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Abstract
Purpose Colorectal cancer (CRC) is one of the most common and fatal gastrointestinal malignancies, in which cancer stem 
cells (CSCs) were identified to enable tumor heterogeneity and initiate tumor formation. However, the process from CSCs 
to invasion cells is unconfirmed.
Methods Several bioinformatics methods, including clustering, pseudotime analysis, gene set variation analysis and gene 
ontology enrichment, were used to construct a path of gradual transformation of CSCs to invasive cells, called “stem-to-
invasion path”. A large amount of signaling interactions were collated to build the multilayer regulatory network. Kaplan–
Meier curve and time-dependent ROC method were applied to reveal prognostic values.
Results We validated the heterogeneity of cells in the tumor microenvironment and revealed the presence of malignant epi-
thelial cells with high invasive potential within primary colonic carcinomas. Next, the “stem-to-invasion path” was identified 
through constructing a branching trajectory with cancer cells arranged in order. A multilayer regulatory network considered 
as the vital factor involved in acquiring invasion characteristics underlying the path was built to elucidate the interactions 
between tumor cell and tumor-associated microenvironment. Then we further identified a novel combinatorial biomarker 
that can be used to assess the prognosis for CRC patients, and validated its predictive robustness on the independent dataset.
Conclusion Our work provides new insights into the acquisition of invasive potential in primary tumor cells, as well as 
potential therapeutic targets for CRC invasiveness, which may be useful for the cancer research and clinical treatment.

Keywords Colorectal cancer · Single-cell RNA transcriptome · Stem-to-invasion path · Multilayer regulatory network · 
Novel combinatorial biomarker

Introduction

Colorectal cancer (CRC) is one of the most common and 
highly lethal malignancies of the digestive system, with 
approximately half of patients succumbing to cancer-related 
events mainly metastasis (Sung et al. 2020; Yilmaz and 
Christofori 2010). The CRC cells can metastasize to other 
sites such as lymph gland, liver, and lung, posing an enor-
mous challenge for treatment. Generally, metastasis occurs 
in the mid to late stages of cancer development, which is 
considered to be attributed to a type of tumor cells with stem 
cell properties known as cancer stem cells (CSCs) (Wang 

et al. 2021; Liu et al. 2015; Hatano et al. 2017). Moreover, 
there is a growing evidence that epithelial-mesenchymal 
transition (EMT), a prerequisite mechanism for invasion and 
metastasis, is present throughout the cancer process (Mittal 
2018; Linde et al. 2018; Hosseini et al. 2016). These suggest 
that cells in primary tumors may begin to acquire invasive 
capacity due to activation of the EMT pathway. Therefore, 
it is essential to investigate the regulatory relationships of 
genes during tumor development to identify the molecular 
determinants of aggressiveness.

Additionally, cell function and characteristics are not only 
determined by the cell itself, but are also influenced by the 
microenvironment (Boulanger et al. 2007). Several studies 
have shown that cell–cell interactions in tumor microenvi-
ronment play an important role in the growth and progres-
sion of cancer (Sistigu et al. 2020; Gu and Mooney 2016). 
Secretory molecules, a type of intercellular signals, can 
affect intracellular regulatory networks by binding to the 
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receptors. Thus, it is significant to elucidate the signaling 
mechanisms underlying the interaction between the micro-
environment and tumor cells with invasive characteristics.

A growing number of studies (Giladi and Amit 2017; 
Mathys et al. 2019; Li et al. 2017) demonstrates that the 
traditional bulk transcriptome analysis is a limited approach 
for dissecting molecular mechanisms because of cellular het-
erogeneity. Instead, single-cell RNA sequencing (scRNA-
seq) technologies generated based on the resolution of indi-
vidual cells (Tang et al. 2009) can identify distinct cellular 
expression signals, which provides a wonderful opportunity 
to determine pivotal molecular determinants for tumor pro-
gression and dissect the microenvironment-mediated signal-
ing pathways.

Recently, Pang et al. (2019) revealed an invasion-asso-
ciated progression path where cells gradually acquire the 
invasive potential, and identified key factors involved in glio-
blastoma progression, which provides a marvelous example 
for exploring key factors in tumor invasiveness. Zhang et al. 
(2020) constructed a multilayer signaling network that con-
tains pathways from intercellular and intracellular interac-
tions to explain cellular reciprocities in glioblastoma. On 
this basis, Cheng et al. (2021) updated the interaction data 
and developed a tool called scMLnet that can be applied to 
build a multilayer network. They then employed the scML-
net to a scRNA-seq dataset of COVID-19 as an example, to 
research microenvironmental regulation and reveal several 
key regulators of ACE2 expression. However, transcription 
factors (TFs) and their target genes have the cases of nega-
tive regulation (Han et al. 2018; Ye et al. 2018), while these 
studies (Zhang et al. 2020; Cheng et al. 2021) only consider 
the upregulated intracellular signaling, which is deficient in 
terms of signaling network mechanisms.

In this study, we used scRNA-seq data to reveal a tumor 
progression path representing the acquisition of invasive 
potential and reconstructed a multilayer regulatory network 
consisting of ligand–receptor interactions, TFs and their 
target genes, which are the pivotal factors for obtaining 
invasion characteristics. Moreover, we identified a novel 
combinatorial biomarker (NCB) that can be used to assess 
the prognosis for CRC patients and validated its predictive 
robustness on the independent test set, which can shed light 
on further individualized treatment (Fig. S1).

Materials and methods

Single‑cell RNA‑seq data processing and cell type 
identification

The single-cell transcriptome data in this work were 
obtained from Gene Expression Omnibus (GEO) database, 
including two accessions, GSE132465 (named SMC) and 

GSE144735 (named KUL3) (Lee et al. 2020). To get more 
objective results, we screened the patients according to 
the criteria in Text S1A. The information of the screened 
patients is shown in Table S1 and S2.

Subsequent operations were performed using the R pack-
age Seurat (version 4.0) (Satija et al. 2015). Low-quality 
cells were excluded conforming to the criteria described in 
Text S1B. After that, the gene expression matrices were nor-
malized to the total UMI counts per cell and converted to the 
natural logarithmic scale, and the effects of cell cycle and 
mitochondrial genes were eliminated using the "ScaleData" 
function. We used the top 2000 highly variable genes to 
conduct PCA analysis, and clustered the cells with Shared-
nearest-neighbor (SNN) algorithm (Jarvis and Patrick 2006). 
After that, t-distributed stochastic neighbor embedding 
(t-SNE) method was further implemented for visualization. 
Finally, cell type annotations were mainly performed by R 
package singleR (version 1.4) (Aran et al. 2019) and later 
manually revised with the CellMarker database (Zhang et al. 
2019).

Copy number variation (CNV) estimation

We calculated the CNVs for each gene region of each 
epithelium from tumor samples using the epithelial cells 
from para-carcinoma tissues as a reference via R package 
inferCNV (version 1.8) (Patel et al. 2014), and limited the 
values as -1 to 1. The CNV score of each cell was computed 
as the quadratic sum of the CNVs in each region. We fur-
ther calculated the median and standard deviation of CNV 
scores, which are applied to determine the threshold value 
k as:

where M and s are the median and standard deviation 
of CNV scores. The epithelial cells, whose CNV score > k, 
were defined as malignant ones.

Subclustering and pseudotime analysis of tumor 
cells

Subclustering and trajectory construction for malignant 
epithelial cells were performed by R package monocle 
(version 2.18) (Qiu et al. 2017). Genes with the minimum 
expression > 0.1 and expressed in ≥5% of all cells were 
selected for subclustering. After subclustering, we selected 
the genes that were differential expressed between clusters, 
and adopted DDRTree algorithm (Qi et al. 2015) to reduce 
the given high-dimensional expression profiles to a low-
dimensional space in which single cells are ordered into a 
trajectory. Then, we found a “stem-to-invasion path” and 

(1)k = M − s
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extracted the protein-coding genes that changed significantly 
along the path.

Evaluation of activity for diverse pathways 
and genes

Gene set variation analysis (GSVA) (Hänzelmann et al. 
2013) was implemented to evaluate the relative activation 
status for pathways. GSVA scores for cancer hallmark and 
signaling pathways were calculated using predefined gene 
sets downloaded from MSigDB (Liberzon et al. 2015). For 
the CSC and invasiveness scores, we averaged the expression 
levels of the signatures associated with their respective func-
tions, which were manually extracted from previous studies 
(Tables S3 and S4). The Gene Ontology (GO) enrichment 
analysis was completed by R package clusterProfiler (version 
4.0) (Wu et al, 2021).

Gene expression analysis by hidden Markov model 
(HMM)

We applied an HMM to predict gene expression states (on 
or off) throughout pseudotime as described by Shin et al. 
(2015). Briefly, we divided the pseudotime into 23 units, 
where cells have the same state for most genes, and the aver-
age expression level of each gene in each unit was used as the 
observed variables for HMM. After that, the Baum–Welch 
algorithm (Welch 2003) was used to extract the most likely 
emission probabilities and transition probabilities. Finally, 
the Viterbi algorithm (Forney 1973) was applied to predict 
binary gene expression states, using the observed variables 
along with output from the Baum–Welch algorithm.

Construction of multilayer regulatory network

The intercellular/intracellular signaling interactions (i.e. 
ligand–receptor pairs, receptor-TF pathways, TF-target gene 
interaction, TF sub-network and target gene sub-network) 
were constructed on the SMC and KUL3 datasets, respec-
tively, using the methods described in Text S2. We then took 
the intersection of the two datasets for each relationship and 
assembled them to construct a multilayer regulatory net-
work. The software Cytoscape (version 3.9) (Shannon et al. 
2003) was used to characterize each relationship and the 
integrated network.

Identification and evaluation of prognostic 
significance of the NCB

Given the multilayer regulatory network, we further investi-
gated the signatures from the multilayer regulatory network 
associated with survival across the CRC samples. In the 
view of this, we collected bulk RNA-seq data and clinical 

information of the TCGA-COAD and TCGA-READ data-
sets from The Cancer Genome Atlas (TCGA) database as 
the training dataset and those of GSE17536 (Smith et al. 
2010) and GSE29621 (Chen et al. 2012) from GEO database 
as independent testing datasets. The raw data in all these 
datasets were preprocessed with the criteria mentioned in 
Text S1C. Finally, after preparing the training set (N = 354) 
and the independent test sets, i.e. GSE17536 (N = 177) and 
GSE29621 (N = 65), we normalized the gene expression 
matrix by log2(TPM + 1) for subsequent survival analysis.

Stepwise regression analysis (Hastie and Pregibon 1992), 
based on Akaike information criterion (Sakamoto et al. 
1986), was performed to identify the prognostic hub genes 
from the multilayer regulatory network. After that, we built 
a multivariate Cox regression model (Cox and Oakes 1984) 
using the hub genes and formulated the following risk score 
(RS) for predicting patient survival:

where yi is the expression level of gene i, n is the number 
of genes, and λi is the regression coefficient of gene i in the 
Cox regression model. An NCB risk signature was trained 
by the training dataset: RS = HSPG2 × (−0.3292) + SER-
PINE1 ×  (0.4537)  + MMP12   × ( −0. 1 552) + S CARB1 ×  
0.5605  +  CE BPA   × (−0. 3319) +  GPX4 ×  0.3904 +  SPRR3  
×  0. 438 6 + PLAUR × (−0.4123). The patients in each data-
set were divided into two groups, high-risk and low-risk, 
based on the optimal cut-off value for the maximum sum 
of sensitivity and specificity of ROC method. We estimated 
the prognostic performance of the NCB by Kaplan–Meier 
survival curves with the log-rank test and time-dependent 
ROC analysis (Heagerty et al. 2000).

Results

Cell type and malignant epithelial cells 
identification

We obtained single-cell RNA-seq data from the SMC data-
set to explore the cellular diversity. After quality control 
and normalization, we analyzed a total of 34,558 cells from 
12 colorectal tumor samples and 6 control paracancerous 
tissue. Next, SNN algorithm and t-SNE method were con-
ducted to identify 6 main clusters, including epithelial cells, 
stromal cells, myeloid cells, T cells, B cells and neurons 
(Fig. 1A–B). From Fig. 1C, we observed that most of epithe-
lial cells, derived from tumor tissues within dramatical vari-
ations in proportion among patients, formed patient-specific 
clusters, suggesting high heterogeneity, shown in Fig. 1C.

(2)RS =

n
∑

i=1

�i ⋅ yi
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This prompted us to investigate their malignant status. 
We calculated large-scale chromosomal CNVs in the epi-
thelial cells from tumor tissues based on the expression 
pattern of the ones from tumor-adjacent samples. Next, we 
excluded the epithelial cells whose CNV score lower than 
the threshold value (see “Materials and methods” section), 
and finally obtained 5915 malignant epithelial cells for sub-
sequent analysis.

Heterogeneity of malignant epithelial cells

Tumor heterogeneity is the prime factor leading to cancer 
progression and therapy failure (Hanahan and Weinberg 
2011). We employed subclustering analysis for the malig-
nant epithelial cells and identified 7 subclusters (Fig. 2A). 

Different expression of genes between subclusters refer 
to divergent cancer cell characteristics. Therefore, GSVA 
was used to estimate the functions of cells within each 
subcluster (Fig. 2B). We chose pathways associated with 
tumor progression to define the subcluster status and found 
that Hedgehog and MAPK signaling were enriched in sub-
cluster 6, while mTOR and TGF-β signaling-related genes 
were highly activated in subcluster 2. Besides, subcluster 
1 was expressed MAPK and WNT signaling-related genes, 
but subcluster 5 was not significantly enriched in genes 
related to cancer progression compared to other subclus-
ters. In addition, subcluster 3 showed higher expression 
of G2M checkpoint and DNA repair that control the cell 
cycle pathway. Subcluster 4 expressed higher stem cell-
related genes than others. Subcluster 7 was closely related 
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to EMT and angiogenesis-associated pathways, implying 
an invasive and metastatic potential. These results indi-
cate that divergent malignant epithelium subpopulations 
in CRC have various status, reflecting diverse tumor biol-
ogy functions.

The “stem‑to‑invasion path” in the branching 
structure of malignant colonic epithelia

Based on the GSVA results that subcluster 4 displaying stem 
cell-like property and subcluster 7 indicating invasive and 
metastatic potency, we conjectured that single-cell transcrip-
tome might reveal the main variational processes of CSCs 
during tumor progression. Later, we used trajectory analysis 
to reconstitute the pseudotime of the malignant epithelia, 
which contained mainly 7 cell states (Fig. 2C–D). From 
Fig. 2C, the majority of the cells within state 1 came from 
subcluster 4, while almost all subcluster 7 cells was con-
verging on state 6, indicating that state 1 and 6 cells might 
perform possessed the functional annotation and status char-
acterization of subcluster 4 and 7, respectively. Thus, we 
speculated that there is a path, denoted “stem-to-invasion 
path”, representing the progression from colonic CSCs to 
invasive cells in pseudotime. To conform the inference, CSC 
score and invasiveness score were utilized (see “Materials 
and methods” section) to evaluate the states of the cancer 
cells on the trajectory. As shown in Fig. 2E–H, we noticed 
the CSC score was highest in state 1 and the invasiveness 
score of state 6 was higher than others, which were similar 
to the dynamic trend of two scores. Hence, we realized that 
the cells traveled from state 1 through branch point 3, state 
2, branch point 1, and finally to state 6, which represent the 
“stem-to-invasion path”.

Then, we sought to decipher the biological functions dur-
ing the dynamic process. The genes for encoding proteins 
with significantly changed expression levels (false discovery 
rate < 1e−4) were captured on the stem-to-invasion path and 
clustered into two groups (Fig. S2A). GO enrichment analy-
sis was performed and revealed that the genes enriched for 
biological process terms such as ATP metabolic process, 
cellular response to hypoxia, regulation of epithelium mor-
phogenesis and stem cell differentiation were upregulated, 
whereas the genes downregulated were mainly enriched in 
cell projection assembly and intrinsic apoptosis. We cal-
culated the Spearman correlations between each gene and 
pseudotime in the two clustered groups (p-value < 0.05), and 
generated two lists of the top 100 positively/negatively cor-
related genes to determine their binary on/high or off/low 
expression state using an HMM (Fig. S2B–C). The results 
indicate that the stem-to-invasion path can partially reflect 
the progression of colorectal carcinoma from CSCs to inva-
sive cells.

The recurrence of a similar “stem‑to‑invasion path” 
in an extra data of colonic cancer epithelial cells

To validate whether the stem-to-invasion path could be 
reproduced, another single-cell RNA-seq dataset (the KUL3 
dataset) was obtained that contains 19,389 cells from five 
patients. After the same data processing, we finally acquired 
2881 epithelial cells (Fig. S3), of which 1828 are malignant, 
and identified 7 subclusters from these malignant epithelia 
(Fig. S4A).

Later, we explored the enrichment pathways of the cells 
in each subcluster by GSVA and reconstructed a trajectory 
(Fig. S4B–D). We noticed that the cells in subcluster 5, cor-
responding to state 2, were enriched for EMT and angiogen-
esis genes, while stem cell-related genes enriched in cells of 
subcluster 1, which was distributed over state 3. Based on 
the experience with the SMC dataset, we concluded that the 
“stem-to-invasion path” was oriented from state 3, through 
branch point 1, to state 2. Furthermore, similar results were 
obtained, which confirmed our surmise (Fig. S4E–K). These 
suggest that we recaptured a similar “stem-to-invasion path” 
in another dataset of CRC.

Identification of crucial molecules and a multilayer 
regulatory network in the acquisition of invasive 
potential

Considering the progressive changes in genes on the trajecto-
ries, we tried to identify the molecules that drive the invasive 
potential. Due to the vital role of lncRNAs in tumor devel-
opment (Braga et al. 2020), we identified three upregulated 
(NEAT1, PP7080 and CRNDE) and seven downregulated 
lncRNAs (RP11-160E2.6, RP11-462G2.1, CH17-373J23.1, 
EPB41L4A-AS1, SLCO4A1-AS1, THUMPD3-AS1 and 
SNHG9) shared by both two datasets (Table S5). In addi-
tion to most of the lncRNAs have been proven to be involved 
in invasion and metastasis by many researches, we found 
three new lncRNAs, RP11-160E2.6, RP11-462G2.1 and 
CH17-373J23.1, which provided new insights for further 
experimental studies on the factors affecting tumor invasion. 
Afterwards, we extracted the differently expressed protein-
coding genes from the stem-to-invasion paths to construct an 
intracellular signaling network. Moreover, cells in the tumor-
associated microenvironment interact with each other, we 
thus investigated the interactions between the cancer cells on 
the stem-to-invasion path and the other cells by constructing 
intercellular signaling relationships, and further connected 
them with the intracellular network to build a multilayer 
regulatory network, which can reflect the molecular regu-
latory relationships within carcinoma cells and the signal 
transmission between cells in the tumor microenvironment 
during the acquisition of invasive potential.
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A total of 1594 upregulated and 1816 downregulated 
mRNAs were derived from the stem-to-invasion path of the 
SMC dataset. Then, we gained 37 TF-target gene interac-
tions and 55 receptor-TF links according to the TF-target 
gene interactions list and the receptor-TF links list. For the 
KUL3 dataset, after a similar operation, we picked out 2215 
upregulated and 628 downregulated mRNAs and sought out 
36 TF-target gene interactions and 50 receptor-TF connec-
tions. In addition, for each dataset, we calculated the highly 
expressed ligand genes for other non-epithelial cell types, 
and selected the upregulated receptor genes from the trajec-
tory to establish the ligand-receptor relations. As a result, 
we detected 10 ligand-receptor pairs from SMC dataset and 
10 from the KUL3 dataset.

Particularly, there was significant overlap for each inter-
action between the two datasets, including 36 TF-target 
gene links, 38 receptor-TF connections and 9 ligand-recep-
tor pairs. Furthermore, we obtained 25 TF-TF regulatory 
relations and a 28-target gene-regulatory sub-network. All 
these constructed intercellular/intracellular signaling path-
ways are shown in Fig. S5. Then, a multilayer regulatory 
network (Fig. 2I) was constructed by integrating all intercel-
lular pathways and intracellular sub-networks, representing 
the signaling transduction from the non-epithelial secreted 
ligands, to the tumor cell receptors and then to downstream 
TFs and target genes. Table S6 lists other research evidences 
for the functions of the genes on the multilayer network, 
which were considered to be the key mRNAs implicated in 
the “stem-to-invasion” progression.

The prognostic significance of the NCB

Based on the multilayer regulatory network, we established 
an NCB risk signature using stepwise regression and mul-
tivariate Cox regression algorithms in the training cohort. 
The NCB contained 8 genes: HSPG2, SERPINE1, MMP12, 
SCARB1, PLAUR, CEBPA, GPX4 and SPRR3.

We evaluated the prognostic significance of the NCB 
on the training set and the two independent testing sets. 
As shown in Fig. 3A, Kaplan–Meier analysis indicated 
revealed significantly worse overall survival (OS) outcomes 

(p < 0.001) for the patients of the high-risk group in all data-
sets. Next, we calculated the AUC of the time-dependent 
ROC with the 1-year, 3-year and 5-year survival of the 
patients to access the prognostic accuracy of the NCB 
(Fig. 3D). We found the NCB had a good performance 
with a 1-year AUC of 0.718, a 3-year AUC of 0.696 and a 
5-year AUC of 0.768. In parallel, similar statistical results 
were observed in the GSE17536 and GSE29621 cohorts 
(Fig. 3B, C, E, F).

We performed univariate and multivariate Cox regres-
sion analyses on the NCB and other clinicopathologic fac-
tors including age, gender and stage, and found that the 
NCB was an independent prognostic signature for the OS 
of CRC patients in all datasets (Tables 1, S7 and S8). Later, 
time-dependent ROC curves were adopted to compare the 
prognostic accuracy of all clinical signatures. The AUCs 
of ROC curves (Fig. 3G–I) showed that the NCB signa-
ture were superior to other risk signatures in predicting the 
3-year survival rates. These results confirm that the NCB 
possess good prognostic power and is almost as accurate as 
the other common clinicopathologic factors.

Discussion

Most deaths from solid tumors, including CRC, are caused 
by invasion and metastasis of carcinoma cells. In the view 
of this, we sought to explore the significant molecules driv-
ing the acquisition of invasive potential and their regulatory 
relationships. Based on the phenotypic diversity of cells 
in colon cancer microenvironment and the fact that EMT 
occurs early in many cancer types, we speculated there might 
be a type of malignant epithelial cells owning high invasive 
potential. Thus, we first identified the cell types and detach 
the data of malignant epithelial cells. Next, subclustering 
analysis and GSVA was performed to recognize the differ-
ent functions of the cells. Moreover, considering that cancer 
initiation, proliferation, invasion and metastasis occur as a 
continuous process, we introduced the pseudotime analysis 
to construct a trajectory revealing tumor progression, and 
captured the significantly expressed genes on the trajectory 
at the transcriptome level. Combining the results of GSVA, 
we realized that the root of the trajectory showed a high 
CSC character, and another branch was enriched with the 
cells of high invasive potential. According to this, we identi-
fied a cell-traveling path (“stem-to-invasion path”) from the 
root to the invasive branch, which represents the transition 
process from CSCs to invasive cells. The same procedures 
were run in the two scRNA-seq datasets (SMC and KUL3) 
and the similar observations were revealed, which we think 
could be used to explore the molecular events that promote 
the acquisition of invasive potential in CRC progression. 
Therefore, we further utilized the differentially expressed 

Fig. 2  The stem-to-invasion path built by the SMC dataset and mul-
tilayer network construction. A t-SNE plot of malignant epithelia 
showing seven subclusters. B Heatmap for the status characterization 
of each subcluster scored by GSVA software. C The amount and pro-
portion of cells for each subcluster in seven states. D The single-cell 
trajectory containing seven states. Cells are colored based on pseudo-
time (top), subcluster (middle) and state (bottom). E, F Boxplot for 
the CSC scores (E) and the invasiveness scores (F) for each state. G, 
H Curve chart for the CSC scores (G) and the invasiveness scores (H) 
as a nonlinear function of pseudotime in the path containing states 
1, 2 and 6 cells. I Multilayer regulatory network of tumor cells com-
municated with other cells. The nodes with different colors represent 
ligands (gray), receptors (green), TFs (orange) or target genes (blue)
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Fig. 3  The prognostic significance and accuracy of the NCB. A–C 
The Kaplan–Meier survival curves for prognostic significance 
assessed by the TCGA (A), the GSE17536 (B) and the GSE29621 
dataset (C). D–F The time-dependent ROC curves for prognostic 
accuracy evaluated by the AUC with respect to 1-year, 3-year and 

5-year survival of CRC patients on the TCGA (D), the GSE17536 
(E) and the GSE29621 dataset (F). G–I Time-dependent ROC 
curves comparing the prognostic accuracy by age, gender, stage 
and the NCB with respect to 3-year survival on the TCGA (G), the 
GSE17536 (H) and the GSE29621 dataset (I)

Table 1  Univariate and 
multivariate Cox regression 
analysis of clinicopathologic 
factors (age, gender and stage) 
and the NCB signature for OS 
prediction in the TCGA dataset

Variable Univariate cox Multivariate cox

p-value HR (95% CI) p-value HR (95% CI)

Age 0.025 1.029 (1.004–1.056) 0.003 1.040 (1.013–1.068)
Gender (male vs. female) 0.305 1.344 (0.764–2.367) 0.527 1.213 (0.667–2.203)
Stage (III & IV vs. I & II) 0.004 2.481 (1.340–4.594) 0.009 2.329 (1.236–4.367)
NCB  <0.001 2.718 (1.906–3.876)  <0.001 2.723 (1.896–3.910)



2321Journal of Cancer Research and Clinical Oncology (2022) 148:2313–2322 

1 3

genes on the stem-to-invasion path and the ligand genes 
expressed by other cells to reconstruct a multilayer regula-
tory network, which consists of the pathways from inter-
cellular ligand-receptor pairs to intracellular TF-target gene 
interactions. Notably, based on the network, we identified 
an NCB for tumor prognostic prediction, which had a good 
performance on the training set and two testing sets. In addi-
tion, we proved that the NCB possessed better prognostic 
accuracy and robustness compared to other traditional clini-
cal signatures. This good prognostic value of the invasion-
related genes confirms that invasion and metastasis of cancer 
cells are important causes of patient death.

We acknowledge that the above work is based on some 
assumptions and simplifications. The path for carcinoma 
cells gaining invasive potential was simulated by sorting the 
cells according to the gene expressions using transcriptome 
data from individual time points rather than multiple time 
points, due to the difficulties of data acquisition and pro-
cessing. Furthermore, intercellular and intracellular signal 
transduction pathways involve complex post-translational 
modifications as well as protein-nucleic acid interactions. 
Nonetheless, due to the hardship for collecting high through-
put single-cell proteomic data, the use of scRNA-seq to esti-
mate protein activity in cells is an alternative approach, as 
presented in the work of Zhang et al. (2020) In the future, 
we will collect more information, especially proteomic and 
time-course transcriptomic data, to update our work.

Additionally, there are still other deficiencies for further 
improvement. First, it is well known that there is a close 
relationship between mRNA and ncRNA (e.g. miRNA 
and lncRNA), nonetheless, an appropriate method is cur-
rently pending to investigate the regulation mode between 
ncRNA and mRNA in the malignant cells during acquir-
ing the invasive potential. Moreover, though the essential 
genes in the multilayer regulatory network had been iden-
tified and their prognostic effect had been demonstrated, 
complementary basic experiments are still necessary to 
reveal the specific mechanisms of NCB in the promotion 
pf tumor development.

In summary, this study used CRC single-cell RNA-seq 
data to reveal the process by which tumor cells acquire 
invasive characteristics and establish a regulatory network 
using significant factors in the process, from which the NCB 
was shown to be of good prognostic value for CRC patients. 
These may provide a new perspective for characterizing the 
invasion in CRC tumor microenvironment, which may be 
useful for the cancer research and clinical treatment.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00432- 022- 04020-2.
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