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Abstract: Hidden Markov model (HMM) is a vital model for trajectory recognition. As the number
of hidden states in HMM is important and hard to be determined, many nonparametric methods
like hierarchical Dirichlet process HMMs and Beta process HMMs (BP-HMMs) have been proposed
to determine it automatically. Among these methods, the sampled BP-HMM models the shared
information among different classes, which has been proved to be effective in several trajectory
recognition scenes. However, the existing BP-HMM maintains a state transition probability matrix for
each trajectory, which is inconvenient for classification. Furthermore, the approximate inference of
the BP-HMM is based on sampling methods, which usually takes a long time to converge. To develop
an efficient nonparametric sequential model that can capture cross-class shared information for
trajectory recognition, we propose a novel variational BP-HMM model, in which the hidden states
can be shared among different classes and each class chooses its own hidden states and maintains a
unified transition probability matrix. In addition, we derive a variational inference method for the
proposed model, which is more efficient than sampling-based methods. Experimental results on a
synthetic dataset and two real-world datasets show that compared with the sampled BP-HMM and
other related models, the variational BP-HMM has better performance in trajectory recognition.

Keywords: hidden Markov models; variational inference; trajectory recognition; Beta process

1. Introduction

Trajectory recognition is important and meaningful in many practical applications,
such as human activities recognition [1], speech recognition [2], handwritten character
recognition [3] and navigation task with mobile robot [4]. In most practical applications,
the trajectory is affected by the hidden features corresponding to each point. The hidden
Markov model (HMM) [2], hierarchical conditional random field (HCRF) [5,6] and the
HMM-based models, such as the hierarchical Dirichlet process hidden Markov model (HDP-
HMM) [7], the Beta process hidden Markov model (BP-HMM) [8–10] and the Gaussian
mixture model hidden Markov model (GMM-HMM) [2] are used to model sequential data
and identify their classes [11–14].

The HMM is a popular model which has been applied widely in human activity
recognition [1,15], speech recognition [2,16] and remote target tracking [2,17]. Besides,
the HMM is becoming a more significant part as a building block of smart cities and
Industry 4.0 [18,19] and implemented in extensive applications such as driving behaviors
prediction [20] and the inernet of thing (IoT) signature anomalies [21]. One drawback of the
HMM is having to ensure in advance the number of hidden states that need to be selected
or cross-validated. To address this problem, several methods based on model selection
are employed, such as BIC [22] or some Bayesian non-parameter prior like the BP [23]
and the HDP [24]. Besides, directly using the original HMM for classification has another
disadvantage, in which each HMM is trained for one class separately and thus information
from different classes cannot be shared. It is worth mentioning that the sampled BP-HMM
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proposed by Fox et al. [9] can not only learn the number of hidden features automatically
but also obtain the sharing features between different classes, which has been proved to
be meaningful for human activity trajectory recognition. The sampled BP-HMM learns
the shared states among different classes by jointly modeling all trajectories together, in
which a hidden state indicator for one trajectory with a BP prior is introduced and thus a
state transition matrix for each trajectory is maintained. When used for classification, the
sampled BP-HMM calculates the class-specific transition matrix by averaging the transition
matrices of the trajectories from the corresponding class. However, from the perspective of
performance or efficiency, if the sampled BP-HMM [1,7] is used for classification, there is
still a lot of room for improvement.

From the perspective of performance, the classification procedure in the sampled BP-
HMM [1] is too rough to make full use of the trained model, in which the state transition
matrix for each class is calculated by averaging the transition matrixes of all the trajectories.
Obviously, this will lead to the loss of information, especially when the training set has some
ambiguous trajectories. For instance, a “running” class has some “jogging” trajectories.
One naive method to solve it is to select the K best HMMs for each class. However, it will
cost plenty of time to select representatives for each class. In order to take account of both
performance and efficiency, we change the way of modeling data in BP-HMMs. Differently
from those versions of BP-HMMs [1,8–10,25], in variational BP-HMMs, an HMM is created
for each class instead of for each trajectory.

From the perspective of efficiency, the existing approximate inference for the BP-
HMM is based on sampling methods [1,9] which often converge slowly. This drawback
of the sampled BP-HMM [1] is inconvenient to practical applications. To provide a faster
convergence rate than sampling methods, we develop variational inference for the BP-
HMM. If the variational lower bound is unchanged or almost unchanged, the iteration will
stop. To be amenable to the variational method, we use the stick-breaking construction of the
BP [26] instead of the Indian buffet process (IBP) construction [27] in the sampled BP-HMM.

In this paper, we propose a variational BP-HMM for trajectory recognition, in which
the way of the data modeling and the inference method are novel compared with the
previous sampled BP-HMM. On the one hand, the new method of modeling trajectories
enables the model to obtain better classification performance. Specifically, the hidden
state can be optionally shared, and the class-specific state indicator is more suitable for
classification than the trajectory-specific state indicator in the sampled BP-HMM. The
transition matrix is actually learned from the data instead of averaging all the trajectory-
specific transitions. On the other hand, the derived variational inference of the BP-HMM
makes the model more efficient. In particular, we use the two-parameter BP as the prior
of the class-specific state indicator, which is more flexible than the one-parameter Indian
buffet process in the sampled BP-HMM. We apply our model to the navigation task of
mobile robots and human activity trajectory recognition. Experimental results on the
synthetic and real-world data show that the proposed variational BP-HMM with sharing
hidden states has advantages to trajectory recognition.

The remainder of this paper is organized as follows. Section 2 gives an overview of
the BP and HMM. In Section 3, we review the model assumption of the sampled BP-HMM.
In Section 4, we present the proposed variational BP-HMM including the model setting
and its variational inference procedure. Experimental results on both synthetic and real-
world datasets are reported in Section 5. Finally, Section 6 gives the conclusion and future
research directions.

2. Preliminary Knowledge

In order to explain the variational BP-HMM more clearly, the key related backgrounds
including BP and HMM will be introduced in the following sub-sections.
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2.1. Beta Process

The BP is defined by Hjort [28] for applications in survival analysis. It is a significant
application as a non-parametric prior for latent factor models [23,26], and used as a non-
parameter prior for selecting the hidden state set of the HMM [8,9,25]. At the beginning,
the BP is defined on the positive real line (R+) then extended to more general spaces Ω
(e.g., R).

A BP, B ∼ BP(α, B0), is a positive Lévy process. Here, α is the concentration parameter
and B0 is a fixed measure on Ω. Let γ = B0(Ω). The BP(α, B0) is formulated as

BK =
∞

∑
k=1

πkδωk ,

ωij

i.i.d.∼ 1
γ

B0,

(1)

where {ω} are atoms in B. If B0 is continuous, the Lévy measure of the BP is expressed as

ν(dω, dπ) = α(ω)π−1(1− π)c(ω)−1dπB0(dω). (2)

If B0 is discrete, in the form of B0 = ∑k qkωk, the atoms in B and B0 have the same
location. It can be represented as follows

BK =
K

∑
k=1

πkδωk ,

πk
i.i.d.∼ Beta

(αγ

K
, α
(

1− γ

K

))
,

ωk
i.i.d.∼ 1

γ
B0.

(3)

As K → ∞ and HK → ∞, B represents a BP [29].
The BP is conjugate to a class of Bernoulli process, denoted by BeP(B). For example,

we define a Bernoulli process F ∼ BeP(B). In this article, we focus on the discrete Bernoulli
process in the form of B = ∑k πkδωk , and then the Bernoulli process can be expressed as
F = ∑k bkδωk , where B ∈ [0, 1], bk is the independent Bernoulli variable with the probability
πk. If B is a BP, then

B ∼ BP(α, B0),

F ∼ BeP(B),
(4)

is called the Beta-Bernoulli process.
Similarly to Dirichlet process which has two principle methods for drawing samples,

(1) the Chinese restaurant process [30], (2) the stick-breaking process [31], the BP generates
samples using the Indian buffet process (IBP) [23] and the stick-breaking process [29].

The original IBP can be seen as a special case of the general BP, i.e., an IBP is a one-
parameter BP. Similarly to the Chinese restaurant process, the IBP is described in the view
of customers choosing dishes. It is also employed to construct two-parameter BPs but with
some details changed. Specifically, the procedure for constructing BP(α, B0), γ = B0(Ω) is
as follows:

1. The first customer takes the first Poisson(γ) dishes.
2. The nth customer then takes dishes that have been previously sampled with probabil-

ity mk
α+n−1 , where mk is the number of people who have already sampled the dish k.

He also takes Poisson
( αγ

α+n−1
)

new dishes.

The BP has been shown as a de Finetti mixing distribution underlying the Indian
buffet process, and an algorithm has been presented to generate the BP [23].
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The stick-breaking process of the BP, B ∼ BP(α, B0), is provided by Paisley et al. [29].
It is formulated as follows.

B =
∞

∑
i=1

Ci

∑
j=1

V(i)
ij

i−1

∏
l

(
1−V(l)

ij

)
δωij

,

Ci
i.i.d.∼ Poisson(γ),

V(l)
ij

i.i.d.∼ Beta(1, α),

ωij

i.i.d.∼ 1
γ

B0.

(5)

It is clearly shown from the above equations that in every round (indexed by i),
Ci atoms have been selected, the weights of them follow an i-times stick-breaking process
in which each breaking has the Beta(1, a) probability and Ci is drawn from Poisson(γ).

2.2. Hidden Markov Models

The HMM [2] is a state space model where each sequence uses a Markov chain of dis-
crete latent variables, with each observation conditioned on the state of the corresponding
latent variables. Obviously, they are appropriate to model the data varying over time, and
the data can be considered to be generated by the process that switches between different
phases or states at different time-points. The HMM has been proved as a valuable tool in
human activity recognition, speech recognition and many other popular areas [32].

Suppose that the trajectory observation X = {x1, . . . , xN} is an N × d matrix and
Z = {z1, . . . , zN} is a N dimensional latent variable vector which has a value set Ω1 with
size K. The joint distribution of X and Z is expressed as

p(X, Z | θ) =p(z1|π)

{ T

∏
t=2

p(zt|zt−1, Π)

}

T

∏
t=1

p(xt|zt, φ),

(6)

where θ = {π0, πk, φ}, and A is a K × K matrix with πjk = p(zt+1 = k|zt = j), t =
{1, . . . , T − 1}, i, j ∈ Ω1 with ∑k πjk = 1, and π0k is a K dimensional vector with π0k =
p(z1 = k), k ∈ Ω1 with ∑k π0k = 1. Furthermore, in the nonparametric version of HMM, the
matrix Π can be assumed to obey a Dirichlet distribution, i.e., πj ∼ Dir(α1, α2, . . . , αK) where
∑ αk = 1. The probabilistic graphical model is represented in Figure 1.
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Fig. 1 The probabilistic graphical model for an HMMwhereX = {x1,x2, ...,xT } represents
an observation sequence and Z = {z1, z2, ..., zT } represents the corresponding hidden state
sequence.
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If xt is discrete with value set Ω2 in the size of D, φ is a K × D ma-

trix with element φij = p (xt = j|zt = i) , i ∈ Ω1, j ∈ Ω2. Π and φ are
named respectively as the transition matrix and emission matrix. If xt is
continuous, the emission matrix will be replaced by the emission distribu-
tion, where φ is often defined as a distribution like Gaussian distribution
p (xt|zt = k) = N (xt|μk, Σk), k ∈ Ω1. In the fully Bayesian framework, μk, Σk

can be regarded as random variables with distribution like normal inverse
Wishart or Gaussian with Gamma distribution.

Marginal likelihood is often used to evaluate how an HMM is fit for the tra-
jectories. Therefore, the HMM is usually trained by maximizing the marginal
likelihood over the training trajectories. Baum-Welch (B-W) algorithm, as an
EM method is a famous algorithm for learning parameters of HMMs. The
parameters include the transition matrix, the initial state distribution and
the emission matrix (distribution’s parameters). In the B-W algorithm, the
forward-backward algorithm is employed to calculate the marginal probabil-
ity. It should be noted that since the B-W algorithm can only fine the local
optimum, multiple initialization are usually used to obtain better solution.
Given the learned parameters, the most likely state sequence corresponding
to a trajectory is required in many practical applications. Viterbi algorithm is
an effective method to obtain the most probable state sequence.

Figure 1. The probabilistic graphical model for an HMM where X = {x1, x2, . . . , xT} represents an
observation sequence and Z = {z1, z2, . . . , zT} represents the corresponding hidden state sequence.

If xt is discrete with value set Ω2 in the size of D, φ is a K× D matrix with element
φij = p(xt = j|zt = i), i ∈ Ω1, j ∈ Ω2. Π and φ are named respectively as the transition
matrix and emission matrix. If xt is continuous, the emission matrix will be replaced
by the emission distribution, where φ is often defined as a distribution like Gaussian
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distribution p(xt|zt = k) = N (xt|µk, Σk), k ∈ Ω1. In the fully Bayesian framework, µk, Σk
can be regarded as random variables with distribution like normal inverse Wishart or
Gaussian with Gamma distribution.

Marginal likelihood is often used to evaluate how an HMM is fit for the trajectories.
Therefore, the HMM is usually trained by maximizing the marginal likelihood over the
training trajectories. Baum–Welch (BW) algorithm, as an EM method is a famous algo-
rithm for learning parameters of HMMs. The parameters include the transition matrix,
the initial state distribution and the emission matrix (distribution’s parameters). In the
BW algorithm, the forward-backward algorithm is employed to calculate the marginal
probability. It should be noted that since the BW algorithm can only find the local optimum,
multiple initializations are usually used to obtain better solutions. Given the learned
parameters, the most likely state sequence corresponding to a trajectory is required in many
practical applications. Viterbi algorithm is an effective method to obtain the most probable
state sequence.

HMMs are a kind of generative model; they model the distribution of all the observed
data. In trajectory classification tasks, such as activity trajectory recognition, different
HMMs are used to model different classes of trajectories separately. After training these
HMMs, the parameters in different HMMs are used to evaluate the newly come trajectory to
find the most probable class. Specifically, to model large multiple trajectories from different
classes, a separate HMM is defined for each class of trajectories, where θc represents its
parameters. Given the trained HMMs, the class label y∗ of a new test trajectory x∗ is
determined according to

y∗ = arg max
c

ln p(x∗|θc), (7)

where p(x∗|θc) can be calculated using the forward-backward algorithm.

3. The Sampled BP-HMM

The sampled BP-HMM [9] is proposed to discover the available hidden states and the
sharing patterns among different classes. It jointly models multiple trajectories and learns
a state transition matrix for each trajectory. The sampled BP-HMM is successfully applied
to trajectory recognition tasks, such as human activity trajectory recognition [1,10].

The sampled BP-HMM uses HMMs to model all the trajectories from all the classes
and uses the BP as the prior of the indicator variables with each one corresponding to one
trajectory. Suppose X = {X(1), X(2), . . . , X(n), . . . , X(N)}, N ∈ N+ where X(n) is the nth
trajectory. Each trajectory is modeled by an HMM. These HMMs share a global hidden
feature set Ω with the size of ∞. The sampled BP-HMM uses a hidden state selection matrix
F with the size of N ×∞ to indicate the available states for each trajectory, i.e., fnk = {0, 1}
indicators whether the nth HMM owns the kth state. The prior of the transition matrix
Π(n) for each trajectory is related to F, The transition matrix of the nth HMM is

π
(n)
j ∼ Dir([r, r, . . . , r + κ, r, . . . ]� fn), j > 1, (8)

and the initial state probability vector π
(n)
0 is also related to F,

π
(n)
0 ∼ Dir([r, r, . . . , r, r, . . . ]� fn). (9)

Similarly to the standard HMM, the latent variable z(n) is a discrete sequence with

z(n)1 ∼ π
(n)
0 , z(n)t+1|z

(n)
t ∼ π

(n)

z(n)t

, t = 1 . . . T, (10)

and the emission distribution of the nth HMM is

X(n)
t |z

(n)
t ∼ N

(
µzn

t
, Σzn

t

)
,

(µk, Σk) ∼ NIW(u0, λ0, Φ0, υ0).
(11)
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In order to build a non-parameter model, the hidden states selection matrix F is
constructed by a BP-BeP.

B ∼ BP(α, B0),

fi|B ∼ BeP(B).
(12)

From the perspective of the characteristic of BPs, we can find that the greater the
concentration parameter α, the sparser the hidden state selection matrix F, and greater γ
will lead to more hidden features.

Given the above model assumptions, the sampled BP-HMM uses the Gibbs sampling
method to train the model and uses the gradient based method to learn the parameters.
With the state transition matrix for each trajectory being learned, the average state transition
matrix for each class can be calculated by the mean operation. The new test trajectories are
classified according to their likelihood probabilities conditional on each class.

4. The Proposed Variational BP-HMM

In this section, we will introduce the proposed variational BP-HMM which has more
reasonable assumptions and more efficient inference procedure than the sampled BP-HMM.
We first describe key points of our model and present our stick-breaking representation for
the BP which allows for variational inference. Then we give the joint distribution of the
proposed BP-HMM and the variational inference for the BP-HMM.

4.1. BP-HMM with the Shared Hidden State Space and Class Specific Indicators

As introduced above, the existing sampled BP-HMM can jointly learn the trajectories
from different classes by sharing a same hidden state space. It can also automatically
determine the available states and the corresponding transition matrices for one trajectory
by the introducing state selection matrix F. However, in the sampled BP-HMM, the state
transition matrix and initial probabilities are trajectory-specific, and it is not appropriate to
perform mean operation on these transition matrices and probabilities to obtain a average
matrix and probabilities for each class.

In order to model trajectories from different classes more reasonably, we introduce a
shared hidden state space and class-specific indicators. We define a state selection vector fc
for each class which are used to distinguish the differences between classes and define state
initial probabilities π0 and transition matrix πj for each class which are used to capture the
commonness with one class. The transition matrix of the cth class from state j is

π
(c)
j ∼ Dir([r, r, . . . , r + κ, r, . . . ]� fc), j > 0, (13)

and the initial state probability vector π
(c)
0 is also related to F,

π
(c)
0 ∼ Dir([r, r, . . . , r, r, . . . ]� fc). (14)

Similarly to the standard HMM, the latent variable z(n) for the nth trajectory is a
discrete sequence with

z(n)1 ∼ π
(yn)
0 , z(n)t+1|z

(n)
t ∼ π

(yn)

z(n)t

, t = 1, . . . , T. (15)

where yn denotes the class of nth trajectory.
From the way of modeling, the proposed new version of the BP-HMM is different from

the sampled BP-HMM [1] which learns an HMM for each trajectory, and it is also different
from the traditional HMMs which learn an HMM for each class separately. The proposed
BP-HMM can use all the sequences from different classes to jointly train a whole BP-HMM
with each HMM corresponding to one class. Therefore, the proposed BP-HMM can better
model the trajectories from multiple classes and can further make better classification.
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4.2. A Simpler Representation for Beta Process

Besides the model assumption, the proposed variational BP-HMM has different repre-
sentation of the BP. As introduced in Section 2, the IBP construction of the BP describes
the process by conditional distributions. This kind of representation is only suitable for
sampling methods which are similar to the Chinese restaurant construction of DPs. There-
fore, different from the sampled BP-HMM which uses the IBP construction for the BP to
lend it to a Gibbs sampler, we use the stick-breaking construction for the BP to adapt to
variational inference. There is some work in constructing stick-breaking representation of
BPs for variational inference. The stick-breaking construction is used for the IBP which is
closely related to the BP and can be seen as a one-parameter BP [26]. The two-parameter BP
is also constructed through stick-breaking processes to server for variational inference [29].
Recently, a simpler representation of the two-parameter BP based on stick-breaking con-
struction is developed to make simpler variational inference [33]. In order to approximate
posterior inference to the BP with variational Bayesian method more easily, we refer to the
simpler representation of the BP [33]. Let dk mark the round in which the kth atom appears.
That is,

dk = 1 +
∞

∑
i=1

δ

(
i

∑
j=1

Cj < k

)
. (16)

Note δ(·) is a binary indicator and it equals to 1 if the formula is true. Using the latent
indicators, the representation of B in (6) is simplified as

B =
∞

∑
k=1

Vkdk

dk−1

∏
l=1

(
1−Vkl

)
δωk , (17)

with ω and V drawn as before.
Let Tk = −∑l<dk

ln
(
1−Vkl

)
. Since each individual term−ln

(
1−Vkl

) iid∼ Exponential(α),

it follows that Tk
iid∼ Gamma(dk − 1, α). This gives the following representations of the BP,

B =
∞

∑
k=1

Vke−Tk δωk ,

Vk
i.i.d.∼ Beta(1, α),

Tk ∼ Gamma(dk − 1, α),
∞

∑
k=1

1(dk = r) i.i.d.∼ Poisson(γ), r ∈ N+,

ωk
i.i.d.∼ B0

γ
.

(18)

Here we should notice that each dk does not have a distribution, but the cardinality of
{dk = r} is drawn by Poisson(γ). In addition, Tk = 0 with probability one when dk = 1.
In this BP, the atom ωk = {µk, Σk} and Gamma priors with hyper-parameters {a1, a2},
{b1, b2} are given to α and γ:

α ∼ Gamma(a1, a2),

γ ∼ Gamma(b1, b2).
(19)

4.3. Joint Distribution of the Proposed BP-HMM

Assume that the total class number is C and the trajectory number is N. Let X represent
the data, W = {α, γ, {µk, Σk}, {dk}, {Vk}, {Tk}, { fck}, {π(c)

k }, Z} represents the set of all
latent variables in the model, including θ which is the set of all the hyper-parameters, and
Y is the set of all the class labels.
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The probabilistic graphical model is shown in Figure 2, where its joint likelihood is

p(X, W|θ) = p(X|W, θ)× p(W|θ). (20)

The likelihood p(X|W, θ) is defined as a multi-normal distribution by

p(X|W, θ) =
N

∏
n=1

T

∏
t=1

K

∏
k=1
N (x(n)t |µk, Σk)

δ(zt=k). (21)

The prior distribution of the parameter W and detailed setup are expressed in Appendix A.10 Jing Zhao et al.
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(n)
T

x
(n)
2

· · · x
(n)
T

Fig. 2 This is the probabilistic graphical model of the proposed variational BP-HMM.
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2 , ...,x
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T } is the nth observed trajectory, z(n) = {z(n)

1 , z
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2 , ..., z

(n)
T } is

the hidden state sequence of the nth trajectory, and y(n) is the class label of the nth tra-
jectory which indicates to choose the state transition probabilities from the class it belongs
to. In this graphical model, we omit the hyper-parameters.
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hyper-parameters {a1, a2}, {b1, b2} are given to α and γ.

α ∼ Gamma (a1, a2) ,

γ ∼ Gamma (b1, b2) .
(19)

Figure 2. This is the probabilistic graphical model of the proposed variational BP-HMM. X(n) =

{x(n)1 , x(n)2 , . . . , x(n)T } is the nth observed trajectory, z(n) = {z(n)1 , z(n)2 , . . . , z(n)T } is the hidden state
sequence of the nth trajectory, and y(n) is the class label of the nth trajectory which indicates choosing
the state transition probabilities from the class it belongs to. In this graphical model, we omit the
hyper-parameters.

4.4. Variational Inference for the Proposed BP-HMM

We use a factorized variational distribution over all the latent variables to approxi-
mate the intractable posterior p(W|X, θ). Two truncations are set in the inference: one is
truncation of the number of hidden states at K and the other is the truncation of the round
number at R. Specifically, we assume the variational distribution as

Q =q(α)q(γ)
K

∏
k=1

{
q(µk, Σk)q(dk)q(Vk)q(Tk)

×
C

∏
c=1

q( fck)q(π
(c)
k )

}
C

∏
c=1

q(π(c)
0 )

N

∏
n=1

q(z(n)),

(22)

where
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q(α) = Gamma(α|k1, k2),

q(γ) = Gamma(γ|τ1, τ2),

q(µk, Σk) = NIW(µk, Σk|uk, λk, Φk, υk),

q(dk) = MultiNomial(dk|ϕk),

q(Vk) = Beta
(
Vk|τk1 , τk2

)
,

q(Tk) = Gamma
(
Tk|u′k, v′k

)
,

q( fck) = Bernoulli( fck|υck),

q
(

π
(c)
k

)
= Dir

(
π

(c)
k |r′k1

(c), r′k2
(c), . . . , r′kK

(c)
)

,

q
(

z(n)|yn

)
=

T

∏
t=1

K

∏
k1=1

K

∏
k2=1

a(yn)
δ

(
z(n)t =k1,z(n)t+1=k2

)

k1k2

×
K

∏
k=1

a(yn)
0k

δ
(

z(n)0 =k
)

T

∏
t=1

K

∏
k=1

b(yn)
δ

(
Z(n)t =k

)

tk .

It is obvious that Vk and Tk do not have conjugate posterior. Thus the distributions
are selected for better accuracy and more convenience. Here a∗0k is an estimation of the
probability of the initial state distribution, a∗j1j2

, where j1 > 0 and j2 > 0 is an estimation

of the probability of transition from state j1 to j2 and b∗tj is an estimation of the emission
probability density given the system in state j at time point t. In order to simplify our
representation, we do not use sub-index. Here ai = {aij}, j = 1, . . . , K. Let φ be the set
of variational parameters. We expand the lower bound as L(X, φ) = EQ(lnP(X, W|θ))−
EQ[lnQ] which is expressed in detail in Appendix B.

4.5. Parameter Update

In the framework of variational mean field approximation, the parameters of some
variational distributions can be analytically solved using

lnq
(
wj
)
= Eq(W 6=wj)

[lnp(X, W|θ)] + const. (23)

However, in some cases that the prior distribution and posterior distribution over one
latent variable are not conjugate, the variational distribution over this variable cannot have
an analytical solution. The parameters of this variational distribution should be optimized
through gradient based methods with the variational lower bound being the objective.

In our model, the variational distributions q(α), q(γ), q(µk, Σk), q(dk), q(πk), q(Z)
have a closed form solution, and we can get their parameter update formulas according to
(23). While the variational distributions q(Vk), q(Tk), q( fck) cannot be analytically solved,
we can update their parameters by corresponding gradients. Next, we give the way of
calculating variational distributions and show the procedure for training the variational
BP-HMM in Algorithm 1. The detailed parameters update formulas or the gradients with
respect to the parameters are presented in Appendix C.
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Algorithm 1 Variational Inference for the Proposed BP-HMM

1: Initialize θ and φ.
2: Given R and threshold and Initialize RunTime = 0;
3: while |L − Lold| < threshold or RunTime < R do
4: Lold = L
5: for each trajectory n do
6: Update q(z(n))
7: Calculate q(z(n)t = k) and q(z(n)t = k1, z(n)t+1 = k2)
8: end for
9: for each class c do

10: Update each q(π(c)
k ), k = 0, . . . , K

11: Update each q( fck), k = 1, . . . , K
12: end for
13: for each k = 1, . . . , K do
14: Update q(µk, Σk), q(dk), q(Tk), q(Vk)
15: end for
16: Update q(α), q(γ)

Calculate L
17: end while

4.5.1. Calculation for q(α), q(γ), q(µµµk, Σk), q(dk), q(πππ(c)
k ), q(Z)

ln q(α) = Eq[ln p(α) +
K

∑
k=1

ln p(Vk|α) + ln p(Tk|dk, α)],

ln q(γ) = Eq[ln p(γ) +
K

∑
k=1

ln p(dk|γ)],

ln q(µk, Σk) = Eq[ln p(µk, Σk|θ)

+
N

∑
n=1

T

∑
t=1

p(x(n)|z(n), µk, Σk)],

ln q(dk) = Eq[ln p(d|γ) + ln p(Tk|dk, α)

+
C

∑
c=1

ln p( fck|Vk, Tk, dk)],

ln q(π(c)
k ) = Eq[ln p(π(c)

k | fck, r, κ)

+
N

∑
n=1

T−1

∑
t=1

δ(yn = c) ln p(z(n)t+1|π
(c)
k , z(n)t = k)],

ln q(z(n)) = Eq[ln p(x(n)|z(n), µk, Σk)

+
N

∑
n=1

ln p(z(n)|Π(yn))],

4.5.2. Optimization for q(Vk), q(Tk), q( fck)

The variational parameters of q(Vk), q(Tk), q( fck) include {τk1 , τk2}, {u′k, v′k}, {υck}.
They are updated by the gradient based method where the gradients of the lower bound L
with respect to these parameters should be calculated.
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4.5.3. Remarks

Note that when updating the BP parameters, we should calculate the expectation as

Eq[ln p( fck|Vk, Tk)] = vckEq[ln Vke−Tk ]

+(1− vck)Eq[1− ln Vke−Tk ],

of which the second term is intractable. We refer the work in [33] to use a Taylor expansion
to Eq[ln(1−Vke−Tk )] about the point one,

Eq[ln(1−Vke−Tk )] = −
M

∑
m=1

1
m
(Vke−Tk )m. (24)

For clarity, we define each term 1
mE
[(

Vke−Tk
)m
]

in the Taylor expansion using the
notation Mk (m) as

Mk (m) =
1
m

Γ
(
τk1 + τk2

)

Γ
(
τk1 + τk2 + m

) Γ
(
τk1 + m

)

Γ
(
τk1

)
(

v′k
v′k + m

)u′k

=
m

∏
i=1

τk1 + i− 1
τk1 + τk2 + i− 1

(
v′k

v′k + m

)u′k
,

and define Mk (·) = ∑M
m=1 Mk (m). Therefore, Eq[ln(1−Vke−Tk )] = − Mk (·).

4.6. Classification

Our model is applicable to trajectory recognition like human activity trajectory recog-
nition. We use the proposed variational BP-HMM to model all the training data from
different classes, with each HMM corresponding to a class. Given the learned model with
the hyperparameters and variational parameters {θ, φ}, a new test trajectory x∗ can be
classified according to its marginal likelihood p(x∗|θ, φ). Denote y∗ as the label of the test
trajectory; the classification criteria can be expressed as

y∗ = arg max
c

ln p(x∗|{a∗k (c), uk, λk, υk, Φk}, a∗0
(c)),

= arg max
c

ln
( ∫

p(x∗|{µk, Σk}, z)p(z|{a∗k (c)})

K

∏
k=1

p(µk, Σk|uk, λk, υk, Φk)dzdµkdΣk

)
,

(25)

where a∗jk
(c) is an estimate of the probability of transition from state j to k in the cth class.

The likelihood can be calculated through the forward-backward algorithm.
This classification mechanism is more reasonable than the method in [1], as the

transition matrix is actually learned.

5. Experiment

To demonstrate the effectiveness of our model on trajectory recognition, we conduct
experiments on one synthetic dataset and two real-world datasets; the detailed data statis-
tics are illustrated in Table 1 and the following subsections. We compare our model with
HCRF, LSTM [34], HMM-BIC and the sampled BP-HMM. In particular, in HCRF, the num-
ber of hidden states is set to 15 and the size of the window is set to 0. In LSTM, we use
a recurrent neural network with one hidden layer as its architecture. In HMM-BIC, the
state number is selected from the range [1, 20]. In the sampled BP-HMM, the hyperparame-
ters are set according to Sun et al. [1]. In the variational BP-HMM, the hyperparameters
{a1, a2, b1, b2, r, κ} are randomly initialized and selected by maximizing the variational



Entropy 2021, 23, 1290 12 of 25

lower bound, and the emission hyperparameters are initialized with k-means. Particu-
larly, the state truncation parameters in variational BP-HMM are set according to specific
datasets, e.g., K = 7 for the synthetic data and K = 20 for the two real-world data. All
experiments are repeated ten times with different training and test division methods, and
the average classification accuracy with the standard deviation is reported.

Table 1. Data statistics for the CCP, HATR and WFNT datasets and corresponding classes.

Datasets #Train Trajectories #Classes (Descriptions)

CCP 20 (5/class) 4 (Normal, Cyclic, IT, DT)

HATR 300 (50/class) 6 (PTSS, PTES, GA, CPH, WFB, WTS)

WFNT 40 (10/class) 4 (F, L, R, B)

5.1. Synthetic Data

The synthetic data called control chart patterns (CCP) have some quantifiable similar-
ities. They contain four pattern types which can be downloaded from the UCI machine
learning repository. The CCP are trajectories that show the level of a machine parame-
ter plotted against time. 400 trajectories are artificially generated by the following four
equations [35]:

1. Normal pattern (Normal): y(t) = m + rs,

where m = 3, s = 2 and 0 < r < 1.

2. Cyclic pattern (Cyclic): y(t) = m + rs + aSin(2πt/T),

where 0 < a, T < 15.

3. Increasing trend (IT): y(t) = m + rs + gt,

where 0.2 < g < 0.5.

4. Decreasing trend (DT): y(t) = m + rs− gt,

where 0.2 < g < 0.5.

Figure 3 shows the generated synthetic data. In this experiment, 20 trajectories are
used for training with 5 trajectories for each class. The classification results are presented
in Table 2. The results are obtained through five-fold cross-validation. In order to illustrate
that the sharing patterns have been learned by our method, the Hinton diagrams of the
variational parameter V are given in Figure 4, where the occurrence probabilities of the
hidden states are presented by the sizes of the blocks. For example, we can find that IT and
DT share the 4th, 5th, 6th features.

10 20 30 40 50

Normal

10 20 30 40 50

Cyclic

10 20 30 40 50

Increasing trend

10 20 30 40 50

Decreasing trend

Figure 3. Examples of control chart patterns.
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feature

Normal

Cyclic

IT

DT

1 2 3 4 5 6 7

Class

Figure 4. Selection results of hidden states for four classes on control chart patterns; these four classes
are normal pattern (Normal), cyclic pattern (Cyclic), increasing trend (IT) and decreasing trend (DT).
The occurrence probabilities q( fck) of the hidden states are presented by the sizes of the green blocks.
The large size of the green blocks represents high occurrence probability of hidden states.

Table 2. Comparisons of the classification accuracy for the proposed method VBP-HMM versus
HCRF, LSTM, HMM-BIC and the sampled BP-HMM in CCP.

Classification Accuracy

Approach HCRF LSTM HMM-BIC SBP-HMM VBP-HMM

CCP 0.88 ± 0.03 0.95 ± 0.02 0.97 ± 0.01 0.96 ± 0.02 1.00 ± 0.00

We compare our method with HCRF, LSTM, HMM-BIC and the sampled BP-HMM.
As we can see from Table 2, our method outperforms all the other methods.

In this experiment, the sharing patterns contribute to improving the performance.
Since an HMM is created for each class of trajectories in our proposed method instead
of each trajectory in the sampled BP-HMM, our method has better performance than the
sampled BP-HMM.

5.2. Human Activity Trajectory Recognition

Human activity trajectory recognition (HATR) [36] is important in many applications
such as health care. In our human activity trajectory recognition experiment, parking
lot data are collected from the video [1]. We use the data tagged manually [1], which
has 300 trajectories with 50 trajectories for each class. Six classes are defined, which are
“passing through south street” (PTSS), “passing through east street” (PTES), “going around”
(GA), “crossing park horizontally” (CPH), “wandering in front of building” (WFB) and
“walking in top street” (WTS). As seen from [1], the sampled BP-HMM is the best method
among the methods including HCRF, LSTM, HMM-BIC and the sampled BP-HMM in
HATR. Here we use the same training and test data to compare the variational BP-HMM
with the sampled BP-HMM. Table 3 shows the comparisons of the classification accuracy
for the proposed method VBP-HMM versus HCRF, LSTM, HMM-BIC and the sampled-BP-
HMMs in HATR. The results are obtained through five-fold cross-validation. As can be
seen from Table 3, the accuracy of our method is 0.96, while the accuracy of the sampled
BP-HMM is 0.91 [1]. The detailed confusion matrix for our method is given in Table 4.
The state sharing patterns learned by variational BP-HMM are displayed with the Hinton
diagrams in Figure 5, in which GA and CPH, as well as GA and WTS, are more likely to
share states. The good performance verifies the superiority of modeling an HMM for each
class. Moreover, we take some examples of the correct classification and misclassification
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results for visualization as in Figures 6 and 7. As illustrated in Figure 7, the misclassified
trajectories often contain some deceptive subpatterns such as the trajectory of CPH in
subfigure (d) containing a back turn and a left turn like the GA class.

Table 3. Comparisons of the classification accuracy for the proposed method VBP-HMM versus
HCRF, LSTM, HMM-BIC and the sampled BP-HMM in HATR.

Classification Accuracy

Approach HCRF LSTM HMM-BIC SBP-HMM VBP-HMM

HATR 0.68 ± 0.03 0.75 ± 0.03 0.95 ± 0.02 0.91 ± 0.02 0.96 ± 0.02

Table 4. Classification accuracy for human activity trajectory recognition.

Classification Accuracy

Predicted Class PTSS PTES GA CPH WFB WTS

PTSS 1.00 0.00 0.00 0.00 0.00 0.00

PTES 0.00 1.00 0.00 0.00 0.00 0.00

GA 0.00 0.00 0.97 0.00 0.00 0.00

CPH 0.00 0.00 0.03 0.96 0.00 0.00

WFB 0.00 0.00 0.00 0.03 1.00 0.23

WTS 0.00 0.00 0.00 0.01 0.00 0.77

Figure 5. Selection results of hidden states for different classes on human activity trajectory recogni-
tion. The occurrence probabilities q( fck) of the hidden states are presented by the sizes of the green
blocks. The large size of the green blocks represents high occurrence probability of hidden states.

5.3. Wall-Following Navigation Task

We perform the Wall-Following navigation task (WFNT) in which data are collected
from the sensors on the mobile robot SCITOS-G5 [4]. We think that this task is a trajectory
with historical data, and two ultrasound sensors datasets are selected, because the cost is
as low as possible in civil applications with acceptable accuracy. There are 187 trajectories
in the data and four classes need to be recognized, which are “front distance” (F), “left
distance” (L), “right distance” (R) and “back distance” (B). We randomly select 40 training
trajectories with 10 for each class. The confusion matrix of classification is shown in Table 5
and the state sharing patterns learned by variational BP-HMM are displayed with the
Hinton diagrams in Figure 8, where R and F, as well as R and B, have a small number of
shared states.
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(a) Right: PTSS (b) Right: PTES (c) Right: GA (d) Right: CPH

(e) Right: WFB (f) Right: WTS

Figure 6. Correct classification results of HATR dataset for the classes: PTSS, PTES, GA, CPH, WFB,
WTS, respectively.

(a) Wrong: CPH→GA (b) Wrong: WFB→WTS (c) Wrong: WTS→CPH

Figure 7. Misclassification results of HATR dataset for the three classes: CPH, WFB and WTS which
are misclassified to GA, WTS and CPH, respectively.

Table 5. The confusion matrix of the Wall-Following navigation recognition.

Classification Accuracy

Predicted Class F L R B

F 0.95 0.18 0.00 0.00

L 0.02 0.73 0.00 0.00

R 0.03 0.09 0.95 0.0

B 0.00 0.00 0.05 1.00

The comparison of the classification accuracy for our method VBP-HMM versus HCRF,
LSTM, HMM-BIC and the sampled BP-HMM is shown in Table 6. The results are obtained
by five-fold cross-validation. It is obvious that our method is much better than the sampled
BP-HMM, because we create an HMM for each class of trajectories rather than create an
HMM for each trajectory. Although the sharing patterns are not obvious in this experiment,
our method has better performance than the other methods. As we have analyzed, sharing
patterns among different classes will be learned automatically by our model, which helps
to localize precisely the difference of different classes. When there is no sharing pattern
among classes, the advantage will be weakened.
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Figure 8. Selection results of hidden states for different classes on the Wall-Following navigation
recognition. The occurrence probabilities q( fck) of the hidden states are presented by the sizes
of the green blocks. The large size of the green blocks represents high occurrence probability of
hidden states.

Table 6. Comparisons of the classification accuracy for the proposed method VBP-HMM versus
HCRF, LSTM, HMM-BIC and the sampled BP-HMM in WFNT.

Classification Accuracy

Approach HCRF LSTM HMM-BIC SBP-HMM VBP-HMM

WFNT 0.80 ± 0.03 0.73 ± 0.08 0.86 ± 0.04 0.85 ± 0.02 0.89 ± 0.01

5.4. Performance Analysis

In our experiments, the results show that the proposed variational BP-HMM has a
great improvement compared to the sampled BP-HMM which uses average transition over
trajectories from each class. We analyze the advantages of variational BP-HMM for the
following reasons. Due to the small amount of training data in our experiment, the perfor-
mance of LSTM is not satisfactory. HMM-BIC finds an optimal state number through model
selection but it cannot make use of the shared information among classes, and its perfor-
mance is the second-best overall. Although the sample BP-HMM can share hidden states
among classes, it does not make correct use of the shared information in classification and
thus does not gain better results. Our proposed variational BP-HMM constructs a mecha-
nism to learn shared hidden states by introducing state indicator variables and maintains
class-specific state transition matrices which are very helpful for classification tasks.

Moreover, we give the total cost time of the variational BP-HMM, HMM-BIC, LSTM,
HCRF and the sampled BP-HMM in Table 7, where we can see the variational BP-HMM
performs much more efficiently than the sampled BP-HMM. This is attributed to the effi-
ciency of the variational methods. Although the sampled BP-HMM and the variational
BP-HMM have similar time complexity, due to the sampling operation, the cost time of
the sampled BP-HMM is usually several times that of the variational BP-HMM. In other
words, the variational BP-HMM converges much faster than the sampled BP-HMM. Be-
sides, compared with HMM-BIC, it only takes about twice the time to achieve significant
performance improvements. Above all, we can conclude that the proposed variational
BP-HMM is an effective and efficient method for trajectory recognition.

Table 7. Comparisons of total time cost for the proposed method VBP-HMM versus HCRF, LSTM,
HMM-BIC and the sampled-BP-HMM in experiments.

Total Time Cost (s)

Approach HCRF LSTM HMM-BIC SBP-HMM VBP-HMM

CCP 196 6 54 2151 117

HATR 118 13 93 2521 205

WFNT 1005 8 115 1819 312
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6. Conclusions

In this paper, we have proposed a novel variational BP-HMM for modeling and
recognizing trajectories. The proposed variational BP-HMM has shared hidden state space
which is used to capture the commonality of the cross-category data and class-specific
indicators which are used to distinguish the data from different classes. As a result, in the
variational BP-HMM, multiple HMMs are used to model multiple classes of trajectories
among which a hidden state space is shared.

The more reasonable assumptions of the proposed model make it more suitable for
jointly modeling trajectories over all classes and further making trajectory recognition.
Experimental results both on synthetic and real-world data have verified that the proposed
variational BP-HMM can find the feature sharing patterns among different classes, which
helps to better model trajectories and further improve the classification performance.
Moreover, compared with the sampled BP-HMM, the derived variational inference for the
proposed BP-HMM can reduce the time cost of the training procedure. The experimental
time records also show the efficiency of the proposed variational BP-HMM.
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Appendix A. The Prior Distribution of the Parameter W

Denote ∑∞
k=1 δ(dk = r) as d. The prior distribution of the parameter W is expressed as

p(W|θ) = p(α)p(γ)p(d|γ)

×
∞

∏
k=1

{
p(Vk|α)p(Tk|dk, θ)p(µk, Σk|θ)

×
C

∏
c=1

p
(

fck |Vk, Tk, dk
)

p(π(c)
k | fc, θ)

}

×
C

∏
c=1

p(π(c)
0 | fc, θ)

×
N

∏
n=1

{ T

∏
t=1

∞

∏
k1=1

∞

∏
k2=1

(
π
(yn)
k1k2

)δ
(

z(n)t =k1,z(n)t+1=k2

)

×
∞

∏
k=1

(
π
(yn)
0k

)δ
(

z(n)0 =k
)}

.

(A1)

We use
p
(

fck |Vk, Tk, dk
)
= p

(
fck |Vk

)δ(dk=1)p
(

fck |Vk, Tk
)δ(dk>1)

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
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to account for the class in which an atom appears. Two terms p(Tk|dk, α) and p(d|γ) are
given by Paisley et al. [33],

p(Tk|dk, α) =
ανk(δ)

∏r>2 Γ(r− 1)1(dk=r)
Tνk(2)

k e−αTkδ(dk>1),

where νk(s) = ∑
r>2

(r− s)e−αTkδ(dk=r), and

p(d|γ) =
∞

∏
r=1

γ ∑
k

δ(dk = r)

∑
k

δ(dk = r)!
e
−γ

(
∞
∑

r′=r

∞
∑

k=1
δ
(

δ
(

dk=r
′)
>0
))

.

In p(Tk|dk, α), the indicator dk is used for selecting the Gamma prior parameters of
Tk. Moreover, the term p(Tk|dk, α) in (21) will be removed if dk = 1. The binary indicator
δ
(

∑∞
r′=r ∑∞

k=1 δ(δ(dk = r′) > 0)
)

in p(d|γ) means that at least one of the K indexed atoms
occur in round r or the round after r.

Appendix B. The Lower Bound L(X, φ)

We expand the lower bound as L(X, φ) = EQ(lnP(X, W|θ)) − EQ[lnQ] which is
expressed as

L(X, φ)

=
N

∑
n=1

{ T

∑
t=1

K

∑
k=1

Eq[δ(z
(n)
t = k)lnp(Xt|µk, Σk, θ)]

+
T−1

∑
t=1

K

∑
k1=1

K

∑
k2=1

Eq[δ(z
(n)
t = k1, z(n)t+1 = k2)ln(π

(yn)
k )]

+
K

∑
k=1

Eq

[
δ(z(n)0 = k)ln

(
π
(yn)
0k

)]}

+
C

∑
c=1

{ K

∑
k=0

Eq

[
ln(p(π(c)

k | fc, θ))
]

+
K

∑
k=1

Eq[δ(dk = 1)lnp( fck|Vk)]

+
K

∑
k=1

Eq[δ(dk > 1)lnp( fck|Vk, Tk)]

}

+
K

∑
k=1

{
Eqlnp(µk, Σk|θ) +Eq[lnp(Tk|α, dk)]

+Eq[lnp(Vk|α)]
}

+
∞

∑
r=1

Eq[lnp(Σkδ(dk = r)|γ)]

+Eq[lnp(α)] +Eq[lnp(γ)]

−EQ[lnQ−T ]−
K

∑
k=1

ϕk(r > 1)Eq[lnq(Tk)].

Note that we multiply the entropy of Tk, Eq(Tk)lnq(Tk), by the variational probability
ϕk(r > 1) as done in [33] for keeping the entropy of Tk from blowing up when ϕk(1)→ 1,
where ϕk(r > 1) = ∑r>1 ϕkr = Eq[δ(dk > 1)].
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Appendix C. Coordinate Update for the Key Distributions

Appendix C.1. Coordinate Update for q( fck)

Since the Dirichlet distribution of πk, fck cannot be obtained by analysis directly. The
gradient ascent algorithm is used for updating fck, c ∈ {1, . . . , C}. The derivative of L with
respect to υck is

∂L
∂υck

=
K

∑
j=0

{
(r(c) − 1)

(
Ψ
(

r′(c)jk

)
−Ψ(

K

∑
t=1

r′(c)jt )

)
δ(j 6= k)

+
(

r(c) + κ − 1
)(

Ψ
(

r′(c)jk

)
−Ψ(

K

∑
k=1

r′(c)jk )

)
δ(j = k)

+ Ψ
( K

∑
t=1

vctr(c)δ(t 6= j) + vcj

(
r(c) + κ

)
δ(t = j)

)

×
((

r(c) + κ
)

δ(j = k) + r(c)δ(j 6= k)
)

−Ψ
(

vckr(c)
)

r(c)δ(j 6= k)

−Ψ
(

vck

(
r(c) + κ

))
(r(c) + κ)δ(j = k)

}

+ ϕk(1)
(
Ψ
(
τk1

)
−Ψ

(
τk2

))

+ ϕk(r > 1)
(

Ψ
(
τk1

)
−Ψ

(
τk1 + τk2

)
− u′k

v′k
+4k(·)

)

+ ln υck − ln(1− υck).

Appendix C.2. Coordinate Update for q(dk)

The update for each ϕk is given below for r = 1, . . . , R. Let

ρ(r) =(r− 1)(Ψ(k1)− lnk2)− lnΓ(r− 1)

+ (r− 2)
(
Ψ
(
u′k
)
− lnv′k

)
.

If r = 1,

ϕk(1) ∝ exp
{

n0k(Ψ(τk2)−Ψ
(
τk1 + τk2

)
)− ξ ∑

i 6=k
ϕi(1)

}
.

If r > 2,

ϕk(r) ∝ exp
{

n1k

(
Ψ
(
τk1

)
−Ψ

(
τk1 + τk2

)
− u′k

v′k

)

− n0k∆k(·) + H[q(Tk)] + ρ(r)

− ξ ∑
i 6=k

ϕk(r)−
τ1

τ2

r

∑
j=2

∏
k′ 6=k

j−1

∑
r′=1

ϕk′
(
r′
)}

.

where n1k = ∑C
c=1 vck, n0k = C− n1k and ξ = ∑∞

x x−2ln(x) ≈ 0.9375.
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Appendix C.3. Coordinate Update for q(Vk)

We use the gradient ascent algorithm to jointly update
(
τk1 , τk2

)
by the gradients of

the lower bound with respect to
(
τk1 , τk2

)
. Let λ1 = −n0k ϕk(1)− n1k −

k1
k2
− 1 + τk1 + τk2 ,

λ2 = −n0k ϕk(r > 1), λ3 = n1k + 1− τk1 and λ4 = n0k ϕk(1) +
k1
k2
− τk2 . The derivatives are

∂L
∂τk1

=λ3Ψ′
(
τk1

)
+ λ1Ψ′

(
τk1 + τk2

)
+ λ2

∂∆k(·)
∂τk1

,

∂L
∂τk2

=λ4Ψ′
(
τk2

)
+ λ1Ψ′

(
τk1 + τk2

)
+ λ2

∂∆k(·)
∂τk2

.

Since Ψ(x) can be expanded as Ψ(x) = −γ + ∑∞
k=1

(
1
k +

1
x+k

)
and its derivative is

Ψ′(x) = ∑∞
k=1(x + k− 1)−2, we can get

∂∆k(·)
∂τk1

=
M

∑
m=1

{
1
m

(
v′k

v′k + m

)u′k m

∏
i=1

τk1 + i− 1
τk1 + τk2 + i− 1

× {Ψ
(
τk1 + τk2 + m

)
+ Ψ

(
τk1

)

−Ψ
(
τk1 + τk2

)
−Ψ

(
τk1 + m

)
}
}

,

and

∂∆k(·)
∂τk2

=
M

∑
m=1

{
1
m

(
v′k

v′k + m

)u′k m

∏
i=1

τk1 + i− 1
τk1 + τk2 + i− 1

×
(
Ψ
(
τk1 + τk2 + m

)
−Ψ

(
τk1 + τk2

))}
.

Appendix C.4. Coordinate Update for q(Tk)

We use the gradient ascent algorithm to jointly update
(
u′k, v′k

)
by the gradients of the

lower bound with respect to
(
u′k, v′k

)
. The derivatives are

∂L
∂u′k

=Ψ′
(
u′k
)

∑
r>1

(r− 2)ϕk(r)

+ ϕk(r > 1)


1−

n1k +
k1
k2

v′k

−n0k

∂∆k(·)
∂u′k

+
(
1− u′k

)
Ψ′
(
u′k
))

,

∂L
∂v′k

=− 1
v′k

∑
r>1

(r− 2)ϕk(r) + ϕk(r > 1)

×
(

u′k
v′k

2

(
n1k +

k1

k2

)
− n0k

∂∆k(·)
∂v′k

− 1
v′k

)
,

(A2)
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where

∂∆k(·)
∂u′k

=
M

∑
m=1

{
1
m

m

∏
i=1

τk1 + i− 1
τk1 + τk2 + i− 1

×
(

v′k
v′k + m

)u′k(
ln
(
v′k
)
− ln

(
v′k + m

))}
,

∂∆k(·)
∂v′k

=
M

∑
m=1
{ 1

m

m

∏
i=1

τk1 + i− 1
τk1 + τk2 + i− 1

× u′k

(
v′k

v′k + m

)u′k−1 m
(

v′k
2 + m

)2 .

(A3)

Appendix C.5. Coordinate Update for q(α)
The update formulae for (k1, k2) are

k1 = K +
K

∑
k=1

R

∑
r>1

(r− 1)ϕk(r) + a1,

k2 = −
K

∑
k=1

E[ln(1−Vk)] +
K

∑
k=1

E[Tk]ϕk(r > 1) + a2.

(A4)

It is shown that ϕk(1) has nothing to do with the update of α.

Appendix C.6. Coordinate Update for q(γ)
The update formulae for (τ1, τ2) are

τ1 = K + b1,

τ2 =
R

∑
r=1
{1−

K

∏
k=1

r−1

∑
r′=1

ϕk
(
r′
)
}+ b2.

(A5)

It can be seen from above that τ1 does not change with iterations while τ2 depends on
ϕk(r′).

Appendix C.7. Coordinate Update for q(µµµk, Σk)

The variational parameter update of q(µk, Σk) is analytical and the update formulae
are
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uk =
∑N

n ∑T
t q
(

z(n)t = k
)

x(n)t + λ0u0

λ0 + ∑N
n ∑T

t q
(

z(n)t = k
) ,

λk =λ0 +
N

∑
n=1

T

∑
t=1

q
(

z(n)t = k
)

,

υk =υ0 +
N

∑
n=1

T

∑
t=1

q
(

z(n)t = k
)

,

Φk =λ0u>0 u0 +
N

∑
n=1

T

∑
t=1

q
(

z(n)t = k
)

x(n)
>

t x(n)t

+ Φ0 −
1

λ0 + ∑N
n ∑T

t q
(

z(n)t = k
)

×
(

N

∑
n

T

∑
t

q
(

z(n)t = k
)

x(n)t + λ0u0

)>

×
(

N

∑
n

T

∑
t

q
(

z(n)t = k
)

x(n)t + λ0u0

)
.

Appendix C.8. Coordinate Update for q
(

πππ
(c)
j

)

In order to update π
(c)
j , two cases, j > 0 and j = 0, should be analyzed. For j > 0, the

logarithmic distribution of π
(c)
j is updated as

lnq
(

π
(c)
j

)
= Eq[ln

(
p
(
πj| fn, r, κ

)

×
N

∏
n=1

T−1

∏
t=1

δ(yn = c)P(z(n)t+1|π, z(n)t )],

where

p
(

z(n)t+1|π
(yn)
k , z(n)t = j

)
=

K

∏
k=1

π
(yn)
jk

δ
(

z(n)t =j,z(n)t+1=k
)

,

and

p
(

π
(c)
j | fck, r(c), κ

)
=

1
B

K

∏
k 6=j

π
(c)
jk

(r(c) fck−1)
π
(c)
jj

((r(c)+κ) fck−1)
.

Here B is the normalizing constant of the Dirichlet distribution q
(

π
(c)
j

)
. We can get

lnq
(

π
(c)
j

)
=

K

∑
k 6=j

{ N

∑
(n=1)

T−1

∑
t=1

δ(yn = c)q
(

z(n)t = j, z(n)t+1 = k
)

+ rυck − 1
}

ln
(

π
(c)
jk

)
+

(
(r + κ)υck − 1

+
N

∑
n=1

T−1

∑
t

δ(yn = c)q
(

z(n)t = j, z(n)t+1 = j
))

ln
(

π
(c)
jj

)
.
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Thus the parameters r′(c)j for the Dirichlet distribution q
(

π
(c)
j

)
are formulated as

r′(c)jk =
N

∑
n=1

T−1

∑
t=1

δ(yn = c)q
(

z(n)t = j, z(n)t+1 = k
)
+ r(c)υck,

with k 6= j,

and

r′(c)jj =
N

∑
n=1

T−1

∑
t=1

δ(yn = c)q
(

z(n)t = j, z(n)t+1 = j
)
+
(

r(c) + κ
)

υcj.

For j = 0 , π
(c)
j is the prior probability of the hidden states. We can obtain

r0k =
N

∑
n=1

δ(yn = c)q
(

z(n)1 = k
)
+ r(c)υck.

Appendix C.9. Coordinate Update for q(Z)
For each class of trajectories,

a∗jk
(c) = exp

(
Eqlnp

(
π
(c)
jk

))

= exp

(
Ψ
(

r′(c)jk

)
−Ψ

(
K

∑
i=1

r′(c)ji

))
,

b∗tj
(n) = exp

(
Eqlnp

(
x(n)t |µj, Σj

))

= exp
{
− p

2
ln(2π)− 1

2
Eqln

(
|Σj|

)

− 1
2

(
d

λk
+
(

x(n)t − uj

)>(
υj − p− 1

)
Φ−1

j

(
x(n)t − uj

))}
,

where p is the dimension of x(n)t and

Eqln
(
|Σj|

)
= −

p

∑
i=1

Ψ
(

υj + 1− i
2

)
− pln(2) + ln|Φj|.

From the above, we need the marginal probabilities q
(

z(n)t = j
)

and q
(

z(n)t = j, z(n)t+1 = k
)

.
The detailed calculations are as follows. Both of them can be calculated by the forward-
backward algorithm. The forward procedure is

ιtk = P(x1 = x1, x2 = x2, . . . , xt = xt, ztk|W, Θ),

ι1k = a∗0jb
∗
tk,

ιt+1
j = b∗t+1j

K

∑
k=1

ιtka∗kj.

The backward procedure is

βk(t) = P(xt+1 = xt+1, . . . , xT = xT |zt = k, W, Θ),

βk(T) = 1,

βk(T) =
K

∑
j=1

β j(t + 1)a∗kjb
∗
t+1j.
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Thus, the expressions of the posterior distributions are

q(zt = j) =
ιj(t)β j(t)

∑K
j=1 ιj(t)β j(t)

,

q(zt = j, zt+1 = k) =
ιj(t)a∗jkβ j(t)b∗t+1k

∑K
k=1 ιk(t)βk(t)

.

Now we can update the variational parameters in the BP-HMM according to the above
equations. We judge the convergence of this update according to the change of the lower
bound.
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