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Globally, more than 1.9 billion adults are overweight. Thus, obesity is a serious

public health issue. Moreover, obesity is a major risk factor for diabetes mellitus,

coronary heart disease, and cardiovascular disease. Recently, GWAS examining

obesity and body mass index (BMI) have increasingly unveiled many aspects of

the genetic architecture of obesity and BMI. Information on genome-wide

genetic variants has been used to estimate the genome-wide polygenic score

(GPS) for a personalized prediction of obesity. However, the prediction power of

GPS is affected by various factors, including the unequal variance in the

distribution of a phenotype, known as heteroscedasticity. Here, we

calculated a GPS for BMI using LDpred2, which was based on the BMI

GWAS summary statistics from a European meta-analysis. Then, we tested

the GPS in 354,761 European samples from the UK Biobank and found an

effective prediction power of the GPS on BMI. To study a change in the variance

of BMI, we investigated the heteroscedasticity of BMI across the GPS via

graphical and statistical methods. We also studied the homoscedastic

samples for BMI compared to the heteroscedastic sample, randomly

selecting samples with various standard deviations of BMI residuals. Further,

we examined the effect of the genetic interaction of GPS with environment

(GPS×E) on the heteroscedasticity of BMI. We observed the changing variance

(i.e., heteroscedasticity) of BMI along the GPS. The heteroscedasticity of BMI

was confirmed by both the Breusch-Pagan test and the Score test. Compared

to the heteroscedastic sample, the homoscedastic samples from small standard

deviation of BMI residuals showed a decreased heteroscedasticity and an

improved prediction accuracy, suggesting a quantitatively negative

correlation between the phenotypic heteroscedasticity and the prediction

accuracy of GPS. To further test the effects of the GPS×E on

heteroscedasticity, first we tested the genetic interactions of the GPS with

21 environments and found 8 significant GPS×E interactions on BMI. However,

the heteroscedasticity of BMI was not ameliorated after adjusting for the GPS×E

interactions. Taken together, our findings suggest that the heteroscedasticity of

BMI exists along the GPS and is not affected by the GPS×E interaction.
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Introduction

Obesity is a serious public health issue, as it is a major risk

factor for diabetes mellitus, coronary heart disease, and

cardiovascular disease (Visscher and Seidell, 2001). In 2016,

more than 1.9 billion adults were overweight globally, and

among them, over 650 million were obese (Mirzaei et al.,

2014; World Health Organization, 2020). Moreover, the

estimated health care cost driven by the risk factor of obesity

was a staggering 480 billion dollars in the United States in 2018,

and it continues to rise (Waters and Graf, 2020).

Obesity is typical of a polygenic phenotype and hence

influenced by various genetic variants (Silventoinen et al.,

2016; O’Connor, 2021). Recent GWAS on obesity and body

mass index (BMI) have increasingly unveiled many aspects of the

genetic architecture of obesity and BMI (Speliotes et al., 2010;

Visscher et al., 2012; Locke et al., 2015; Yengo et al., 2018). As a

result, the genome-wide SNP-heritability of BMI was estimated

to be from 29% to 44% in the European samples (Hou et al.,

2019).

For many common diseases, polygenic inheritance,

consisting of multiple genetic variants, plays a greater role

than rare monogenic mutations (Khera et al., 2018). Given

that, genome-wide polygenic scores (GPSs) for various

diseases have been estimated to identify individuals at a

clinically increased risk and are expected to contribute to the

personalized prediction and prevention of polygenic diseases

(Chatterjee et al., 2016; Khera et al., 2018). LDpred is a

popular method for deriving GPS based on GWAS summary

statistics and a linkage disequilibrium (LD) matrix (Vilhjalmsson

et al., 2015). Recently, LDpred2, a newer version of LDpred, was

developed, and its computational efficiency is markedly

improved and its predictive power is higher than LDpred

(Prive et al., 2020). Using LDpred, Khera et al. (2019) created

a GPS for BMI and observed a great gradient in weight and the

risk of severe obesity across GPS deciles among middle-aged

adults (Locke et al., 2015; Khera et al., 2019; Prive et al., 2020).

In general, GPS has been tested using linear regression

models between GPS and a phenotype (Khera et al., 2019;

Sulc et al., 2020). For linear regression, the two critical

assumptions for the data distribution are normality and

homoscedasticity (i.e., the equal variance of a phenotype)

(Yang et al., 2019). The importance of normality has been

enough emphasized when fitting linear regression models, but

the importance of homoscedasticity has been often overlooked

(Yang et al., 2019). When homoscedasticity is violated,

heteroscedasticity occurs in the distribution of a phenotype

when the phenotype is fitted in the linear regression model,

such that the variance of an individual’s phenotype changes

depending on the genotype. The increased degree of

heteroscedasticity causes type I errors, yielding a higher rate

of false positives (Yang et al., 2019). In particular, when GPS is

fitted in a linear regression model, the effect of heteroscedasticity

on the prediction efficiency of GPS is not clearly understood yet.

For the unequal variance of a phenotype according to

genotypes, there is evidence across different species, such that

the variance of phenotypes is genotype dependent (Wolc et al.,

2009; Jimenez-Gomez et al., 2011). For example, the FTO variant

rs7202116 is associated with a 7% difference in variance in BMI

between individuals that are homozygous for different alleles

(Yang et al., 2012). This may reflect that individuals carrying only

one of the alleles may more easily lose or gain weight, whereas

individuals with the other allele may have a more stable BMI. The

difference in the variance observed for the FTO variant has been

suggested to be due to different responses to activity levels and

other lifestyle factors (Yang et al., 2012; Rask-Andersen et al.,

2017). The variance quantitative trait locus (vQTL) analysis has

provided empirical evidence for the genetic control of phenotypic

variance (Tyrrell et al., 2017). Using the vQTL,Wang et al. (2019)

suggested that the gene-environment interaction (G×E) effect of

a genetic variant on a quantitative trait could lead to the

phenotypic heteroscedasticity of a trait among individuals

carrying different genetic alleles (Wang et al., 2019). For BMI,

a genetic risk score (GRS) of 376 variants explains 5.2% of the

trait variance, and the interaction between GRS and environment

(GRS×E) contributes an additional 1.9% (Rask-Andersen et al.,

2017; Sulc et al., 2020). On the other hand, it is suggested that the

heteroscedastic nature of BMI is most likely due to a

transformation and not driven by the GRS×E interaction (Sulc

et al., 2020).

In this study, we constructed a GPS via LDpred2 using BMI

GWAS summary statistics (1,342,646 SNPs) from a European

meta-analysis (Locke et al., 2015). When the BMI GPS was

validated on 275,809 European samples from the UK Biobank

(UKB), we demonstrated the existence of heteroscedasticity of

BMI across GPS percentiles. Using the Breusch-Pagan (BP) test

and the Score test, we confirmed the heteroscedasticity of BMI

across GPS. Further, we showed that using a homoscedastic (or

less heteroscedastic) sample, the decreased heteroscedasticity led

to an improved prediction efficiency of GPS, suggesting a

quantitatively negative relationship between the

heteroscedasticity and the prediction accuracy. Further, we

investigated the effect of the GPS×E interaction on the

heteroscedasticity of BMI. Among 21 environmental factors,

we found 8 significant GPS×E interactions on BMI using

216,103 European samples from the UKB. Then we studied

whether the heteroscedasticity changed after adjustments for

each of 8 GPS×E interactions using BP and Score testes.
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Materials and methods

Study population and design

The UKB is a population-based cohort that recruited over

487,409 individuals aged 40–69 years in the United Kingdom

during 2006–2010 (Collins, 2012). For quality control, we used

the following filter parameters from the Neale lab (https://github.

com/Nealelab/UK_Biobank_GWAS): a principal component

analysis (PCA) to filter for the selection of unrelated samples;

a sex chromosome filter to remove aneuploidy; a principal

components (PCs) filter for European sample selection to

determine British ancestry; and filters for the selection of self-

reported ‘white British’, ‘Irish’, and ‘White’. We then selected

354,761 unrelated European samples from the UKB participants,

of which 10,000 samples were used for a linkage disequilibrium

(LD) reference, 68,952 samples were used to calculate the

candidate GPSs (test set), and 275,809 samples were used to

validate a GPS with selected parameters (validation set) (Table 1).

Access to the UKB data was granted under application no.

48422 “Gene-environment interaction study on obesity, body

mass index, and waist circumference”.

Ethics approval and consent to participate

The UKB was granted ethical approval to collect data from

participants by the North West Multicentre Research Ethics

Committee, the National Information Governance Board for

Health & Social Care, and the Community Health Index

Advisory Group.

Genotype data

At baseline, imputation data for 93,095,623 SNPs were

available for 487,409 participants using the UKB Axiom Array

and the UK BiLEVE Axiom Array from Affymetrix (Sudlow

et al., 2015). Genotyping imputation was performed using the

UK10K Project and 1,000 Genome Project Phase 3 reference

panels (UK10K Consortium et al., 2015). Quality control was

performed based on the following exclusion criteria using PLINK

v.1.90: SNPs with missing genotype call rates >0.05; minor allele

frequency (MAF) < 0.01; and p-value for Hardy-Weinberg

equilibrium test <1.00 × 10−6 (Purcell et al., 2007). A total of

5,664,578 SNPs were retained for further analysis.

Phenotype data and environmental
variables

The BMI value was determined using the height and weight

measured during the initial UKB assessment center visit.

Individuals with missing BMI data were discarded from the

analysis (Table 1).

Based on a previous report (Young et al., 2016), we included

21 environmental variables for genetic interaction studies,

discarding individuals with missing environmental variables.

“Prefer not to answer” and “I do not know” were set as

“missing” in our analyses (Supplementary Table S1). The

21 environmental variables included 12 dietary variables (beef

intake, bread intake, cheese intake, cooked vegetable intake,

lamb/mutton intake, non-oily fish intake, oily fish intake, port

intake, poultry intake, processed meat intake, salt added to food,

and tea intake), 6 lifestyle variables (alcohol intake frequency,

sleep duration, sleep duration residual squared, smoking status,

townsend deprivation index (TDI), and time spent watching

television (TV)), and 3 physical activity variables (number of

days/week walked 10+ minutes, number of days/week moderate

physical activity 10+minutes, and number of days/week vigorous

physical activity 10+ minutes). For ‘sleep duration residual

squared’, for each individual, we calculated, the squared

deviations from the mean sleep duration.

Creation of genome-wide polygenic score

Candidate GPSs were derived using the

LDPred2 computational algorithm that is based on a Bayesian

approach using an LD matrix and GWAS summary statistics,

implemented in the R package bigsnpr (Prive et al., 2020).

LDpred2 provides more hyper-parameters (102 grids) than

TABLE 1 Characteristics of the UK Biobank samples.

Total Test set (20%) Validation set (80%)

Sample size (N) — 344,761 68,952 275,809

Age (years) — 56.75 ± 7.98 56.77 ± 7.97 56.74 ± 7.98

Sex (%) Female 185,664 (53.85%) 37,023 (53.69%) 148,641 (53.89%)

Male 159,097 (46.15%) 31,929 (46.31%) 127,168 (46.11%)

BMI (kg/m2) — 27.38 ± 4.76 27.37 ± 4.77 27.29 ± 4.76

Data, mean ± standard deviation (SD) or N (%), unless otherwise stated.

BMI, body mass index.
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LDpred1 (7 grids). Among the models, the infinitesimal model

assumes that all the genetic variants are causal. The grid model

tunes the hyper-parameters of SNP heritability (h2), the

proportion of causal variants (p), and the optional sparsity to

reweight the variant effect to the phenotype. The SNP heritability

(h2) was estimated using LD Score regression between summary

statistics and LD score from the European-ancestry samples in

the 1000 Genomes Project (Bulik-Sullivan et al., 2015). The grid

sparsity is an option to reduce SNPs by fitting some effects to

zero, providing a sparse vector of the effects. Hence, the sparsity

may reduce the computing time without losing the predictive

accuracy (Prive et al., 2020).

To calculate a GPS, we obtained the GWAS summary

statistics on the BMI from the European meta-analysis (Locke

et al., 2015). For the LD reference, using 10,000 European

samples, we computed the LD correlation matrix among

1,342,646 SNPs consisting of a common set of both

HapMap3 variants and the BMI GWAS meta-summary

statistics (International HapMap 3 Consortium et al., 2010;

Yengo et al., 2018; Prive et al., 2020). Using 344,761 European

samples, we estimated 3 models (infinitesimal, grid, and grid

sparse model) to construct the GPS. For the infinitesimal model,

where all the markers are causal, we estimated the infinitesimal

model using a total of 344,761 participants. For the grid models,

we tested a total of 102 grid models of hyper-parameters,

consisting of p (proportion of causal variants, 17 values from

0.0001 to 1), h2LDSC (heritability, 3 values at 0.1027, 0.1467, and

0.2054), and the existence of sparsity. Using 68,952 European

samples (test set) for the grid models, the best model was

determined by the adjusted R2 (the explained phenotypic

variance) via a linear regression model between the GPS and

a phenotype, which was adjusted for age, sex, array, and 10 PCs

(BMI ~ GPS + age + sex + array +10 PCs) (Table 1,

Supplementary Table S2, and Supplementary Figure S1). Once

the optimal hyper-parameters were set, 275,809 European

participants were used as a validation set (Table 1,

Supplementary Table S2, and Supplementary Table S3).

To estimate the prediction accuracy of the GPSs, we used the

adjusted R2 and mean squared error (MSE) in a linear regression

model between GPS and BMI and adjusted for age, sex, array, and

10 PCs.

Statistical analysis

We performed an association analysis via linear regression,

and a variance test, such as the Fligner Killeen test (FK-test),

scatter plotting, and density plotting using the R stats package

(version 4.0.2; www.r-project.org). To draw the scatter plot and

density plot, the “ggplot2” package was used. Linear regression

modeling was used to estimate the prediction accuracy of GPS

(BMI ~ GPS + age + sex + array +10 PCs) and the effect of gene-

environment interaction (GPS×E) on BMI (BMI ~ GPS + E +

GPS×E + age + sex + array +10 PCs). When the

heteroscedasticity existed, as a sensitivity analysis, we

performed the robust regression analysis by calculating the

robust (or “White”) standard error of the GPS×E interaction

effects, using the vce (robust) option in STATA (Cribari-Neto,

2004; Tyrrell et al., 2017).

The Breusch-Pagan (BP) and Score tests were used to assess the

heteroscedasticity of BMI across the GPS. The FK-test was used to

compare the variances between the GPS quintile (Q) subgroups. To

compare the interaction effect size between Q1 and Q5, we

computed p-values (Pdifference) by testing for difference between

Q1 and Q5 beta-estimates with their corresponding standard

errors SE1 and SE5 using the t statistic (Randall et al., 2013).

For quantifying the relationship between the heteroscedasticity

of BMI and the prediction accuracy ofGPS, linear regression analyses

were performed using randomly selected samples with various SD

cutoffs from our UKB validation set (275,809 participants). First,

10,000 participants were randomly selected from each group with a

SD cutoff (from 0.25 to 2 by 0.25 increment) of the BMI residual

mean and this random selection was repeated in each group until

100 times. Then, the linear regression model was adjusted for age,

sex, array, and 10 PCs. In each model, R2 and MSE were estimated,

and BP and Score tests were performed. Then, the correlation

analysis between the prediction accuracy (R2 or MSE) and

heteroscedasticity statistics (χ2 of BP or Score test) was performed

using the statistics from all 800 models.

Results

Construction of GPS for BMI

To estimate the GPS, we used the GWAS summary statistics

on BMI from the European meta-analysis (Locke et al., 2015) and

the LD correlation matrix. We then tested 3 models (infinitesimal,

grid, and grid sparse model) to construct the GPS using

68,952 unrelated Europeans from the UKB participants (the

infinitesimal model used both the test and validation sets). The

best model for GPS was the grid model (for grid: p = 0.18, h2 =

0.2054, andR2 = 0.3192), which was based on the R2 when fitting to

a linear regression model (Supplementary Table S2).

To visualize the relationship between BMI and GPS, we

depicted the BMI scatter plots for the 3 GPS models

(infinitesimal, grid, and grid sparse) using the validation set

(the infinitesimal model used both the test and validation sets).

We observed that the BMI variance tended to increase across the

GPS in all 3 models (Figures 1A,C,E). To estimate how much the

variance changed, we binned GPS into 5 quintiles (Q) subgroups

and plotted the mean value and the BMI variance per quintile

group (Figures 1B,D,F; Table 2). These plots showed that the BMI

variance increased according to the GPS quintiles.

To see the distribution of the obese versus normal subjects, we

depicted the population density plot for each GPSmodel. The mean
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GPS shifted to the right for the obese subjects (BMI ≥30 kg/m2)

versus the normal subjects (BMI <30 kg/m2), suggesting that all

3 GPS models distinguished between the obese and normal groups

(Supplementary Figure S2). All 3 GPS models showed significant

associations with BMI based on the linear regressionmodel that was

adjusted for age, sex, genotyping array, and 10 PCs (p-value < 2.00 ×

10−16) (Supplementary Table S3). Consistently, when using the test

and validation sets, the grid model for GPS showed the best R2 and

the explained phenotypic variance compared to the null model (R2

Grid = 0.3216, R2Grid sparse = 0.3185, and R2Infinitesimal =

0.3022). Hence, this Grid model was used in the following

studies (Supplementary Tables S2, S3).

Heteroscedasticity of BMI across GPS

To better assess the changes in the BMI variance, we

estimated the residuals of the individuals (the difference

between a set of observed and predicted values) using linear

regression for BMI and adjusted for age, sex, genotyping array,

and 10 PCs and then plotted the averaged BMI residuals

according to the GPS percentiles (Figure 2). The averaged

residuals plot showed a great increase in BMI residuals as the

GPS increased, suggesting a violation of homoscedasticity,

i.e., heteroscedasticity (Figure 2).

For a statistical assessment of heteroscedasticity, we

performed the BP and Score tests on the GPS total and

quintile subgroups. Both tests statistically confirmed a

heteroscedastic inequality in the residuals according to the

increasing GPS, with the highest heteroscedasticity in

Q5 and the smallest in Q1, among the 5 quintiles (Table 3)

(Rosopa et al., 2013). We then also assessed whether there is

variation in the residuals between GPS quintile groups via the

FK test. The results showed statistically significant

discrepancies in the residuals between the GPS Q1 and the

other 4 quintile groups (Q2-5) (Supplementary Table S4). We

then assessed the prediction accuracy of GPS via the MSE of the

linear regression model. The results showed an increasing MSE

FIGURE 1
Scatterplot and box plot of BMI across GPS. (A,C,E) BMI was plotted against GPS for each GPS model, using the validation set. (B,D,F) The mean
and variance of BMI were depicted by box plot per GPS quintile subgroup. (A,B) Infinitesimal model using both test and validation sets, (C,D) grid
sparse model using only the validation set, and (E,F) grid model using only the validation set.
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(i.e., a decreasing accuracy) as the GPS quintiles increased

(Table 3). The residuals plot and heteroscedasticity analyses

suggested that BMI followed a heteroscedastic distribution

across the GPS subgroups and the increased

heteroscedasticity might lead to GPS imprecision.

In general, when fitting linear regression models, the

normality of a phenotype is a critical factor for achieving

better power performance and less inflated type I errors

(Chien, 2020). In addition, the normality of a phenotype

seems to affect the heteroscedasticity (Sulc et al., 2020). To

further test whether the skewed (or non-normal) distribution

of the phenotype drives the heteroscedasticity, we performed

heteroscedasticity analyses (i.e., BP and Score tests) following

normal transformation of BMI using 3 different methods [log-,

Box-Cox, and rank-based inverse normal transformation (INT)]

(Supplementary Figures S3, S4) (Buzkova, 2013; Koenker, 2022;

Chien, 2020). The association analyses showed that all

3 normalizations of BMI improved the prediction accuracy of

GPS based on R2 and MSE, compared to non-normalized BMI,

except that the MSE for logBMI worsened (Supplementary Table

S5). The heteroscedasticity greatly decreased when using

normalized BMIs compared to non-normalized BMI, of which

the INT transformation almost removed the heteroscedasticity,

the Box-Cox method greatly decreased the heteroscedasticity,

and the log-transformation weakly decreased it (Supplementary

Table S5). Our findings suggest that for BMI, all 3 normalizations

are effective to correct the heteroscedasticity and accordingly to

improve the prediction accuracy of BMI GPS (Nwakuya and

Nwabueze, 2018).

Analysis of homoscedastic samples for
BMI across GPS

To better understand the heteroscedasticity, we examined the

homoscedastic (or less heteroscedastic) samples in relation to the

prediction efficiency. Two different homoscedastic (or less

heteroscedastic) samples were extracted from the samples with

1 standard deviation (SD) and 2SD of the residual mean of the

linear regression for BMI (Supplementary Figurers S5A,D). The

selected 1SD and 2SD samples were binned into 5 quintile

subgroups. The plots of the mean and variance for BMI

showed a smaller variation for the 1SD and 2SD samples for

BMI according to the GPS quintiles (Supplementary Figurers

S5B,E). Consistently, the plots of the BMI residuals showed a

reduced increase for the 2SD sample and were almost unchanged

for the 1SD across the GPS percentiles (Supplementary Figurers

S5C,F). Both the BP and Score tests showed consistent results,

such that the degree of heteroscedasticity decreased in the 2SD

sample and dramatically dropped in the 1SD sample, suggesting

the 2SD sample was a less heteroscedastic sample and 1SD was a

homoscedastic sample (Supplementary Table S5).

We then assessed the prediction accuracy of GPS via the

adjusted R2 or MSE of the linear regression model. The R2 was

0.6095 for the 1SD samples (N = 201,568) and 0.3746 for the 2SD

samples (N = 263,310), showing an increase greater than

TABLE 2 The mean, SD, and variance of BMI for each GPS quintile
group.

GPS quintile Mean (kg/m2) SD Variance

GPSInfinitesimal Q1 24.16 3.11 9.64

Q2 25.84 3.46 11.97

Q3 27.08 3.84 14.74

Q4 28.49 4.27 18.24

Q5 31.35 5.37 28.88

GPSGrid sparse Q1 24.07 3.04 9.27

Q2 25.81 3.41 11.64

Q3 27.07 3.79 14.33

Q4 28.51 4.21 17.72

Q5 31.46 5.36 28.74

GPSGrid Q1 24.07 3.04 9.21

Q2 25.80 3.41 11.63

Q3 27.07 3.78 14.27

Q4 28.51 4.19 17.58

Q5 31.49 5.36 28.75

SD, standard deviation.

GPSInfinitesimal consists of total samples, GPSGrid, sparse and GPSGrid, consists of validation

set samples.

FIGURE 2
Plot of BMI residuals by GPS percentile. Samples were binned
into 100 equally sized groups by GPS. In each group, the mean of
residuals of BMI was calculated and plotted against themean value
of GPS in the GPS percentile group.
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TABLE 3 The heteroscedasticity of BMI according to GPS quintile.

Groupa Number Varianceb MSE Breusch-Pagan test Score test

χ2 p-value χ2 p-value

Total 275,809 22.63 2.96 19288.15 <1.00E-300 8104.81 <1.00E-300
Q1 55,162 9.21 2.18 48.66 3.05E-12 26.25 3.00E-07

Q2 55,162 11.63 2.55 147.63 5.72E-34 73.61 9.50E-18

Q3 55,162 14.27 2.84 311.19 1.20E-69 140.36 2.22E-32

Q4 55,162 17.58 3.17 100.63 1.11E-23 49.59 1.90E-12

Q5 55,161 28.75 3.88 1,198.58 1.24E-262 654.88 1.94E-144

MSE, mean squared error.
aBMI ~ GPS + age + sex + array +10 PCs.
bIndicates the variance of BMI.

The analysis was performed using samples from validation set.

FIGURE 3
Plot of the heteroscedasticity versus the prediction accuracy of GPS in randomly selected samples. Linear regression analyses on GPS were
performed using randomly selected samples with various SD cutoffs (from 0.25 to 2 by 0.25 increment) in the UKB validation set. The random
selection of 10,000 samples were repeated 100 times and each sample was used for a linear regression analysis. (A,B) The heteroscedasticity (χ2 of BP
in the upper panel and Score test in the lower panel) in each sample was plotted against the prediction accuracy (R2 in A and MSE in B) of GPS.
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0.3216 for the total samples (N = 275,809) (Supplementary Table

S5). Consistent with the R2, theMSE decreased in the 2SD sample

compared to the total samples and more greatly decreased for the

1SD (Supplementary Table S5). These results implied that the

increased degree of heteroscedasticity might adversely affect the

prediction efficiency of GPS.

To further quantify the relationship between the phenotypic

heteroscedasticity and the prediction accuracy of GPS, we

performed linear regression analyses on GPS using randomly

selected samples with various SD cutoffs (from 0.25 to 2 by

0.25 increment) from our UKB validation set

(275,809 participants). The results showed that as the SD

cutoffs increased, the averaged prediction accuracy (R2 and

MSE) of GPS decreased and the averaged heteroscedasticity

(χ2 of BP and Score test) increased (Supplementary Table S6).

Next, the correlation analysis between the prediction accuracy

(R2 or MSE) and heteroscedasticity statistics (χ2 of BP and Score

test) suggested a strong negative correlation between them (R2 vs

χ2BP = -0.86, p = 4.05E-232; R2 vs χ2score = -0.90, p = 8.99E-296;

MSE vs χ2BP = 0.86, p = 3.49E-232; MSE vs χ2score = 0.90, p =

4.07E-293) (Supplementary Table S6). Moreover, the χ2 values of
heteroscedasticity were plotted against the GPS accuracy. The

plots showed an exponential distribution of heteroscedasticity

against the accuracy of GPS, suggesting that the prediction

accuracy may greatly increase when the degree of

heteroscedasticity is low (χ2 < 150 for BP; < 200 for Score

test) while the accuracy may slightly vary or be unchanged

when the heteroscedasticity is too high (χ2 > 150 for BP; >
200 for Score test) (Figure 3).

Among the GPS quantile groups from the total

heteroscedastic samples, 64.92% of Q1 were normal weight,

31.6% were overweight, and 3.48% were obese, while 7.95% of

Q5 were normal, 36.09% were overweight and 55.96% were obese

(Supplementary Figure S6). In the Q1 of the 2SD samples, 65.77%

were normal weight, 31.99% were overweight, and 2.24% were

obese, while in Q5, 6.83% were normal weight, 40.12% were

overweight, and 53.06% were obese. In the Q1 of the 1SD

samples, 70.61% were normal weight, 29.39% were

overweight, and nobody was obese, while in the Q5, 0.02%

were normal weight, 41.95% were overweight, and 58.04%

were obese (Supplementary Figure S6). Consistent with the

high R2, the GPS in the 1SD samples targeted a narrower

range of obesity than in the total samples, indicating a greater

prediction power in the homoscedastic (or less heteroscedastic)

sample than in the heteroscedastic sample.

Heteroscedasticity of BMI attributed to the
GPS×E interaction

Since there have been controversies surrounding the role of

the G×E interaction in phenotypic heteroscedasticity (Wang

et al., 2019; Sulc et al., 2020), we aimed to determine the

effect of the GPS×E interaction on the heteroscedasticity of

BMI. To select the environmental variables for the GPS×E, we

tested associations between BMI and 21 environmental variables

that had been previously reported to be associated with BMI

(Supplementary Table S7) (Young et al., 2016). Among the

21 variables, 20 showed significant associations between BMI

and environmental variables after Bonferroni correction

(p-value < 0.05/21 = 0.002) (Supplementary Table S7). We

then performed 20 GPS×E interaction analyses using a linear

regression model that was adjusted for age, sex, genotyping array,

and 10 PCs. Of the 20 environmental variables, 15 GPS×E

interactions satisfied the statistical significance threshold

(p-value < 0.05/20 = 0.0025) (Supplementary Table S8).

Because heteroscedasticity was present, as a sensitivity

analysis, we performed the robust regression analysis, the

“White test,” for the interaction studies (Tyrrell et al., 2017).

The results showed that 14 GPS×E interactions were still

significant via the White test, excluding the overriding of the

false positives (Supplementary Table S8). As another sensitivity

assay, we tested whether the GPS×E interaction effects differed

between the GPS Q1 and Q5 groups. The linear regression

analyses for the GPS×E interaction were performed for the

GPS Q1 and Q5 groups, followed by the stratification analysis

between the Q1 and Q5 groups using the GPS×E interaction

results for each group. Among the 14 environmental variables,

8 GPS×E interactions met the significance threshold after

Bonferroni correction (p-value < 0.05/20 = 0.0025; pork

intake, processed meat intake, tea intake, alcohol intake

frequency, TDI, number of days/week walked 10+ minutes,

number of days/week of moderate physical activity 10+

minutes, and number of days/week of vigorous physical

activity 10+ minutes) (Supplementary Table S8). Taken

together, our results implicated at least 8 significant GPS×E

interactions on BMI.

We further studied whether GPS×E interactions are specific

to the measured environmental factor or represent a more

general pattern of moderation of the total variance in BMI by

the environmental factor. We applied the heteroscedastic GPS×E

regression model for our BMI GPS on BMI including the GPS×E

term. The results showed that 6 GPS×E interactions (processed

meat intake, alcohol intake, TDI, number of days/week walked

10+ minutes, and number of days/week of moderate/vigorous

physical activity 10+ minutes) were significantly specific to the

environmental factors, while the other 2 interactions (pork and

tea intake) might present an environmental heteroscedasticity

(Supplementary Table S9). The results of the heteroscedastic

GPS×E regression modelling suggest that 2 of 8 GPS×E

interactions may not be true positive interactions.

To study a change in the heteroscedastic variance of BMI

attributable to the GPS×E interaction, we performed the BP and

Score tests via linear regression of BMI and GPS after adjusting

for each of the 8 GPS×E interactions. The BP and Score tests

showed that the heteroscedasticity increased after the adjustment
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for each of the 8 GPS×E interactions compared to the sample

without the adjustment (Supplementary Table S10). These results

suggested that the GPS×E interactions might not always

contribute to the heteroscedasticity of BMI. Further, we

studied whether the adjustment for GPS×E interaction could

alter the prediction accuracy of GPS. We found that based on R2

and MSE, the prediction accuracy of GPS slightly increased after

adjusting for GPS×E interactions (Supplementary Table S10).

Discussion

We estimated a GPS composed of 1.3 million SNPs from the

BMI GWASmeta-summary statistics using LDpred2 (Locke et al.,

2015; Prive et al., 2020). We observed that the standard deviations

of BMI varied across the GPS percentiles and statistically

confirmed the heteroscedasticity. Furthermore, our findings

suggested an improved prediction efficiency of GPS in the

homoscedastic sample compared to the heteroscedastic sample.

Previous studies have acknowledged the presence of

heteroscedasticity in studies using large sample sizes for

GWAS (Tyrrell et al., 2017; Sulc et al., 2020). However, those

studies mainly focused on the role of heteroscedasticity resulting

in false positives for the GRS×E interactions, not on its role in the

efficient prediction of the GPS. Therefore, our study is the first to

manifest the heteroscedasticity of BMI across GPS and further

show the possible modulation of heteroscedasticity on the

prediction power of the GPS. We then tested the effect of the

GPS×E interaction on heteroscedasticity, because previous

studies suggest that G×E interactions may contribute to the

heteroscedasticity of phenotypes across different genotypes

(Yang et al., 2012; Rask-Andersen et al., 2017; Tyrrell et al.,

2017; Wang et al., 2019; Marderstein et al., 2021). However, we

found that the heteroscedasticity remained significant after

adjusting for the GPS×E interaction. Regarding the

controversies over the origin of the phenotypic variation by

genotypes, our findings support a previous report that the

heteroscedasticity of BMI is not driven by the G×E interaction

(Sulc et al., 2020). Despite the increased heteroscedasticity, the

prediction accuracy of GPS slightly increased after adjustment

for GPS×E interactions. Our previous results using randomly

selected samples with various SD cutoffs suggested a negative

relationship between the heteroscedasticity and the prediction

accuracy of GPS. However, the results after adjusting for GPS×E

interactions are inconsistent with the negative correlation

between heteroscedasticity and accuracy. We assume that the

prediction accuracy of GPS may slightly vary or be unchanged

when the heteroscedasticity is too high since the accuracy

exponentially decreases as the heteroscedasticity increases. Our

sample for studying GPS×E interactions presents extremely high

heteroscedasticity. Hence, we presume that our sample may not

be an appropriate sample that can differentiate the effect of

GPS×E interaction on the prediction accuracy of GPS.

We found at least 8 significant GPS×E interactions for BMI.

Previous studies using GRSs based on genome-widely significant

BMI-associated variants suggest that the genetic effects on BMI

are modulated by various lifestyle factors, such as diet (red/

processed meat intake), alcohol intake frequency, usual walking

pace, TDI, and moderate/vigorous physical activity (Rask-

Andersen et al., 2017; Tyrrell et al., 2017; Ding et al., 2018).

Our findings using 8 GPS×E interactions were consistent with

previous reports, supporting the modulation of genetic factors on

BMI by 4 environmental factors (i.e., diet, alcohol, TDI, and

physical activity).

Although we constructed a GPS for BMI with high prediction

power and demonstrated the presence of heteroscedasticity, we

acknowledge several limitations in our study. First, we studied

the heteroscedasticity of BMI across GPS but were not able to

identify the possible causes for heteroscedasticity. However, we

most likely ruled out the role of the G×E interaction in causing

heteroscedasticity. For BMI, rare genetic mutations, such as the

loss of functions or rare variants (MAF <0.01), have been

reported to contribute considerably to its heritability (Akbari

et al., 2021; Wainschtein et al., 2022). The contribution of rare

genetic variants to heteroscedasticity and the prediction accuracy

is not clearly understood yet. Hence, our hope for identifying the

original cause for heteroscedasticity and hence, improving the

prediction accuracy of GPS is largely unexplored yet. Second, our

study focused on BMI, and thus, caution is noted in applying our

results to other traits. Despite an important assumption,

heteroscedasticity is often overlooked in linear regression

models (Yang et al., 2019). Thus far, the association of

phenotypic heteroscedasticity and GPS has not been studied

in GPS models for other traits, regarding the prediction power

of GPS. We believe that our study provides a good basis for the

effect of phenotypic heteroscedasticity on GPS.

GPS is a forefront study that warrants more careful

characterization for its prediction power in different

backgrounds. We believe that our findings brush away a flow

in the crystal and hence, provide a good basis for using GPS for

predicting individuals at genetically increased risk.
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