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A CT-based deep learning model: visceral pleural
invasion and survival prediction in clinical stage IA lung
adenocarcinoma

Xiaofeng Lin,1,5 Kunfeng Liu,1,5 Kunwei Li,2,5 Xiaojuan Chen,3 Biyun Chen,1 Sheng Li,1,* Huai Chen,4,* and Li Li1,6,*
SUMMARY

Pathologic visceral pleural invasion (VPI) in patients with early-stage lung cancer can result in the upstag-
ing of T1 to T2, in addition to having implications for surgical resection and prognostic outcomes. This
study was designed with the goal of establishing and validating a CT-based deep learning (DL) model
capable of predicting VPI status and stratifying patients based on their prognostic outcomes. In total,
2077 patients from three centers with pathologically confirmed clinical stage IA lung adenocarcinoma
were enrolled. DL signatures were extracted with a 3D residual neural network. DL model was able to
effectively predict VPI status. VPI predicted by the DL models, as well as pathologic VPI, was associated
with shorter disease-free survival. The established deep learning signature provides a tool capable of aid-
ing the accurate prediction of VPI in patients with clinical stage IA lung adenocarcinoma, thus enabling
prognostic stratification.

INTRODUCTION

Lung cancer is among the most prevalent forms of cancer in the world, contributing to high morbidity among patients.1 Of these cases, 85–

90% are of the non-small cell lung cancer (NSCLC) subtype, and the majority of patients with NSCLC exhibit lung adenocarcinoma as their

diagnosed histological subtype.1 In patients with stage IA lung cancer, the 5-year overall survival rate is 82%, as compared to 6% in individuals

with stage IV disease.2 Diagnosing lung cancer at an early stage can thus contribute to improved prognostic outcomes. Surgery is the most

commonmeans of treating individuals with stage IA lung cancer.3 Visceral pleural invasion (VPI) includes the PL1 and PL2 levels, which respec-

tively correspond to the invasion of the tumor beyond the elastic layer or to the pleural surface.4 In patients with NSCLCwith tumors%3 cm in

size, VPI is associated with a poorer prognosis and can aid in predicting lymph node metastasis and postoperative recurrence.5 The eighth

edition of the TNM classification system recommends upstaging NSCLC tumors%3.0 cm in size with VPI from stage T1 to stage T2 and from

stage IA to stage IB owing to these differences in patient prognosis.6 Even in those patients exhibiting clinical stage IA disease, lobectomy

with mediastinal lymph node dissection is recommended as an alternative to solely undergoing segmentectomy.7

At present, diagnosing VPI prior to surgery based solely on computed tomography (CT) findings remains difficult. A range of CT features

have been reported to be indicative of VPI, including pleural retraction, pleural tags, pleural indentation, and contact between the tumor and

the pleura.8–12 The exact diagnostic accuracy of these features, however, reportedly ranges from 62.7 to 72.3%.9–12

Recent advances in deep learning (DL) technologies have enabled the establishment of algorithms capable of characterizing data in an

automated manner such that imaging data associated with particular regions of interest can be transformed into high-resolution spatial

data from which features can be excavated. The resultant algorithms are conducive to the analysis of imaging data in a high-throughput

manner, enabling comprehensive evaluations of a range of tumor phenotypes in a high-fidelity manner.13–15 Owing to their ability to readily

learn features, DL strategies have exhibited great progress as approaches to classifying pulmonary nodules, predicting lymph node metas-

tasis, and evaluating patient prognostic outcomes.16–19 At present, however, few studies have sought to leverage these DL techniques as a

means of predicting VPI status in patients with lung cancer.

The present study was developedwith the goal of designing aDL algorithm capable of predicting VPI in patients with stage IA lung adeno-

carcinoma in a noninvasive manner before surgical resection, with the overall goal of providing clinicians with information that can guide de-

cision-making related to patient care.
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Figure 1. A flowchart detailing the inclusion and exclusion of patients in this study

VPI, visceral pleural invasion.
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RESULTS

Patient characteristics

The patient selection process is detailed in Figure 1, and the characteristics of included subjects at baseline are provided in Tables 1 and

2. In total, this retrospective analysis incorporated 2077 patients, of whom 1514, 382 and 181 were respectively assigned to the training,

internal validation, and external validation cohorts. In the overall patient cohort, 59years G9.6 was the mean age, 47% (n = 977) of the

participants were males, and 18.3% (n = 381) had received a pathologic VPI diagnosis. The three chest radiologists responsible for eval-

uating radiologic characteristics exhibited a clear consensus (p < 0.05) (see Tables S1 and S2), and no differences in baseline character-

istics were noted when comparing the training and internal validation cohorts (p > 0.05). When comparing patients that were positive and

negative for VPI, significant associations were noted with family history of cancer, clinical T stage, histologic subtype, pathologic stage,

LVI, lymph node metastasis, whole maximum diameter, consolidation maximum diameter, CTR, density, pleural CT subtype, pleural

indentation, consolidation contact with the pleura, minimum distance from the lesion to the pleura, the maximum diameter of contact

with pleura, the maximum diameter of consolidation in contact with the pleura, and CTR at the pleural end (p < 0.05) in the training and

internal validation cohorts. While in the external validation cohorts, clinical T stage, histologic subtype, pathologic stage, distant metas-

tasis, consolidation maximum diameter, spiculated sign, pleural CT subtype, pleural indentation and consolidation contact with the

pleura were significant correlated with VPI status. Prior to the construction of a clinical model capable of preoperatively predicting

VPI status, univariate logistic regression analyses were employed to identify relevant clinical or radiologic features. Screened variables

significantly associated with VPI status in these analyses (p < 0.05) included family history of cancer, clinical T stage, overall tumor

maximum diameter, consolidation maximum diameter, CTR, density, spiculated sign, lobulated sign, vessel convergence, pleural CT sub-

type, pleural indentation, consolidation contact with the pleura, minimum distance between the lesion and the pleura, maximum diam-

eter of pleural contact, maximum diameter of consolidation contact with the pleura, and CTR at the pleural end. Multivariate logistic

regression analyses ultimately revealed that lobulated sign, pleural CT subtype (Type 2, Type 3, and Type 5), and pleural indentation

were all independently predictive of VPI status (p < 0.05). For further details regarding the univariate and multivariate analyses performed

in the training cohort, see Table 3.
Analyses of model efficiency

The DL model exhibited AUC values of 0.75 (95% confidence interval [CI]: 0.73–0.76), 0.73 (95%CI: 0.69–0.76), and 0.62 (95%CI: 0.54–0.68) in the

training, internal validation, and external validation cohorts, respectively, comparable to the clinical model [AUC = 0.74 (95%CI: 0.72–0.75), 0.73

(95%CI: 0.70–0.77), 0.66 (95%CI: 0.59–0.72)]. However, after the incorporation of DL signature and clinical-radiological factors, combined model
2 iScience 27, 108712, January 19, 2024



Table 1. Clinical, pathological and radiological characteristics

Training set (n = 1514)

P1

value

Internal validation

set (n = 382)

P1

value

External validation

set (n = 181)

P1

value

P2

value

VPI positive

(n = 285)

VPI negative

(n = 1229)

VPI positive

(n = 73)

VPI negative

(n = 309)

VPI positive

(n = 23)

VPI negative

(n = 158)

Clinical characteristics

Age (years)a 58.9 G 9.8 58.3 G 9.9 0.422 59.6 G 10.2 58.0 G 10.4 0.235 63.5 G 7.8 58.4 G 10.6 0.087 0.812

Sex 0.630 0.265 0.712 0.856

Male 138 (48.4%) 573 (46.6%) 30 (41.1%) 152 (49.2%) 12 (52.2%) 72 (45.6%)

Female 147 (51.6%) 656 (53.4%) 43 (58.9%) 157 (50.8%) 11 (47.8%) 86 (54.4%)

Symptom 0.985 0.200 0.084 0.855

Yes 178 (62.5%) 771 (62.7%) 41 (56.2%) 201 (65.0%) 6 (26.1%) 17 (10.8%)

No 107 (37.5%) 458 (37.3%) 32 (43.8%) 108 (35.0%) 17 (73.9%) 141 (89.2%)

Smoking history 1.000 0.963 0.479 0.564

Yes 76 (26.7%) 329 (26.8%) 19 (26.0%) 77 (24.9%) 8 (34.8%) 40 (25.3%)

No 209 (73.3%) 900 (73.2%) 54 (74.0%) 232 (75.1%) 15 (65.2%) 118 (74.7%)

Family history of

cancer

0.009 0.008 0.714 0.077

Yes 56 (19.6%) 164 (13.3%) 11 (15.1%) 24 (7.8%) 2 (8.7%) 7 (4.4%)

No 229 (80.4%) 1065 (86.7%) 62 (84.9%) 285 (92.2%) 21 (91.3%) 151 (95.6%)

Clinical T stage <0.001 <0.001 0.035 0.444

cT1a 16 (5.6%) 341 (27.7%) 5 (6.8%) 97 (31.4%) 2 (8.7%) 55 (34.8%)

cT1b 125 (43.9%) 571 (46.5%) 32 (43.8%) 136 (44.0%) 12 (52.2%) 65 (41.1%)

cT1c 144 (50.5%) 317 (25.8%) 36 (49.3%) 76 (24.6%) 9 (39.1%) 38 (24.1%)

Pathological characteristics

Histologic subtype <0.001 <0.001 0.001 0.116

Lepidic

predominant

10 (3.5%) 162 (13.2%) 2 (2.7%) 42 (13.6%) 0 (0%) 6 (3.8%)

Acinar

predominant

168 (58.9%) 746 (60.7%) 36 (49.3%) 173 (56.0%) 5 (21.7%) 83 (52.5%)

Papillary

predominant

44 (15.4%) 147 (12.0%) 19 (26.0%) 41 (13.3%) 8 (34.8%) 43 (27.2%)

Micropapillary

predominant

10 (3.5%) 27 (2.2%) 4 (5.5%) 10 (3.2%) 0 (0%) 3 (1.9%)

Solid

predominant

21 (7.4%) 62 (5.0%) 7 (9.6%) 17 (5.5%) 4 (17.4%) 7 (4.4%)

Mucous

predominant

13 (4.6%) 37 (3.0%) 1 (1.4%) 8 (2.6%) 0 (0%) 5 (3.2%)

Special type 1 (0.4%) 6 (0.5%) 0 (0%) 0 (0%) 0 (0%) 6 (3.8%)

MIA 1 (0.4%) 8 (0.7%) 0 (0%) 3 (1.0%) 0 (0%) 1 (0.6%)

AIS 0 (0%) 0 (0%) 0 (0%) 1 (0.3%) 0 (0%) 3 (1.9%)

Non-classified 17 (6.0%) 34 (2.8%) 4 (5.5%) 14 (4.5%) 6 (26.1%) 7 (4.4%)

Pathologic stage <0.001 <0.001 <0.001 0.432

IA 0 (0%) 1123 (91.4%) 0 (0%) 288 (93.2%) 2 (8.7%) 143 (90.5%)

IB 219 (76.8%) 0 (0%) 52 (71.2%) 0 (0%) 15 (65.2%) 2 (1.3%)

IIB 25 (8.8%) 39 (3.2%) 9 (12.3%) 14 (4.5%) 0 (0%) 5 (3.2%)

IIIA 38 (13.3%) 66 (5.4%) 11 (15.1%) 7 (2.3%) 1 (4.3%) 7 (4.4%)

IIIB 1 (0.4%) 0 (0%) 0 (0%) 0 (0%) 1 (4.3%) 0 (0%)

(Continued on next page)
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Table 1. Continued

Training set (n = 1514)

P1

value

Internal validation

set (n = 382)

P1

value

External validation

set (n = 181)

P1

value

P2

value

VPI positive

(n = 285)

VPI negative

(n = 1229)

VPI positive

(n = 73)

VPI negative

(n = 309)

VPI positive

(n = 23)

VPI negative

(n = 158)

IVA 2 (0.7%) 1 (0.1%) 1 (1.4%) 0 (0%) 4 (17.4%) 1 (0.6%)

LVI <0.001 <0.001 0.823 0.451

Yes 87 (30.5%) 149 (12.1%) 25 (34.2%) 28 (9.1%) 2 (8.7%) 8 (5.1%)

No 198 (69.5%) 1080 (87.9%) 48 (65.8%) 281 (90.9%) 21 (91.3%) 150 (94.9%)

Lymph node

metastasis

<0.001 <0.001 1.000 0.854

Yes 65 (22.8%) 105 (8.5%) 20 (27.4%) 21 (6.8%) 2 (8.7%) 12 (7.6%)

No 220 (77.2%) 1124 (91.5%) 53 (72.6%) 288 (93.2%) 21 (91.3%) 146 (92.4%)

Distant metastasis 0.052 0.431 <0.001 1.000

Yes 3 (1.1%) 1 (0.1%) 1 (1.4%) 0 (0%) 4 (17.4%) 1 (0.6%)

No 282 (98.9%) 1228 (99.9%) 72 (98.6%) 309 (100%) 19 (82.6%) 157 (99.4%)

Radiological characteristics

Whole maximum

diameter (mm)a
21.1 G 5.47 18.7 G 5.85 <0.001 20.9 G 5.42 18.1 G 5.85 <0.001 21.9 G 6.08 19.8 G 7.67 0.140 0.139

Consolidation

maximum

diameter (mm)a

20.2 G 5.87 15.4 G 7.04 <0.001 19.7 G 6.46 15.1 G 7.06 <0.001 18.5 G 7.72 14.8 G 7.68 0.043 0.408

CTRa 0.958 G 0.131 0.821 G 0.254 <0.001 0.933 G 0.175 0.822 G 0.251 <0.001 0.853 G 0.278 0.775 G 0.301 0.223 0.809

Location 0.051 0.057 0.719 0.276

RUL 93 (32.6%) 426 (34.7%) 23 (31.5%) 100 (32.4%) 8 (34.8%) 65 (41.1%)

RML 32 (11.2%) 81 (6.6%) 3 (4.1%) 34 (11.0%) 2 (8.7%) 11 (7.0%)

RLL 61 (21.4%) 239 (19.4%) 8 (11.0%) 61 (19.7%) 2 (8.7%) 26 (16.5%)

LUL 69 (24.2%) 299 (24.3%) 17 (23.3%) 70 (22.7%) 7 (30.4%) 39 (24.7%)

LLL 30 (10.5%) 184 (15.0%) 22 (30.1%) 44 (14.2%) 4 (17.4%) 17 (10.8%)

Density <0.001 0.002 0.089 0.766

Subsolid 39 (13.7%) 495 (40.3%) 13 (17.8%) 118 (38.2%) 6 (26.1%) 75 (47.5%)

Pure-solid 246 (86.3%) 734 (59.7%) 60 (82.2%) 191 (61.8%) 17 (73.9%) 83 (52.5%)

Shape 0.405 0.774 1.000 0.154

Regular 5 (1.8%) 35 (2.8%) 4 (5.5%) 12 (3.9%) 9 (39.1%) 61 (38.6%)

Irregular 280 (98.2%) 1194 (97.2%) 69 (94.5%) 297 (96.1%) 14 (60.9%) 97 (61.4%)

Boundary 0.001 0.934 0.352 1.000

Clear 48 (16.8%) 323 (26.3%) 17 (23.3%) 76 (24.6%) 6 (26.1%) 61 (38.6%)

Vague 237 (83.2%) 906 (73.7%) 56 (76.7%) 233 (75.4%) 17 (73.9%) 97 (61.4%)

Vacuole sign 0.280 0.956 1.000 0.324

Yes 59 (20.7%) 218 (17.7%) 11 (15.1%) 50 (16.2%) 4 (17.4%) 28 (17.7%)

No 226 (79.3%) 1011 (82.3%) 62 (84.9%) 259 (83.8%) 19 (82.6%) 130 (82.3%)

Cavity 1.000 0.877 1.000 0.996

Yes 8 (2.8%) 37 (3.0%) 3 (4.1%) 9 (2.9%) 0 (0%) 2 (1.3%)

No 277 (97.2%) 1192 (97.0%) 70 (95.9%) 300 (97.1%) 23 (100%) 156 (98.7%)

Calcification 0.060 1.000 0.262 0.934

Yes 5 (1.8%) 6 (0.5%) 0 (0%) 2 (0.6%) 1 (4.3%) 0 (0%)

No 280 (98.2%) 1223 (99.5%) 73 (100%) 307 (99.4%) 22 (95.7%) 158 (100%)

(Continued on next page)

ll
OPEN ACCESS

4 iScience 27, 108712, January 19, 2024

iScience
Article



Table 1. Continued

Training set (n = 1514)

P1

value

Internal validation

set (n = 382)

P1

value

External validation

set (n = 181)

P1

value

P2

value

VPI positive

(n = 285)

VPI negative

(n = 1229)

VPI positive

(n = 73)

VPI negative

(n = 309)

VPI positive

(n = 23)

VPI negative

(n = 158)

Spiculated sign <0.001 0.086 0.005 0801

Yes 230 (80.7%) 736 (59.9%) 54 (74.0%) 193 (62.5%) 18 (78.3%) 71 (44.9%)

No 55 (19.3%) 493 (40.1%) 19 (26.0%) 116 (37.5%) 5 (21.7%) 87 (55.1%)

Lobulated sign <0.001 0.104 0.077 0.609

Yes 281 (98.6%) 1048 (85.3%) 68 (93.2%) 263 (85.1%) 21 (91.3%) 113 (71.5%)

No 4 (1.4%) 181 (14.7%) 5 (6.8%) 46 (14.9%) 2 (8.7%) 45 (28.5%)

Air bronchogram 0.005 0.056 0.253 0.250

Yes 46 (16.1%) 295 (24.0%) 8 (11.0%) 67 (21.7%) 7 (30.4%) 72 (45.6%)

No 239 (83.9%) 934 (76.0%) 65 (89.0%) 242 (78.3%) 16 (69.6%) 86 (54.4%)

Vessel convergence <0.001 0.113 0.812 1.000

Yes 262 (91.9%) 957 (77.9%) 64 (87.7%) 243 (78.6%) 6 (26.1%) 49 (31.0%)

No 23 (8.1%) 272 (22.1%) 9 (12.3%) 66 (21.4%) 17 (73.9%) 109 (69.0%)

—Unless otherwise noted, values are numbers of patients, with percentages in parentheses. AIS, adenocarcinoma in situ; CTR, consolidation tumor ratio; LLL, left

lower lobe; LUL, left upper lobe; LVI, lymphovascular invasion; MIA, minimally invasive adenocarcinoma; RLL, right lower lobe; RML, right middle lobe; RUL, right

upper lobe; VPI, visceral pleural invasion.
aData are means G standard deviations. P1 value was derived from the univariable association analyses between VPI positive and VPI negative. P2 value was

derived from the univariable association analyses between training set and internal validation set.
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[AUC= 0.76 (95%CI: 0.75–0.78), 0.75 (95%CI: 0.71–0.78), 0.69 (95%CI: 0.62–0.75)] achieved little improvement. The prediction performance of the

threemodels in three cohorts is exhibited in Table 4. More details about the additional standard deviation of 5-fold cross-validation are shown in

supplementary data (see Table S3). ROC curves for these threemodels when used to predict the VPI status of patients with clinical stage IA lung

adenocarcinoma in the three cohorts are shown in Figure 2. No significant differences in AUC values for these threemodels were detected when

using DeLong’s test in either the training or the two validation cohorts (see Table S4). Significant associations between the prediction scores of

these threemodels and VPI statuswere noted (p<0.05) (Figure 3), emphasizing the reliability of thesemodels as ameansof predictingVPI.When

assessingmodel accuracy, sensitivity, specificity, PPV, NPV, and F1 score values, the DLmodel outperformed the clinical models, while the com-

bined model was similar to the DL model in terms of performance. Calibration curves for these models are provided in Figure S1. Hosmer-

Lemeshow tests showed that there were no significant difference in the goodness of fit of the three models (P ＞ 0.05).

Clinical significance of model

Clinicopathological details, CT images, and corresponding heatmaps for VPI-positive and VPI-negative patients which similar clinicopatho-

logical characteristics are shown in Figure 4. The DFS of the VPI-positive patients exhibiting bone metastases were shorter than those of VPI-

negative patients free of recurrent or metastatic disease. Heatmaps highlighted clear differences between tumors that were positive and

negative for VPI. The regions most closely associated with predicting VPI status were the regions in contact with the adjacent pleura and

the peritumoral zone, which was distant from the pleura in some cases. The DL features extracted from these images were of value when

seeking to predict VPI status and to stratify patients into low- and high-risk groups.

LVI and lymph node metastasis had significant statistical differences between the VPI-negative and -positive predicted by the three

models, whether in the training or the internal validation sets. However, there was no difference in the external validation set. This is consistent

with the above three pathological factors presented in Table1. When comparing distant metastasis three-model-predicted VPI status was not

statistically different in any of the three datasets. Assessment of the above three pathological characteristics for the three models is shown in

supplementary data (see Table S5).

Survival prediction

For survival comparison analysis, 487 patients with clinical stage IA lung adenocarcinoma were evaluated. These individuals exhibited a me-

dian DFS of 67.4 months, and 29.3% (143/487) of these individuals experienced recurrent disease, metastasis, or death following complete

surgical resection. These patients exhibited a 67.4-month median follow-up duration. Univariate Cox regression analyses results are summa-

rized, see Table S6, revealing that DFS was associated with pathologic VPI and with VPI status as predicted by both the DL and combined

models (p < 0.05 for all), while VPI status as predicted with the clinical model was not related to DFS (p = 0.327). After multivariate analyses,

CTR, clinical T stage (cT1b and cT1c), pathologic VPI, and VPI status predicted by DL and combined models remained significant predictors
iScience 27, 108712, January 19, 2024 5



Table 2. CT findings for visceral pleural

Training set (n = 1514)

P1

value

Internal validation set

(n = 382)

P1

value

External validation

set (n = 181)

P1

value

P2

value

VPI positive

(n = 285)

VPI negative

(n = 1229)

VPI positive

(n = 73)

VPI negative

(n = 309)

VPI positive

(n = 23)

VPI negative

(n = 158)

CT subtype

of pleura

<0.001 <0.001 0.025 0.663

Type 1 63 (22.1%) 154 (12.5%) 22 (30.1%) 30 (9.7%) 7 (30.4%) 29 (18.4%)

Type 2 83 (29.1%) 224 (18.2%) 20 (27.4%) 57 (18.4%) 3 (13.0%) 27 (17.1%)

Type 3 96 (33.7%) 407 (33.1%) 24 (32.9%) 105 (34.0%) 6 (26.1%) 24 (15.2%)

Type 4 23 (8.1%) 34 (2.8%) 3 (4.1%) 8 (2.6%) 0 (0%) 5 (3.2%)

Type 5 10 (3.5%) 85 (6.9%) 3 (4.1%) 18 (5.8%) 6 (26.1%) 25 (15.8%)

Type 6 10 (3.5%) 325 (26.4%) 1 (1.4%) 91 (29.4%) 1 (4.3%) 48 (30.4%)

Pleural

indentation

<0.001 <0.001 <0.001 0.695

Yes 265 (93.0%) 819 (66.6%) 69 (94.5%) 200 (64.7%) 14 (60.9%) 56 (35.4%)

No 20 (7.0%) 410 (33.4%) 4 (5.5%) 109 (35.3%) 9 (39.1%) 102 (64.6%)

Consolidation

contact with the

pleura

<0.001 <0.001 <0.001 0.828

Yes 135 (47.4%) 290 (23.6%) 40 (54.8%) 70 (22.7%) 14 (60.9%) 44 (27.8%)

No 150 (52.6%) 939 (76.4%) 33 (45.2%) 239 (77.3%) 9 (39.1%) 114 (72.2%)

Minimum

distance from

the lesion to

the pleura (mm)a

3.31 G 4.82 6.98 G 7.62 <0.001 2.00 G 2.92 8.19 G 9.39 <0.001 4.00 G 5.57 6.39 G 7.78 0.077 0.144

Maximum

diameter of

contact with

pleura (mm)a

6.35 G 7.69 3.39 G 6.63 <0.001 8.63 G 9.67 2.93 G 5.83 <0.001 7.09 G 10.3 4.61 G 7.85 0.280 0.858

Maximum

diameter of

consolidation

contact with the

pleura (mm)a

6.12 G 7.54 2.87 G 6.11 <0.001 8.27 G 9.58 2.40 G 5.19 <0.001 6.52 G 9.93 3.16 G 6.27 0.128 0.913

CTR et the

pleural enda

0.461 G 0.493 0.214 G 0.399 <0.001 0.521 G 0.489 0.203 G 0.391 <0.001 0.363 G 0.481 0.233 G 0.403 0.229 0.897

Note. — Unless otherwise noted, values are numbers of patients, with percentages in parentheses. CTR, consolidation tumor ratio; VPI, visceral pleural invasion.
aData are means G standard deviations. P1 value was derived from the univariable association analyses between VPI positive and VPI negative. P2 value was

derived from the univariable association analyses between training set and internal validation set.

ll
OPEN ACCESS

iScience
Article
even following adjustment for clinical variables (Table 5). Survival curves for these patients are shown in Figure 5. The median DFS of patients

with and without pathological VPI was 89.5 and 92.0 months, respectively (p = 0.01) (Figure 5A), with corresponding predicted 5-year survival

rates of 68.2% and 81.5%. Patients were additionally assigned to two groups using the clinical, DL, and combinedmodels. Themedian DFS of

patients predicted to be VPI present and absent using the clinical model was 93.6 and 96.2 months, respectively (p = 0.33) (Figure 5B), with

corresponding predicted 5-year survival rates of 75.9% and 79.5%. The median DFS of patients predicted to be VPI present and absent using

the DLmodel was 92.3 and 97.0 months, respectively (p = 0.019) (Figure 5C), with corresponding 5-year survival rates of 74.7% and 84.5%. The

median DFS of patients predicted to be VPI present and absent using the combined model, the median DFS was 92.5 and 93.1 months,

respectively (p = 0.043) (Figure 5D), with corresponding 5-year survival rates of 74.5% and 84.9%.

There were 355 patients with pathologic stage I lung adenocarcinomawere evaluated for subgroup survival analyses. Themedian DFSwas

67.4 months, and 24.8% (88/355) exhibited unfavorable prognosis. These patients exhibited a 68.8-month median follow-up duration. Univar-

iate Cox regression analyses results are showed in Table S7. Aftermultivariate analyses, smoking history, CTR, clinical T stage (cT1b and cT1c),

pathologic VPI, and VPI status predicted by DL and combined models remained significant predictors even following adjustment for clinical
6 iScience 27, 108712, January 19, 2024



Table 3. Univariate and multivariate logistic regression analysis of factors in the training set

Factors

Univariate logistic regression multivariate logistic regression

OR (95%CI) p value OR (95%CI) p value

Age 1.005 (0.992–1.018) 0.423

Sex 0.930 (0.718–1.205) 0.583

Symptom 0.988 (0.758–1.292) 0.930

Smoking history 0.995 (0.740–1.326) 0.972

Family history of cancer 1.588 (1.128–2.209) 0.006 1.390 (0.952–2.012) 0.083

Clinical T stage

cT1b 4.666 (2.807–8.282) ＜0.001 1.162 (0.525–2.689) 0.717

cT1c 9.681 (5.819–17.21) ＜0.001 0.977 (0.324–3.122) 0.996

Whole maximum diameter 1.074 (1.050–1.100) ＜0.001 1.041 (0.861–1.265) 0.674

Consolidation maximum diameter 1.108 (1.086–1.131) ＜0.001 1.004 (0.818–1.230) 0.968

Density 4.254 (3.013–6.157) ＜0.001 1.407 (0.832–2.420) 0.208

CTR 46.07 (18.29–130.8) ＜0.001 2.975 (0.037–341.0) 0.638

Location

RML 1.810 (1.124–2.866) 0.053

RLL 1.169 (0.813–1.672) 0.394

LUL 1.057 (0.747–1.490) 0.752

LLL 0.746 (0.472–1.155) 0.110

Shape 1.642 (0.697–4.817) 0.304

Boundary 1.760 (1.269–2.485) ＜0.001 1.194 (0.813–1.778) 0.372

Vacuole sign 1.211 (0.872–1.661) 0.244

Cavity 0.930 (0.399–1.919) 0.855

Calcification 3.640 (1.042–12.17) 0.054

Spiculated sign 2.801 (2.058–3.872) ＜0.001 1.342 (0.913–1.993) 0.139

Lobulated sign 12.13 (5.088–39.63) ＜0.001 4.919 (1.880–16.97) 0.004

Air bronchogram 0.609 (0.429–0.850) 0.004 0.853 (0.567–1.267) 0.437

Vessel convergence 3.238 (2.115–5.191) ＜0.001 0.778 (0.444–1.395) 0.389

CT subtype of pleura

Type 1 13.20 (6.937–28.20) ＜0.001 0.401 (0.145–1.063) 0.071

Type 2 12.04 (6.405–25.20) ＜0.001 0.354 (0.138–0.866) 0.026

Type 3 7.666 (4.127–15.90) ＜0.001 0.439 (0.238–0.819) 0.009

Type 4 21.99 (9.919–52.06) ＜0.001 NA

Type 5 3.824 (1.522–9.610) 0.004 2.644 (0.995–7.051) 0.049

Pleural indentation 6.633 (4.253–10.94) ＜0.001 9.162 (3.443–25.93) ＜0.001

Consolidation contact with the pleura 2.914 (2.230–3.808) ＜0.001 2.657 (0.196–57.38) 0.484

Minimumdistance from the lesion to the pleura 0.903 (0.878–0.927) ＜0.001 0.986 (0.943–1.028) 0.523

Maximum diameter of contact with pleura 1.054 (1.037–1.072) ＜0.001 0.990 (0.813–1.127) 0.896

Maximum diameter of consolidation contact

with the pleura

1.066 (1.048–1.085) ＜0.001 0.980 (0.855–1.199) 0.811

CTR at the pleural end 3.323 (2.520–4.382) ＜0.001 1.286 (0.054–20.35) 0.864

CI, confidence interval; CTR, consolidation tumor ratio; OR, odds ratio.
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variables (Table 6). Survival curves for these patients are shown in Figure 6. The median DFS of patients with and without pathological VPI was

90.6 and 91.8 months, respectively (p = 0.029) (Figure 5A), with corresponding predicted 5-year survival rates of 69.9% and 81.3%. Patients

were additionally assigned to VPI present and absent groups using the clinical, DL, and combined models. The median DFS of patients pre-

dicted to be VPI present and absent using the clinical model was 93.6 and 96.9 months, respectively (p = 0.28) (Figure 5B), with corresponding
iScience 27, 108712, January 19, 2024 7



Table 4. Prediction performance of the three models

Models Dataset AUC (95% CI) ACC SEN SPE PPV NPV F1 score

Clinical model Training set 0.74 (0.72–0.75) 0.60 0.82 0.55 0.30 0.93 0.43

Internal validation set 0.73 (0.70–0.77) 0.63 0.78 0.60 0.31 0.92 0.44

External validation set 0.66 (0.59–0.72) 0.55 0.78 0.51 0.22 0.94 0.33

DL model Training set 0.75 (0.73–0.76) 0.65 0.79 0.79 0.32 0.93 0.46

Internal validation set 0.73 (0.69–0.76) 0.60 0.80 0.56 0.30 0.93 0.43

External validation set 0.62 (0.54–0.68) 0.54 0.75 0.51 0.18 0.94 0.29

Combined model Training set 0.76 (0.75–0.78) 0.66 0.78 0.63 0.33 0.93 0.46

Internal validation set 0.75 (0.71–0.78) 0.63 0.83 0.58 0.32 0.94 0.46

External validation set 0.69 (0.62–0.75) 0.69 0.65 0.70 0.23 0.93 0.35

ACC, accuracy; AUC, area under the receiver operating characteristic curve; CI, confidence interval; DL, deep learning; NPV, negative predictive value; PPV, pos-

itive predictive value; SEN, sensitivity; SPE, specificity.
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predicted 5-year survival rates of 76.6% and 80.3%. The median DFS of patients predicted to be VPI present and absent using the DL model

was 92.6 and 98.7months, respectively (p = 0.017) (Figure 5C), with corresponding 5-year survival rates of 75.4% and 86.7%. ThemedianDFS of

patients predicted to be VPI present and absent using the combinedmodel, themedian DFSwas 92.7 and 95months, respectively (p = 0.026)

(Figure 5D), with corresponding 5-year survival rates of 74.9% and 88%.

DISCUSSION

In the present study, DL features were extracted from CT images and used to develop a 3D-ResNet-9 DL model that was subsequently vali-

dated for its ability to predict the VPI status of patients with clinical stage IA lung adenocarcinoma in a noninvasive manner. These data high-

light the value of DL features, as the resultant model was the most effective predictor of VPI with respective AUC values of 0.75, 0.73, and 0.62

in the training, internal validation, and external validation cohorts, respectively. While the combined model did not markedly outperform the

DL or clinical models, theDLmodel nonetheless yielded predictive accuracy similar to that of amodel based solely on clinical-radiologic char-

acteristics. High-risk status as predicted with the DLmodel (HR for clinical stage IA DFS, 1.639 [p = 0.021], HR for pathologic stage I DFS, 10.67

[p = 0.008]) or the combined model (HR for clinical stage IA DFS, 1.519 [p = 0.037], HR for clinical stage IA DFS, 10.66 [p = 0.014]) and the

presence of VPI (HR for clinical stage IA DFS, 1.544 [p = 0.011], HR for pathologic stage I DFS, 2.344 [p = 0.013]) were all found to be related

to poor prognostic outcomes. In line with these results, VPI has repeatedly been identified as a predictor of poor prognostic outcomes.4,20,21

Moreover, VPI status as predicted by both the DL and combined models was independently associated with patient DFS in multivariate an-

alyses. DLmodel has the advantages of being simpler and assisting in prognostic assessment comparedwith the clinicalmodel due to it could

captures useful attributes, which are independent from human-defined semantic features from imaging data without any feature engineering.

VPI in patients with early-stage NSCLC is associated with an elevated risk of recurrence andmortality,4,22 particularly in node-negative pa-

tients with tumors %3.0 cm in diameter.23 VPI may be associated with tumor cell dissemination via the subpleural lymphatic pathway to the

lymph nodes.24 The eighth edition TNM classification system recommends upstaging NSCLC tumors%3.0 cm in size with VPI from stage T1

to stage T2 and from stage IA to stage IB.6 In some prior reports, patients with stage IB disease have been suggested to benefit from adjuvant

therapy.25,26 The ability to preoperatively predict VPI status may thus be invaluable, and there is evidence that certain CT morphological fea-

tures are correlated with VPI.8–11,27–30 For example, analyses of pleural retraction, pleural attachment, and pleural tags have all been reported
Figure 2. Comparison of the performance of three models for predicting VPI status in clinical stage IA lung adenocarcinoma

ROC curves for themodels used to predict visceral pleural invasion status in the training (A), internal validation (B) and external validation (C) cohorts. AUC, area of

curves; CI, confidence interval; DL, deep learning.
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Figure 3. Difference in the three models prediction score between clinical stage IA lung adenocarcinoma with VPI and without VPI

(A–I) Boxplots corresponding to the clinical model (A, D, G), DL model (B, E, H), and combined model (C, F, I). Data are shown pertaining to visceral pleural

invasion in the training cohort (A–C), the internal validation cohort (D–F), and external validation set (G–I). The prediction scores of these three models were

significantly associated with visceral pleural invasion (all p ＜ 0.05). DL, deep learning.

ll
OPEN ACCESS

iScience
Article
to be associated with VPI status, and Kim et al. found that CT features exhibit accuracy levels ranging from 62.7 to 72.3% when predicting VPI

status, with corresponding PPV values from 44.1% to 56.4%, suggesting that roughly half of all CT-based predictions may yield false positive

results.25 When analyzing the association between VPI status and pleural tags in patients with NSCLC lacking CT evidence of contact with the

pleural surface, Hsu et al. determined that the presence of one or more linear pleural tags with a soft tissue component at the pleural end was

sufficient to diagnose VPI with an accuracy level of 71%,9 similar to that for type 3 in this study. The etiological basis for type 3may be related to

tumor cell proliferation along lymphatic vessels together with peritumoral inflammatory exudation or fibrosis, ultimately resulting in peritu-

moral lymphatic vessel obstruction that contributes to VPI incidence.9 Yang et al. evaluated the relationship between lesions and the pleura in

two groups of patients defined according to the proximity of the lesion to the interlobar region, ultimately revealing a higher VPI positivity rate

in type I patients in group B consistent with higher rates of pulling of the interlobar pleura.29 This result aligns well with observations in type 2

cases in the present study. Imai et al. also observed positive correlations between the odds of pleural invasion and the length of focal contact
iScience 27, 108712, January 19, 2024 9



Figure 4. Gradient-weighted class activation maps for the interpretation of model output

(A–C) Clinicopathological details (A), CT images (B), and corresponding heatmaps (C) for two representative cases positive and negative for VPI. While the

clinicopathological characteristics of these patients were similar other than their VPI status, VPI-positive patients with bone metastasis exhibited a significant

drop in DFS relative to VPI-negative patients free of recurrent or metastatic disease. Heatmaps revealed the areas most relevant to the prediction of VPI

status, which were partially in contact with the adjacent pleura, as well as in the peritumoral zone even if it was distant from the pleura.

ll
OPEN ACCESS

iScience
Article
with the pleura,12 consistent with these results. Indeed, pleural tags and pleural indentation are radiological signs that have widely been

recognized as indicators of pulmonary malignancy and possible VPI.11 Here, pleural indentation was confirmed to be an independent pre-

dictor of VPI. Pleural indentation has been reported to arise as a result of intratumoral scar formation, which is related to VPI as a result of

tumor-induced pulmonary atelectasis.31 The present data suggest that lobulation can also predict VPI in patients diagnosed with clinical

stage IA lung adenocarcinoma, consistent with evidence that lobulated contours are positively correlated with cell growth rates and are

thus related to malignancy.32 While most reports have focused on assessing VPI-related morphological characteristics in CT images, these

studies have exhibited unsatisfactory accuracy, with feature identification being dependent on radiologist expertise.9,27,33

To date, few reports have sought to apply DL techniques as ameans of predicting VPI status. Choi et al. proposed the development of a DL

model for the prediction of VPI in patients with lung cancer, ultimately achieving an AUC of 0.75 that was similar to that achieved by radiol-

ogists.34 This AUCwas identical to that in the present report. However, in that study, radiologists made diagnoses based on a 5-point scoring

system without any definitive criteria such that the reproducibility of these measurements was low. Choi et al. also included patients with a

range of higher-stage lung cancers in addition to stage IA disease when conducting their analyses. In the present analysis, model outputs

were useful as independent predictors of VPI status in individuals with clinical stage IA lung adenocarcinoma, providing an opportunity to

discover latent characteristics underlying clinical assessments and semantic features. In addition, the VPI status predicted by our models
Table 5. Multivariate Cox regression analysis for disease-free survival in in clinical stage IA lung adenocarcinomas

Variable

Pathologic VPI Clinical model DL model Combined model

HR (95%CI) p value HR (95%CI) p value HR (95%CI) p value HR (95%CI) p value

Age 1.015 (0.997,1.033) 0.105 1.014 (0.996,1.032) 0.121 1.014 (0.996,1.032) 0.118 1.015 (0.997,1.033) 0.106

CTR 7.827 (1.011,60.61) 0.049 8.205 (1.056,63.74) 0.044 8.037 (1.032,62.59) 0.047 8.172 (1.057,63.18) 0.044

Clinical T stage 0.031 0.018 0.033 0.026

cT1b 1.896 (0.725,4.954) 0.192 1.933 (0.740,5.047) 0.179 1.849 (0.705,4.852) 0.212 1.860 (0.713,4.852) 0.205

cT1c 2.728 (1.033,7.205) 0.043 2.867 (1.089,7.551) 0.033 2.686 (1.008,7.157) 0.048 2.721 (1.033,7.169) 0.043

VPI 2.365 (1.004,6.912) 0.041 1.111 (0.786,1.571) 0.552 2.197 (1.778,7.843) 0.043 2.256 (1.032,6.896) 0.048

CI, confidence interval; DL, deep learning; HR, hazard ratio; VPI, visceral pleural invasion.
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Figure 5. Prognostic value of pathological VPI status and VPI status predicted by the three models in clinical stage IA lung adenocarcinoma

(A–D) Kaplan-Meier survival curves evaluating the outcomes of clinical stage IA lung adenocarcinoma grouped according to their pathological VPI status (A), or

their VPI status as predicted by the clinical model (B), DL model (C), and combined model (D). CI, confidence interval; DFS, disease-free survival; DL, deep

learning; HR, hazard ratio; VPI, visceral pleural invasion.
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was highly correlatedwith LVI and lymph nodemetastasis, whichwas consistent with the actual clinical situation of the training and the internal

validation set as shown in Table 1. This suggests that the models in this study may help to access LVI and lymph node metastasis. Since the

positive proportion of pathological factors in the external validation set included in this study was low, the above findings need to be verified

by larger external data. The heatmap generated in this study indicated that the regionmost closely associated with VPI status was proximal to

the tumor pleura, consistent with a prior report.24 The output of this model may thus offer value as an autonomous variable that can support

clinical decision-making or serve as an anatomical determinant in prognostic models used to evaluate patients with clinical stage IA lung

adenocarcinoma.

In patients with NSCLC, VPI reportedly serves as a positive prognostic factor,5,24,35 consistent with the present results. Here, VPI was em-

ployed to stratify patients, and the ability of the DL model to predict patient DFS was assessed. In Kaplan-Meier analyses, the DL model was

reliably able to separate patients with lung adenocarcinoma into groups facing a low or a high risk of mortality. The VPI predictions made by

themodel were also found to be independently associated with DFS inmultivariate analyses. Kim et al. determined that CT semantic features

of VPI were not independently predictive of DFS in patients with clinical T1 lung adenocarcinoma.27 Morphological CT features primarily

depend upon radiologist input. In an effort to more accurately and reproducibly document the association between CT image data and

DFS, the present study employed a DL algorithm in order to extract latent features not otherwise represented by more traditional clinical-

radiologic semantic features.

Here, the 3D-ResNet-9 architecture was used to develop a DL model capable of using CT image data to predict the VPI status of patients

with clinical stage IA lung adenocarcinoma. DL model developed herein offers excellent potential as a means of accurately assessing VPI sta-

tus prior to surgery. Meanwhile, the DLmodel was also able to identify predicted VPI in amanner independently associated with DFS risk such

that the established model may aid clinicians in the context of preoperative decision-making.

Limitations of the study

This study is subject tomultiple limitations. For one, the retrospective design of this study renders it susceptible to selection bias. Additionally,

various CT scanners were used when evaluating these patients, and the acquisition protocols that were used were also inconsistent across
iScience 27, 108712, January 19, 2024 11



Table 6. Multivariate Cox regression analysis for disease-free survival in pathologic stage I lung adenocarcinomas

Variable

Pathologic VPI Clinical model DL model Combined model

HR (95%CI) p value HR (95%CI) p value HR (95%CI) p value HR (95%CI) p value

Smoking history

(ever smoker)

1.568 (1.027, 2.395) 0.037 1.557 (1.020, 2.377) 0.040 1.553 (1.017, 2.371) 0.042 1.571 (1.027, 2.403) 0.037

CTR 4.647 (0.498, 43.38) 0.178 4.906 (0.525, 45.84) 0.163 3.807 (0.392, 36.99) 0.249 4.911 (0.527, 45.80) 0.162

Clinical T stage 0.018 0.013 0.026 0.015

cT1b 1.561 (0.514, 4.746) 0.043 1.562 (0.513, 4.754) 0.043 1.459 (0.476, 4.477) 0.049 1.552 (0.511, 4.716) 0.044

cT1c 2.778 (0.899, 8.580) 0.037 2.847 (0.923, 8.776) 0.039 2.557 (0.818, 7.997) 0.017 2.79 6(0.907, 8.621) 0.033

VPI 2.227 (0.784, 8.920) 0.037 1.126 (0.748, 1.694) 0.570 4.691 (1.712, 30.90) 0.011 4.315 (1.512, 23.38) 0.027

CI, confidence interval; DL, deep learning; HR, hazard ratio; VPI, visceral pleural invasion.
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reports. Even so, we believe that the diversity of these data is representative of variations observed in clinical datasets, thus making any DL

model trained using these data better suited to clinical application in a real-world setting. Lastly, the survival data used for this study were

derived from a relatively small subset of cases owing to the fact that follow-up was only performed for five years. Future large-scale trials

will thus be vital to validate and expand on these results.
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Figure 6. Prognostic value of pathological VPI status and VPI status predicted by the three models in pathologic stage I lung adenocarcinoma

(A–D) Kaplan-Meier survival curves evaluating the outcomes of pathologic stage I lung adenocarcinoma grouped according to their pathological VPI status (A), or

their VPI status as predicted by the clinical model (B), DL model (C), and combined model (D). CI, confidence interval; DFS, disease-free survival; DL, deep

learning; HR, hazard ratio; VPI, visceral pleural invasion.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python (version 3.7.0) Python software https://www.python.org/

PyTorch (version 1.6.0) PyTorch software https://pytorch.org/

CUDA toolkit (version 9.2) CUDA toolkit software https://developer.nvidia.com/cuda-92-download-archive

R (version 3.5.3) R software https://www.r-project.org

Other

Research Data Deposit Sun Yat-Sen University

Cancer Center

https://www.researchdata.org.cn (No.RDDA2023776696)

Source code Github https://github.com/Johnhave/lung_nodule_cls.git
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Li Li (lil@sysucc.org.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� De-identified patient standardized data have been deposited at the Research Data Deposit public platform (No.RDDA2023776696),

and DOIs are listed in the key resources table. They are available upon request if access is granted. To request access, contact Sun

Yat-Sen University Cancer Center.

� All original code has been deposited at the Github and is publicly available as of the date of publication. DOIs are listed in the key

resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study participants

The ethical review board of Sun Yat-sen University Cancer Center and the First Affiliated Hospital of Guangzhou Medical University (B2022-

293-01), the Fifth Affiliated Hospital of Sun Yat-sen University (K107-1) approved this study, and waived the requirement for written informed

consent.

This retrospective analysis used electronic medical records to enroll consecutive lung cancer patients who had undergone surgical resec-

tion from January 2010 – December 2021 at Sun Yat-sen University Cancer Center (Center 1) or from January 2015 – December 2019 at The

First Affiliated Hospital of Guangzhou Medical University (Center 2) or January 2016 – December 2018 at Fifth Affiliated Hospital of Sun Yat-

sen University (Center 3). Inclusion criteria for this study (Figure 1) included the following: (i) patients that had pathology-confirmed lung

adenocarcinoma diagnoses; (ii) patients preoperatively diagnosed with clinical stage IA disease; (iii) patients that underwent non-enhanced

CT imaging within two weeks prior to surgery; and (iv) patients with CT findings of pure-solid and subsolid pulmonary nodules. Overall, these

criteria led to the identification of 2980 clinical stage IA lung adenocarcinoma patients without synchronous or metachronous lung cancers at

these three centers. Ineligible patients were excluded based on the following criteria: (i) patients with pathological reports lacking definitive

LVI status; (ii) patients that underwent preoperative neoadjuvant chemo- and/or radiotherapy; or (iii) patients lacking thin CT images (%2mm).

Ultimately, 2077 patients met all of these criteria, including 1070, 826 and 181 from Center 1, 2 and 3, respectively. These patients of center 1

and 2 were pooled together and then separated at an 8:2 ratio via simple randomization into a training cohort (n = 1514) and an internal vali-

dation cohort (n = 382). The cohort of 181 patients from center 3 was the external validation set. The training cohort was used for

model training and the selection of the best model, while model performance was evaluated with the internal and external validation cohort.

5-fold stratified cross-validation was employed during both training and two validation sets, as detailed in Figure 2. In the training cohort, 285

patients (285/1514, 18.8%) were diagnosed with VPI, while the VPI status of 73 patients (73/382, 19.1%) in the internal validation cohort and 23

patients (23/181, 12.7%) in the external validation cohort were positive (Table 1).
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METHOD DETAILS

Clinicopathologic data collection

Participant clinicopathologic data including age, sex, symptoms, family history of cancer, and history of smoking were obtained from the pa-

tient electronic medical records. The subjects in this study were all of the same Asian ethnicity from China. Sex was not statistically significant

in any of the groups in this study (see Table 1) and therefore had no influence on the results of this study. The 8th edition of the American Joint

Committee on Cancer (AJCC) staging manual was used for clinical and pathological staging.36 Attending pathologists were responsible for

establishing the pathologic diagnoses of patients in accordance with the International Association for the Study of Lung Cancer (IASLC)/

American Thoracic Society/European Respiratory Society classification system.37 Pathologists classified VPI based on the IASLC proposal af-

ter examining hematoxylin and eosin-stained sections as follows: PL0 (lack of pleural invasion beyond the elastic layer), PL1 (invasion beyond

the elastic layer), PL2 (invasion of the visceral pleural surface).37 When lesions were found to exhibit pleural adjacency and visceral pleural

involvement was uncertain, the presence of VPI was detected via elastic staining. Repeated elastic staining during the study inclusion period

was not performed to reassess VPI status. No separate recordings weremade for PL1 and PL2 in this analysis. Lymph nodemetastasis, distant

metastasis, and lymphovascular invasion (LVI) incidencewere also documented in this report, with LVI being definedby tumor cells detectable

via microscopy that were present in the lymphatic, arterial, or venous vessels of the surrounding pulmonary tissue.
CT image acquisition

CT scans were conducted from the apex to the base of the lung. Table S8 shows the details of the scanning and reconstruction parameters.
Radiological feature analyses

Maximum tumor diameter andmaximum consolidation diameter weremeasured using electronic calipers and an appropriate axial CT image

in an image archiving and communication system in the lung window setting (window width, 1500 HU; level,�600 HU). The maximum consol-

idation diameter andmaximum tumor diameter were then used to calculate the consolidation tumor ratio (CTR). Three radiologists with 5, 10,

and 15 years of experience performing thoracic imaging-based diagnosis came to a consensus regarding nodule location (right upper lung,

right middle lung, right lower lung, left upper lung, and left lower lung), density (pure-solid or subsolid), shape (regular or irregular), boundary

(clear or vague), whether lobulation (defined by irregular nodulemargin undulation) was present, whether spiculation (2mmor thicker strands

extending from the tumor margin to the surrounding parenchyma but not extending to the pleura) reaching the pleura), vacuole sign (<5mm

regions of intratumoral roundor ovoid air attenuation), cavity (R5mm regions of intratumoral round or ovoid air attenuation) air bronchogram

(air-filled bronchi in the tumor), vessel convergence (multiple blood vessels gathering toward the tumor), and calcification. All reviewers re-

mained blinded to patient pathologic information and outcomes, although nodule location was provided to these reviewers.
Pleural CT subtypes

Multiple CT findings have been reported in the context of VPI predictions.12,38,39 Pleural deformation has, to date, been used to establish six

subgroups of patients, including: (a) Type 1 patients exhibiting direct pleural contact; (b) Type 2 patients exhibiting pleural retraction; (c) Type

3 patients with one or more linear pleural tags with thickening at the pleural end; (d) Type 4 patients with one or more cord-like pleural tags

with thickening at the pleural end; (e) Type 5 patients with pleural tags but no thickening at the pleural end; and (f) Type 6 patients exhibiting

no evidence of pleural contact (see Figure S2). Three thoracic radiologists also determined whether or not pleural indentation (a linear or

triangular strand originating from the tumor and extending to the pleura) or pleural consolidation contact was evident. In cases where direct

pleural contact was not observed, the minimum distance between the lesion and the pleura was assessed. The maximum diameter of pleural

contact wasmeasured for cases exhibitingdirect pleural contact or no pleural contact. In partially solid nodules, pleural contact of the ground-

glass opacity regions was not considered indicative of VPI.26 As such, the maximum diameter of pleural consolidation contact was also

analyzed, and CTR at the pleural end was calculated based on the maximum diameter of pleural consolidation contact and the maximum

diameter of pleural contact.
CT image preprocessing

To develop the DL sampling, CT data were initially preprocessed in the following steps: (1) CT images were scaled and subjected to cubic

spline linear interpolation to exclude the effects of voxel space variability by generating 13 13 1 mm voxels; (2) a 643 643 64 mm 3D cube

subgraph was cropped from the center of the nodule for each CT scan to eliminate any interference from irrelevant regions while maximally

preserving the original image information; (3) Voxel values for each sample was normalized for each extracted subgraph to values from 0 to 1,

with respective upper and lower values of 400 HU and �800HU, thus retaining the maximum possible amount of nodule information.
3D-ResNet-9 model architecture

This study employed an algorithm consisting of a convolutional neural network (CNN) and a fully connected network, with the CNN utilizing

the customized 3D-ResNet-9 model to enable improved dataset classification.40 The 3D-ResNet-9 model is a residual neural network that

differs from similar networks with respect to the number of layers. The architecture of the 3D-ResNet-9 model consisted of the following.
16 iScience 27, 108712, January 19, 2024
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(a) Initial convolution layer: The 3D-ResNet-9 structure initially employed a 33 3 convolution layer with a step size of 1 that was followed

by a maximum pool (maxpool) layer. This portion of the model enabled preliminary feature extraction.

(b) Residual blocks: The main components of the 3D-ResNet-9 model were formed from four residual blocks, each containing two 3D

convolutional layers operated via batch normalization (BN) and ReLU activation. BN corresponds to the normalization of data feature

maps such that the average value is 0 and the variance is 1. To minimize training time and resource utilization, channel numbers were

decreased to 16, 32, 64, and 96. The input was then connected to the output of these convolutional layers via a skip join, enabling the

network to learn the residual input-to-output mapping while avoiding the issue of exploding or disappearing gradients.

(c) Average global pool (avgpool) layer: Following the residual blocks step, 3D-ResNet-9 employs an avgpool layer rather than the fully

connected layer, thereby significantly decreasing the number of model parameters required as a means of abrogating potential over-

fitting. After the avgpool layer, a full connection layer was used for the final classification output.

Images were processed in various layers to enable the extraction of predictive features. The 3D-ResNet-9 algorithm eliminates the issue of

vanishing gradients such that it can outperform other algorithms.

Model construction and validation

The predicted outcome in this study was VPI status, which was used with a fully connected neural network to establish a DL-based binary clas-

sification model.41 This classifier employed a one-dimensional array input and a binary score output, with the output classification being

designated with an appropriate threshold value, assigning a 1 or a 0 based on whether or not the output was greater than the threshold value,

respectively. The model used a learning rate of 0.0005 and a batch size of 16. A weighted L1 norm was used for the loss function, with weights

being determined based on the positive proportion. After an average of just give training cycles this model tended to converge.

To improve classification performance via the integration of multidimensional features, a clinical model, a DL model, and a combined

model were established. And, the threshold values of above three models were 0.65, 0.93, 0.74, respectively. Eighteen features were found

to be correlated with VPI status in the univariate regression analyses (Table 3), which was consistent with the results of SHAP (SHapley Additive

exPlanation) analyses (see Figure S3).42 The features ranked above contributed more weight in the model. Consolidation maximum diameter

as themost important feature, which high value of SHAPmade themodel output tends to be positive. Although lobulated sign, CT subtype of

pleural and pleural indentation were independent prediction of risk factors for VPI status in multivariate logistic regression analyses, 18 fea-

tures were placed into 3D-ResNet-9 model for automatic analysis considering that individual factors still had a certain weight value through

SHAP. TheDL algorithm constructed a clinicalmodel based on the different weights of these clinical radiological features. To construct theDL

model, 768 DL features extracted from the 3D-ResNet-9 framework were used. The fully connected neural network contained a single hidden

layer with 1024 neurons in this layer. The number of input features was used to determine the number of neurons in the input layer, while the

output layer included a single neuron corresponding to the positive probability of network output.

Receiver operating characteristic (ROC) curves were used to assess the performance of the three models, and the area under the curve

(AUC), sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and F1 score values for each assessed.

Calibration curves and boxplots were used to evaluate the degree of fit for these three models.

Evaluation of clinical application of model

In order to establish which CT image regions were most attributable to the predictions of VPI status made by the DL model, 3D-ResNet-9

results were visualized with heatmaps generated using gradient-weighted class activation mapping (Grad-CAM).43 This approach employs

gradients for object concept types including caption task outputs and logits of classes in the classification category, thereby generating a

final convolution layer used to establish a rough location map highlighting key image areas related to prediction generation. Grad-CAM

was used after 3D-ResNet-9 network training, with the 3D-ResNet-9 model having been constructed from four 3D residual neural blocks

and with output activations and gradients for a third of these blocks having been used to conduct these analyses. Grad-CAM processing em-

ployed the following main steps.

(a) After inputting segmented image blocks for the two cases, a feature map was generated following the final convolution of the image

block after feature extraction. The partial derivative of the feature graph was obtained to ensure the uniform size of the partial deriv-

ative matrix.

(b) Feature map weights were different for the classification of the fully connected layer. Global average pooling was performed using

partial conductivity feature maps, and the weights of individual feature maps were computed through backpropagation. The number

of feature maps was the length of the weight vector.

(c) To obtain weighted featuremaps, each featuremapwasmultiplied by the corresponding weight value. In three dimensions, themean

was calculated to yield amap (np.mean (axis =�1)). Any negative numbers were changed to values of 0 via Relu activation and normal-

ization processing.

(d) Lastly, up-sampling was performed to obtain Grad-CAM, and the resultant heatmap was decreased to the image size to allow for sim-

ple image weighting.

To ascertain the clinical significance of our models, we also compared the difference of LVI, lymph nodemetastasis and distant metastasis

between VPI-negative and -positive by the three models.
iScience 27, 108712, January 19, 2024 17



ll
OPEN ACCESS

iScience
Article
Follow-up and survival analyses

Disease-free survival (DFS) was the primary endpoint for this analysis, and was defined as the interval from surgery to the first imaging- or

histological evidence-based confirmation of local or regional disease recurrence and/or distant metastasis, or all-cause death. Patients

were censored at the date when their most recent chest CT scans were performed. Patients generally underwent CT-based follow-up every

6–12 months over a 2-year period postoperatively, followed by annual observation. In total, 487 patients were followed for a minimum of 5

years. Given that our study dealt with a CT-based model for prognostication in lung cancer, cases were assembled to evaluate two staging

settings: preoperative prognostication at the time of clinical staging (487 patients with clinical stage IA lung adenocarcinoma) and postop-

erative prognostication at the time of pathological staging (355 pathologic stage I lung adenocarcinoma). Any variables exhibiting signifi-

cance in univariate analyses were incorporated into a multivariate Cox regression analyses aimed at defining variables capable of indepen-

dently predicting patient DFS. Kaplan-Meier survival analyses and log rank tests were used to gauge the ability of particular variables to

stratify lung adenocarcinoma patients based on mortality risk.
QUANTIFICATION AND STATISTICAL ANALYSIS

Python 3.7.0. PyTorch 1.6.0, CUDA 9.2, and R 3.5.3 were used for all analyses. Continuous variables are given in the form of meansG standard

deviations while categorical variables are presented as numbers (%). Unpaired t-tests, Mann-Whitney U tests, and chi-square tests were used

for intergroup comparisons as appropriate. Interobserver agreement between readers 1, 2, and 3 pertaining to radiological findings was eval-

uated with Cohen’s kappa test and intraclass correlation coefficients. ROC curves were generated with the R pROC package, and AUC values

were compared to assess model predictive performance. The DeLong method was employed to compare AUC value differences. Accuracy,

sensitivity, specificity, PPV, NPV, and F1 scores were incorporated into these comparative analyses. Hosmer-Lemeshow test was used to eval-

uated the goodness of fit of the model. Kaplan-Meier curves and log rank tests were used to assess differences in survival. A two-tailed

p < 0.05 served as the cut-off for significance in all analyses.
18 iScience 27, 108712, January 19, 2024
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