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Glioblastoma remains the most common and devastating primary brain tumor despite maximal therapy with surgery,
chemotherapy, and radiation. The glioma stem cell (GSC) subpopulation has been identified in glioblastoma and likely plays a
key role in resistance of these tumors to conventional therapies as well as recurrent disease. GSCs are capable of self-renewal and
differentiation; glioblastoma-derived GSCs are capable of de novo tumor formation when implanted in xenograft models. Further,
GSCs possess unique surface markers, modulate characteristic signaling pathways to promote tumorigenesis, and play key roles
in glioma vascular formation. These features, in addition to microenvironmental factors, present possible targets for specifically
directing therapy against the GSC population within glioblastoma. In this review, the authors summarize the current knowledge of
GSC biology and function and the role of GSCs in new vascular formation within glioblastoma and discuss potential therapeutic
approaches to target GSCs.

1. Introduction

Glioblastoma is the most common and devastating primary
brain tumor. The standard-of-care treatment involves maxi-
mal surgical resection followed by radiation and chemother-
apy with temozolomide (TMZ) [1–4]. Despite treatment with
rigorous surgical and medical therapy, patients only have
a 15- to 19-month median overall survival rate because of
near-universal tumor recurrence [4, 5]. Studies have emerged
showing glioma stem cells (GSCs) to represent a subpop-
ulation of cells within glioblastoma that are characterized
by increased resistance to chemotherapy and radiotherapy,
suggesting that GSCs are likely responsible for failure of treat-
ment and high recurrence rates in glioblastoma [6]. There-
fore, GSCs are considered a relevant target for glioblastoma
therapy, and the elimination of GSCs is crucial in treating
glioblastoma. The strategy to target GSCs therapeutically is
mainly focused on the direct ablation of GSCs by targeting
cell surface markers and specific pathways that are required
for maintaining GSC stemness. However, it has been increas-
ingly acknowledged that another way to specifically target

GSCs is to alter the ability of GSCs to interact with their
microenvironment, including their dependency on angio-
genesis and their immune evasive properties. In this review,
we summarize the current knowledge of GSC biology and
function and discuss potential therapeutic approaches to
target GSCs.

2. Cancer Stem Cell Biology

In their most basic definition, stem cells possess the ability
to both self-renew and differentiate. Self-renewal is a critical
function of stem cells, as they must persist throughout the
entire lifespan of the organism. This quality of self-renewal
is shared between both stem cells and cancer cells. Not sur-
prisingly, there are several signaling pathways that have been
identified, and likely numerous others yet to be identified,
which are shared between these two cell types. Among these
are the Notch, Sonic hedgehog (Shh), and Wnt signaling
pathways [7]. These pathways are essential for preserving
multipotency and self-renewal.
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Cancer stem cells (CSCs) possess the same characteristics
of normal stem cells with the added features of being onco-
genic in their host and giving rise to a heterogeneous popu-
lation of cells that comprise the tumor mass. These cells were
first postulated as etiologic agents in hematopoietic cancers.
Bonnet and Dick showed that the leukemia-initiating cell
in acute myeloid leukemia possessed the characteristics of a
leukemia stem cell. This showed that normal primitive cells,
rather than committed cells, were capable of leukemic trans-
formation [8]. Since then, these cells have also been identified
in solid tumors, including prostate [9], colon [10], lung [11],
ovarian [12], and brain [13] tumors. A pure CSC tumormodel
posits that a CSC forms the basis for tumorigenesis and con-
tinued propagation through self-renewal and differentiation
into the various cellular types that comprise the tumor [14].

Neural stem cells (NSCs) can be found in several locations
in the adult brain including the subventricular zone (SVZ)
[15], dentate gyrus of the hippocampus [16], and the subcor-
tical white matter [17].The SVZ is presumed to be host to the
majority of these cells and has been proposed as the site of
origin of gliomas and other brain tumors [18], stemming from
early experiments showing increased tumor formation after
carcinogen injection into the SVZ compared to other sites in
rats [19].

Further, cell cultures derived from human glioblastoma
have been shown to have the ability to form neurospheres.
Cells constituting the neurospheres were found to highly
express both Nestin and CD133.These cells were also capable
of in vivo tumor formation when injected into nude mice,
whereas non-sphere-forming cells isolated fromglioblastoma
did not grow tumor [20]. Additional studies investigating
gliomagenesis by exposure to chemicals (ethylnitrosourea) or
viruses (avian sarcoma virus) in animals showed that tumor
formation preferentially occurs in the SVZ, particularly with
earlier exposure to the carcinogen, suggesting the importance
of this site in the origin of gliomas [9, 21–23].

3. Implicated Signaling Pathways

Compared to NSCs, GSCs exhibit enhanced self-renewal
capacity and compromised differentiation [24], summarized
in Figure 1. GSCs upregulate a number of signaling pathways
required for maintaining NSC stemness, which enables them
to enhance their stemness and aberrant cell survival, conse-
quently leading to tumorigenesis [25–27]. Therefore, further
understanding the signaling pathways in normal neural
development including Notch, bone morphogenic proteins
(BMPs), NF-𝜅B, Wnt, epidermal growth factor (EGF), and
Shh will give significant insight into the cellular features of
GSCs and will aid in designing better treatment strategies for
glioblastoma.

Notch signaling is important for mediating various cellu-
lar and developmental processes including the regulation of
proliferation, differentiation, apoptosis, and cell lineage deci-
sions in NSCs [28–30]. Recent studies have implicated Notch
signaling to be highly active in GSCs to suppress differenti-
ation and maintain stem-like properties. Downregulation of
Notch and its ligands such as Delta-like-1 and Jagged-1 leads
to decrease in oncogenic potential of GSCs, which indicates

an important role of Notch signaling in GSC survival and
proliferation [28, 31, 32].

BMPs regulate proliferation, differentiation, and apopto-
sis inNSCs. BMP signaling pathways are activated in different
developmental processes depending on their interaction with
various signaling molecules including Wnt/𝛽-catenin, basic
helix-loop-helix (bHLH), and hypoxia-inducible factor-1𝛼
(HIF-1𝛼) [33–35]. Wnt signaling induces BMP expression,
which predisposes NSCs toward an astroglial lineage [36].
Similarly, BMPs in GSCs are shown to play an important role
in directing astroglial differentiation to inhibit the tumori-
genic potential of GSCs [37]. Specifically, BMP-2 decreases
GSC proliferation by directing astroglial differentiation and
sensitizes GSCs to TMZ through destabilization of HIF-1𝛼
[34, 38]. In vivo delivery of BMP-4 inhibits brain tumor
growth with a resultant decrease in mortality [37]. A BMP
antagonist, Gremlin1, inhibits differentiation of GSCs by its
regulation of endogenous BMP levels to maintain GSC self-
renewal and tumorigenic potential [39].

Wnt/𝛽-catenin signaling is also important for regulating
NSC expansion and promoting astroglial lineage differenti-
ation in normal neural development [40, 41]. 𝛽-Catenin is
a critical factor for proliferation and differentiation of GSCs
[42, 43]. Aberrant activation of Wnt signaling in GSCs leads
to tumor growth through nuclear localization of stabilized 𝛽-
catenin [44, 45]. FoxM1/𝛽-catenin interaction regulates the
transcription of c-Myc and other Wnt target genes inducing
glioma formation [46, 47]. In addition, Wnt/𝛽-catenin sig-
naling regulates the expression of PLAGL2 to suppress the
differentiation of GSCs, maintaining their stemness [48].

The EGFR signaling pathway mediates proliferation,
migration, differentiation, and survival inNSCs [49–53]. Lev-
els of EGFR expression vary with specific stages of develop-
ment, which suggests a requirement for precisemodulation of
EGFR expression by balancing extrinsic signals such as BMP
and FGF during normal neuronal development [54]. EGFR
activation promotes GSC proliferation and tumorigenesis by
transactivation of 𝛽-catenin [55]. Furthermore, overexpres-
sion of EGFR increases the self-renewal capacity of GSCs
resulting in induction of their tumorigenic potential [56–59].

Sonic hedgehog (Shh) signaling is pivotal in ventral pat-
terning, proliferation, differentiation, and survival of NSCs
[60–62]. In the adult brain, persistent Shh pathway signaling
in the SVZ is critical for the regional specification and
maintenance of NSCs [63, 64]. Recent studies demonstrate
that the Shh pathway is highly active inGSCs tomaintain self-
renewal and induce tumorigenesis by regulating stemness
genes. Suppression of Shh signaling reduces self-renewal and
in vivo tumorigenicity, which indicates the dependency of
GSCs on Shh signaling for their survival [65, 66].

4. Microenvironment of GSCs:
Vasculature in Glioma

Neovascularization in malignant glioma is well documented,
being characterized as hypervascular tumors associated with
aberrant vascular morphology [67–69]. Normal vessels are
formed by the mechanisms of vasculogenesis and angiogen-
esis [67, 70]. Vasculogenesis is in situ vascular formation
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Figure 1: Summary of key molecular pathways regulating steps in glioma stem cell self-renewal, differentiation, and gliomagenesis.

through differentiation of mesodermally derived endothelial
progenitor cells, angioblasts, which occurs during organo-
genesis and fetal development. Formation of a primitive
vascular network by vasculogenesis is followed by angiogen-
esis, which contributes to expansion and remodeling of the
existing vasculature by two different mechanisms: branching
by vessel sprouting (sprouting angiogenesis) and splitting of
vessel lumens by interstitial tissue (intussusception). Other
than vasculogenesis and angiogenesis, malignant gliomas
exhibit two additional types of neovascularization: vascular
co-option and vasculogenic mimicry [67–69]. Recent studies
implicate roles of GSCs in multiple modes of glioma neovas-
cularization.

4.1. Vascular Co-Option. Glioma cells infiltrate around nor-
mal brain vessels forming perivascular cuffs, incorporating
the existing vessels into the tumor in a process called vascular
co-option [71]. Although the specific role of GSCs in vascular
co-option has not been established, vascular co-option is
followed by apoptosis of endothelial cells and regression
of vessels. This results in hypoxia that in turn induces
angiogenesis in which GSCs play critical roles [72].

4.2. Angiogenesis. Angiogenesis is the process of new vessel
development from preexisting vasculature, with VEGF play-
ing a critical role in this process [67]. Several studies suggest
critical roles of GSCs in glioma angiogenesis. Conditioned
medium from CD133+ GSCs contains 10–20-fold higher
levels of VEGF than that from CD133− cells and promotes
human microvascular endothelial cell migration and tube
formation [73]. Hypoxia stimulates production of VEGF and
stromal cell-derived factor 1 (SDF-1), also known as CXCL12,
in GSCs [74, 75]. VEGF induces migration and proliferation
of endothelial cells, while SDF-1 causesmigration of endothe-
lial cells [76]. GSCs also secrete hepatoma-derived growth
factor that promotes endothelial cell migration in vitro and
angiogenesis in vivo [77].

4.3. Vasculogenesis. Vasculogenesis was originally described
as de novo vascular formation by angioblasts derived from
mesoderm during organogenesis and fetal development, and
it had been believed that postnatal vasculature could be
formed only by angiogenesis even in pathological conditions
[69, 70, 78]. This theory was challenged by findings of tumor
vasculogenesis by Asahara et al., who reported formation
of tumor vessels by circulating endothelial cell progenitors
[79]. Several subsequent studies indicated that other types of
cells including tumor-associated macrophages (TAMs)/Tie-
2 expressing monocytes and GSCs also differentiate into
endothelial cells in the tumor [80–84]. Although there is
controversy regardingwhat is referred to by “vasculogenesis,”
we will use vasculogenesis to describe any de novo neovas-
cularization. VEGF and SDF-1𝛼 were overexpressed by GSC-
rich C6 rat glioma cells in culture [76]. Inhibition of VEGF
or SDF-1𝛼 suppressed endothelial cell proliferation, tubule
formation, and endothelial progenitor cell mobilization and
decreased vascularization, suggesting an important role of
GSCs in not only angiogenesis but also vasculogenesis. Ricci-
Vitiani et al. reported that some CD31+ endothelial cells
in human glioblastoma specimens carried the same chro-
mosomal aberrations as tumor cells. CD133+ GSCs cul-
tured in endothelial conditions generated CD31+ and Tie-
2+ endothelial cells, and vessels in tumors formed by GSCs
in immunocompromised mice were mainly composed of
human CD31+ endothelial cells [83]. Wang et al. reported
that glioblastoma-derived CD133+ cells included a CD144+
(vascular E-cadherin) population. These CD133/CD144 dou-
ble positive cells showed an increase in expression of CD31,
CD105, CD34, and VEGFR-2 and decrease in CD144 expres-
sion under endothelial culture conditions andwere capable of
forming a tubular network in Matrigel [85]. Finally, Soda et
al. demonstrated that glioma tumor-initiating cells produced
endothelial cells expressing CD31, CD34, CD144, and von
Willebrand factor in a genetically engineered mouse brain
tumor model [86]. Although the selection and interpre-
tation of marker proteins for endothelial progenitor cells
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and endothelial cells are not identical, their findings suggest
transdifferentiation of GSCs into endothelial cells. However,
the biological and clinical significance of glioma vasculoge-
nesis is still in debate. It was shown that only 10% of the
vessels were identified to contain cells expressing neoplastic
markers, and when identified these cells comprised less than
10% of the vascular cellularity in the cross section of human
glioblastoma [87]. A study using chimeric mice with GFP-
tagged bone marrow cells also showed that less than 1% of
bone marrow-derived cells were incorporated into the vas-
cular endothelial layer in experimental gliomas [88]. Taken
together, incorporation of bone marrow-derived or GSC-
derived cells into vascular endotheliummay be a rare event or
widely vary among tumors [67]. However, it is possible that
vasculogenesis could play a critical role in glioma resistance
to antiangiogenic therapy and early revascularization events
in recurrent glioma [68].

Recent studies suggest that pericytes play a critical role
not only in physiological processes such as wound healing
but also in tumor growth and progression [89]. Furthermore,
it was reported that GSCs give rise to pericytes [90, 91].
Although the role ofGSC-derived pericytes in gliomaneovas-
cularization remains to be clarified, the finding that targeting
GSC-derived pericytes suppressed neovasculature formation
and tumor growth suggests an important function of these
cells in glioma vascularization and progression.

4.4. Vasculogenic Mimicry. Vasculogenic mimicry is a fluid-
conducting, matrix-embedded meshwork that is formed not
by endothelial cells but by tumor cells [92]. This finding has
been observed in human malignant melanoma specimens
[93] and documented in malignant astrocytoma [94, 95].

A study using human GSCs and GFP transgenic nude
mice showed formation of patterned, tubular networks of
vascular channels formed by human GSC-derived cells
in xenograft tumors [96]. CD133+ GSCs established from
human glioblastoma have successfully formed a vasculogenic
network in a 3DMatrigel tube formation assay [97]. Similarly,
Chen et al. demonstrated in vitro vascular formation by
CD133+ GSCs with formation of vasculature lined by nonen-
dothelial cells [98]. Knockdown of VEGFR-2 in GSCs inhib-
ited formation of tubules, xenograft tumors, and vasculogenic
mimicry [99]. In hypoxic conditions (1%O

2
), CDH5 (CD144)

was upregulated by HIF-1𝛼 and HIF-2𝛼 in GSCs and con-
tributed to vasculogenic mimicry [100].

Although the extent of contribution of these mechanisms
to glioma neovascularization seems to vary among tumors,
GSCs are thought to contribute to at least three of the above
four mechanisms. Additionally, GSCs can also transdifferen-
tiate into pericytes that support the tumor vasculature.

5. GSC-Dependent Therapeutic
Resistance of Glioblastoma

A major challenge for glioblastoma treatment is radioresis-
tance and chemoresistance of the recurrent tumor, possibly
due to an increased population of GSCs after initial treat-
ment [101–103]. Increasing evidence shows that GSCs con-
tribute to recurrence and therapy resistance throughmultiple

mechanisms, such as alteration of DNA damage responsive
machineries, hypoxic microenvironment, Notch signaling
pathway, andmultidrug-resistance mechanisms [6, 104–106].
On the other hand, these findings also offer a novel oppor-
tunity for therapeutic intervention on GSCs in glioblastoma
patients.

Ionizing radiation represents an effective therapeu-
tic option for glioblastoma by inducing DNA damage.
Thus, DNA damage responses play crucial roles in cellular
radiosensitivity and radioresistance [107]. To date, the under-
lying mechanism of radioresistance in glioblastoma remains
elusive. Bao et al. observed that CD133+ GSCs were enriched
after radiation, while CD133− cells weremore sensitive to ion-
izing radiation [6]. Mechanistically, they found that CD133+
cells preferentially activated the DNA damage checkpoint in
response to radiation and thus repaired DNA damage more
efficiently [6]. Moreover, inhibitors of Chk1 and Chk2 check-
point kinases could restore the radiosensitivity of CD133+
GSCs [6]. However, a study byMcCord et al. showed conflict-
ing results. They found that all six lines of CD133+ glioblas-
toma stem-like cells were more sensitive to radiation than the
established glioma cell lines [108]. They also found that the
CD133+ glioblastoma stem-like cells showed a significantly
reducedDNA repair capacity [108]. One possible explanation
for the contradictory observations between these two studies
may be that established glioma cell lines (U87 and SF-
126), but not paired CD133− cells, were used as controls
in McCord’s study. TMZ, a commonly used alkylating
agent, undergoes pH-dependent hydrolysis to its reac-
tive compound 5-3-(methyl)-1-(triazen-1-yl) imidazole-4-
carboxamide (MTIC) in cells, which causes DNA damage by
methylating the O6-position or N7-position of guanine [109].
The methyl adducts lead to a continuous cycle of DNA base
mismatch repair (MMR), resulting in double strand breaks
and eventual apoptosis. Increasing evidence demonstrates
that the O6-methylguanine methyltransferase (MGMT),
whose function is repairing the mutagenic DNA lesion O6-
methylguanine back to guanine, is expressed in 80% of
glioblastoma patients [110]. MGMT plays an important role
in resistance to TMZ, and glioblastoma patients carrying a
methylated MGMT promoter exhibit improved progression-
free and overall survival after treatmentwith alkylating agents
[110, 111].Other signaling pathways such as (JNK) ormicroen-
vironment conditions (hypoxia) can also contribute to chem-
oresistance of glioblastoma by upregulating the expression
of MGMT [112, 113]. Therefore, a better understanding of
MGMT and DNA repair responses will help to delineate the
detailed mechanisms of radioresistance and chemoresistance
of GSCs.

A number of signaling pathways, including Notch, Shh,
and receptor tyrosine kinase (RTK) signaling, have also been
implicated in therapy resistance of glioblastoma. For example,
𝛾-secretase inhibitors (GSIs) that inhibit the Notch pathway
sensitize GSCs but not nonstem glioma cells to radiation
[114]. In addition, overexpression of the constitutively active
form of Notch1 or Notch2 rendered GSCs much more resis-
tant to radiation [114]. A previous study has shown that Shh-
GLI signaling regulates the stemness of CD133+ GSCs, and
cyclopamine, an inhibitor of Shh, displays synergistic effects
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with TMZ on GSC proliferation and apoptosis [66]. Another
study confirmed that combination of either Notch inhibitor
or hedgehog inhibitor, with temozolomide, enhanced the
cytotoxicity on GSCs, and a significant effect was observed
when the GSCs were treated with all three drugs simultane-
ously [115]. Abnormal activation of RTKs has been found in
glioblastoma, such as PDGFR𝛼 in the proneural subtype and
EGFR in the mesenchymal subtype [116]. Multiple RTKs and
their involved signaling pathways are coactivated, leading to
limited efficacy to therapy against single RTKs [117].

Environmental factors, like local cytokines and hypoxia,
are crucial aspects of the microenvironment in glioblastoma
and are generally correlated with worse prognosis. Among
these extrinsic environmental factors, hypoxia has been
attributed to play an important role in chemoresistance of
GSCs. A recent study demonstrated that increased numbers
of GSCs are localized in the core of the tumor mass along the
intratumoral hypoxic gradient [118]. The hypoxic conditions
help to maintain the undifferentiated state of GSCs through
hypoxia-inducible factor-2𝛼 (HIF-2𝛼) and multiple HIF-
2𝛼-induced genes [119, 120]. Importantly, markers related
to chemoresistance (TIMP-1 and MGMT) were also highly
expressed in the GSCs of the inner tumor [118, 121]. Another
study found that elevation of MGMT expression via HIF-1𝛼
inGSCs contributes to its chemoresistance [113].Theobserva-
tion that a hypoxia-driven undifferentiated state contributes
to the chemoresistance of glioblastoma compels further effort
to define the mechanisms of chemoresistance in GSCs and
look for novel therapeutic approaches to target GSCs under
the hypoxia niche effectively.

Recurrent glioblastoma exhibits resistance to multiple
therapeutic drugs, leading to a hypothesis that GSCs are
naturally resistant to chemotherapy. One potential explana-
tion is that GSCs can reduce drug uptake or expel cytotoxic
drugs by increasing the expression of ATP-binding cassette
(ABC) transporter [122]. A recent study suggested that the
PTEN/PI3K/Akt pathway could regulate ABCG2 activity in
glioma cancer stem-like cells [106]. The authors also showed
that loss of PTEN or treatment with TMZ increased the GSC
population [106]. Another possibility for chemoresistance
of GSCs is that GSCs exhibit abnormalities of cell death
pathways, such as overexpression of antiapoptotic proteins or
downregulation of proapoptotic factors [123]. Further efforts
need to be devoted to understanding the molecular mech-
anisms of chemoresistance in GSCs and developing novel
and effective therapeutic approaches against GSCs.

6. GSC-Targeted Therapies

6.1.Therapeutic Targeting of GSCs by SurfaceMarkers. CD133
is one of the best characterized cell surface makers in
GSCs and NSCs. CD133+ cells in glioblastoma display can-
cer stem cell-like properties and CD133 is known to be
highly expressed in GSCs [124]. Furthermore, patients with
high levels of CD133 show poor clinical outcomes [125].
Thus, therapies against CD133 might represent a promising
strategy for glioblastoma treatment. Brescia et al. reported
that disruption of CD133 expression by short hairpin RNA

in human glioblastoma neurospheres impaired the self-
renewal and tumorigenic capacity of neurosphere cells [124].
Further, treatment with carbon nanotubes conjugated to
an anti-CD133 monoclonal antibody followed by irradiation
with near-infrared laser light can selectively target CD133+
glioblastoma cells, and the photothermolysis caused by the
nanotubes can kill targeted cells [126]. Recently, Emlet et al.
reported that EGFRvIII is highly coexpressedwithCD133 and
EGFRvIII+/CD133+ defines the population of GSCs with the
highest degree of self-renewal and tumor-initiating ability.
Elimination of the EGFRvIII+/CD133+ population using a
bispecific antibody could reduce tumorigenicity of implanted
tumor cells, and the combined effect is better than any reagent
directed against a single epitope [127].

L1 cell adhesion molecule (L1CAM, CD171) is a regulator
of cell survival and is preferentially expressed on CD133+
GSCs [128, 129]. Bao et al. reported that shRNA-mediated
knockdown of L1CAM decreased the sphere-forming ability
and induced apoptosis of CD133+, but not CD133−, glioma
cells in vitro. L1CAM knockdown in CD133+ glioma cells
prior to xenotransplantation into immunodeficient mice
markedly inhibited in vivo tumorigenesis and prolonged
survival of the xenograft recipients. Mechanistically, L1CAM
knockdown decreased the expression of bHLH transcription
factor and upregulated p21WAF1/CIP1 tumor suppresser
in CD133+ glioma cells. Furthermore, intracranial admin-
istration of lentiviral shRNAs against L1CAM in glioma
xenografts also substantially suppressed tumor growth
and prolonged survival of the tumor-bearing mice [130].
Together, these data suggest that L1CAM is required formain-
taining the growth and survival of CD133+ glioma cells both
in vivo and in vitro, and L1CAMmay represent a GSC specific
therapeutic target for improving the treatment of glioblas-
toma and possibly other brain tumors.

However, despite these efforts relying on CD133 staining,
recent studies indicate that CD133+ tumor cells cannot simply
be considered GSCs because not all GSCs express CD133,
and subgroups of glioblastoma driven by CD133− GSCs
have recently been identified [131, 132]. Therefore, further
work is needed to confirm the role of CD133 in GSCs and
identify more optimal markers for GSCs. This will not only
enhance our knowledge of GSCs but also give us additional
understanding of effective ways to target these cells.

6.2. Therapeutic Targeting of GSCs by Signaling Pathway.
Signaling pathways, such as Notch, Shh, VEGF, STAT3, and
BMP, are important for regulating GSC self-renewal and
differentiation. Therefore, targeting these signaling pathways
and their receptors in GSCs holds promise for glioblastoma
therapy. Notch signaling is known to promote the survival
and proliferation of NSCs and to inhibit differentiation [133].
Fan et al. reported that inhibiting Notch activation by 𝛾-
secretase inhibitors (GSIs) resulted in diminished prolifera-
tion, increased neuronal differentiation, reduced CD133+ cell
fraction in vitro, and decreased tumorigenicity in vivo [134].
Shh pathway is also highly expressed in both glioblastoma
and cell lines, and Shh ligand is expressed in glioblastoma-
derived neurospheres. Treating glioblastoma-derived neu-
rospheres with Shh inhibitor cyclopamine diminished new
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neurosphere formation, and viable glioblastoma cells injected
intracranially following Shh blockade were no longer able
to form tumors in athymic mice [65]. STAT3 pathway is
required for GSC maintenance partially through upregulat-
ing TLR9 expression [135, 136]. Herrmann et al. reported that
stimulation of TLR9 with a CpG ligand (CpG ODN) acti-
vated STAT3 pathway signaling and promoted GSC growth,
whereas silencing TLR9 expression abrogated GSC develop-
ment [137].

Other than targeting the stemness signaling of GSCs,
inducing GSCs differentiation is another approach that has
been tested to target GSCs. Piccirillo et al. reported that acti-
vating BMP signaling could differentiate GSCs in experimen-
tal models of human glioblastoma [37]. Administration of
BMP4 to human glioblastoma-bearingmice inducedCD133+
GSC differentiation and markedly attenuated CD133+ GSC
sphere-forming frequency [37]. In addition, implantation of
BMP4-treated glioblastoma xenografts to murine recipients
resulted in smaller tumor lesions and substantially prolonged
host survival compared with untreated controls [37]. There-
fore, BMP4 may act as a key inhibitory regulator of glioma-
genesis and be used in combined stem cell-based therapy
as a noncytotoxic therapeutic agent.

6.3. Therapeutic Targeting of the Tumor Microenvironment.
Since the tumor microenvironment is essential for main-
taining GSC stemness, targeting the microenvironment is a
promising approach for treating glioblastoma. The glioblas-
toma microenvironment mainly is composed of microvas-
culature and TAMs. VEGF level has been recognized to
correlate withmicrovasculature formation and tumor growth
[138]. Recognition of the VEGF pathway as a key regulator
of angiogenesis has led to the development of several VEGF-
targeted agents such as bevacizumab. Calabrese et al. have
treated mice bearing U87 glioma cell xenografts with beva-
cizumab and observed a reduction in the number of CD133+/
Nestin+ tumor-initiating cells, decreased microvasculature
density, anddecreased tumor growth [139].Numerous studies
have been reported showing that TAMs are enriched in
glioblastoma and are very important components of the
tumor microenvironment [140–144]. M2 TAMs could facil-
itate glioblastoma tumor growth by promoting neovascu-
larization and play a tumor-supportive role in glioblastoma
progression [145]. Recently, Zhou et al. reported that GSCs
secrete periostin (POSTN) to recruit TAMs to support
glioblastoma progression [146]. Silencing POSTN in GSCs
markedly reduced TAMdensity, inhibited tumor growth, and
increased survival of mice bearing GSC-derived xenografts.
These studies indicate that targeting the interaction between
GSCs and their microenvironment might represent an alter-
nate approach in glioblastoma therapy.

7. Conclusion

In summary, glioblastoma remains a particularly challenging
disease as little progress has been made towards improving
patient outcomes and survival. A better understanding of
the origins of this cancer and the molecular biology driving
gliomagenesis is needed to tailor therapy towards addressing

the root cause of this disease. Directly targeting glioma
stem cells and their microenvironment presents a promising
opportunity to eliminate the likely source of gliomas and the
nidus of their recurrence.
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