggers, key cellular players and structural proteins involved in skin sclerosis. Activation of the innate as well as the adaptive immune system by diverse 
triggers is thought to lead to activation of different fibroblast progenitors and lineages. These then convert to the myofibroblast that plays a central role in producing 
excessive amounts of extracellular matrix and other protein components typically associated with certain subsets of sclerosing skin diseases.

3

Eckes et al. Sclerosing Skin Diseases

Frontiers in Medicine | www.frontiersin.org August 2017 | Volume 4 | Article 120

individual collagen molecules (37, 38). The activity of these post-
translationally modifying enzymes depends on the specific cel-
lular conditions and can be modulated by inflammatory cells and 
certain cytokines (39). The amount and the type of cross-link vary 
considerably in soft and hard tissues and are among the major 
determinants of tissue stiffness. Hence, soft connective tissues 
such as skin are characterized by the hydroxylysinorleucine cross-
link type, whereas the dihydroxy lysine-norleucine (DHLNL) 
type predominates in bone and cartilage (31). Interestingly, the 
DHLNL type of cross-link is also a prominent feature of the 
collagen network in hardened fibrotically altered skin (40–42). 
More recently, it also became evident that tissue stiffness and the 
transduction of mechanical force regulate cellular activity includ-
ing cell motility (43) and myofibroblast formation (44). Thereby, 
enhanced tissue stiffness contributes to the sustainability of a 
fibrotic process.

THe STiFF SKin SYnDROMe aS a 
MODel

Interestingly, fibrotic reactions and enhanced tissue stiffness 
can arise independently of the early endothelial cell damage and 
the resulting perivascular lymphohistiocytic infiltrate or other 
inflammatory conditions. This is well illustrated by the stiff 
skin syndrome, a rare inborn disease characterized by exces-
sive accumulation of ECM in the fascia and the skin. Dietz and 
co-workers showed that this syndrome is caused by mutations 
in the 8-cysteine domain of fibrillin-1 (10). Fibrillin monomers 
are large glycoproteins of 350 kilodaltons, which assemble into 
microfibrils with small diameter and are important constituents 
of elastic fibers (12). In stiff skin syndrome, however, the altered 
fibrillin microfibrils form large aggregates, in which the microfi-
brils display an abnormal ultrastructure. In addition, the muta-
tion in the 8-cysteine domain affects the integrin-binding site in 
fibrillin and leads to an aberrant binding of cells to the fibrillin 
microfibrils. Actually, introducing this mutation into mice is 

sufficient to trigger a stiff skin syndrome like phenotype in these 
mice (11).

An independent clue that modified tensile strength due to 
mutations in fibrillin can lead to fibrotic reactions came from the 
identification of the molecular defect in the Tight skin mouse, a 
model that is characterized by prominent skin fibrosis and that 
has been extensively investigated to better understand sclero-
derma (45). Here, a large duplication in the fibrillin-1 gene also 
leads to microfibrils with an altered ultrastructure of the connec-
tive tissue in the dermis (46). However, how the altered fibrillin 
molecules lead to the clinical phenotype has remained unclear. 
It has been postulated that the duplication might enhance the 
binding capacity of the altered fibrillin microfibrillar network 
for cytokines, especially for TGFβ, which could result in higher 
local TGF-β concentrations and increased local activity following 
its release from the ECM. This has supported the concept that 
ECM-bound growth factors and cytokines regulate local inflam-
matory reactions and that the ECM can provide storage places 
for such factors. Binding to ECM can both activate proforms of 
growth factors and inactivate biologically active mediators (47). 
This seems to represent a general concept explaining how key 
cytokines and growth factors can rapidly be made available upon 
demand such as after tissue injury. This concept is illustrated by 
several examples including fibroblast growth factor (48, 49) and 
the family of bone morphogenetic proteins (50–52). It is probably 
best documented for TGFβ that can be released in an activated 
form from fibrillin microfibrils and other ECM structures by 
mechanical tension (53–55).

nePHROGeniC SYSTeMiC FibROSiS

Nephrogenic systemic fibrosis is a very rare sclerosing disease 
that is frequently seen in patients with impaired renal function 
(56). Usually symmetrical sclerotic plaques develop, often at 
the lower legs and stretching over the joints, which can result 
in severe contractures. Gadolinium has been identified as the 
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main external trigger of this disease (57). However, the exact 
pathophysiological mechanism is still unclear and a matter of 
debate. There is the characteristic appearance of CD34-positive 
spindle cells as well as specifically activated macrophages. This 
has led to the hypothesis that gadolinium triggers the activation 
of dendritic cells and/or macrophages to release cytokines that 
then induce the accumulation and activation of fibroblasts and 
progenitor cells (56, 58). Both, the clinical appearance as well as the 
characteristic histology enable a clear distinction from localized 
or systemic scleroderma and represent other pathophysiological 
events leading to the clinical symptom of sclerodermatous skin.

SCleReDeMa anD SCleROMYXeDeMa

Obviously, in patients with scleredema and scleromyxedema, 
the histological alterations and the clinical appearance of the 
skin are quite distinct. Scleredema, which occurs in three types 
(postinfectious, associated with paraproteinemia or associated 
with diabetes mellitus), is characterized by excessive deposition 
of mucin in the dermis (59). There is also fragmentation of the 
elastic fibers, but no evidence of endothelial damage with the 
resulting perivascular infiltrates such as those seen in sclero-
derma. The biomechanical appearance of the skin in the involved 
areas especially on the back of the patients is highly characteristic 
and allows a rapid diagnosis.

Dermal mucin deposition is also a hallmark of scleromyx-
edema, which is associated with the presence of monoclonal 
paraproteins and severe extracutaneous involvement (60, 61). 
These patients develop multiple waxy papules and fibrotic 
plaques. The pathogenesis is not yet understood, and although 
monoclonal gammopathy is often associated with this disease, its 
pathogenetic role is unclear. Histologically, proliferating spindle-like 
fibroblasts and enhanced deposition of collagen is seen in this 
disease, and it has been postulated that circulating cytokines are 
involved in the pathophysiology. Those, however, have not yet 
been characterized in detail. The involvement of the fingers in 
early disease may be mistaken as scleroderma, but the further 
development of the disease, the absence of antinuclear antibod-
ies, and the lack of Raynaud’s phenomenon usually allow a clear 
diagnosis.

COMMOn MeCHaniSMS

Sclerosing skin diseases represent a broad spectrum of clinically 
distinct diseases that, however, share common characteristics. 
Obviously, the specific nature of the ECM constituents produced 
by activated mesenchymal cells and the network formed by 
their interactions in these different disease entities determine 
the macromolecular structure and biomechanical properties of 
the microenvironment and thereby the characteristic clinical 
symptoms. Common to all is the activation of fibroblasts or 
their progenitor cells in the dermis (Figure 1). The initial trig-
gers, however, are diverse and include external injuries such as 
infectious agents, drugs, toxins, or others. In most situations, the 
external triggers lead to activation of the innate and/or adaptive 
immune system. The resulting cytokine release is then respon-
sible for the recruitment of mesenchymal progenitor cells and/
or the activation of fibroblasts in the affected tissue. These cells 

have a diverse repertoire of receptors and signaling cascades to 
respond to specific inducers by modulating their biosynthetic 
pathways. Moreover, recent studies have demonstrated a high 
variability in fibroblast lineages, characterized by specific phe-
notypes. The data indicate that some are required for a fibrotic 
response, whereas others are probably involved in maintaining 
tissue integrity and/or connective tissue turnover (62). The type 
of trigger together with the specific response of fibroblasts in 
various differentiation states determines the quality of the accu-
mulated ECM and the clinical phenotype.

The question to which extent a fibrotic reaction is reversible 
is still unclear. Probably the interaction of activated cells with 
the specific ECM in the microenvironment is an important 
factor together with the persistence of the release of fibrogenic 
cytokines. Another major determinant is the reversibility of 
ECM cross-links. Hence, the degree of reversibility and the role 
of metalloproteinases in tissue turnover are underestimated in 
many disease processes.

THeRaPeUTiC aPPROaCHeS

Certainly, the initial trigger should represent the best target to 
approach therapeutically. However, often these initial events are 
not sufficiently well characterized or they are difficult to counter-
act. Therefore, it is important to unravel the complex interplay 
between activation of cells of the innate and adaptive immune 
system, the release of cytokines, and growth factors and the 
response of the different fibroblast lineages. An in-depth under-
standing of these complex events might allow the development 
of therapies that target mechanisms common to several fibros-
ing skin diseases. Based on the growing understanding of these 
mechanisms, a number of agents have been developed that target 
specific pathways by modulating the Th1/Th2 immune response. 
Often these studies yielded a good response in animal models but 
have not shown sufficient efficacy in patient trials.

For all systemic therapeutic approaches aimed at influencing 
the fibrotic response, we have to consider that the target cells are 
embedded in an environment, in which locally bound growth 
factors, defined cell-ECM contacts, and tissue stiffness together 
determine the response to any therapeutic agent. The growing 
understanding of the cellular interactions and the significance 
of the ECM in this microenvironment allow the development of 
new concepts how to modulate these complex interplays and to 
target the activated cells.
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