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Abstract

While much is known about human genetic variation, such information is typically ignored in 

assembling novel genomes. Instead, reads are mapped to a single reference, which can lead to 

poor characterization of regions of high sequence or structural diversity. We introduce a 

population reference graph, which combines multiple reference sequences and catalogues of 

variation. The genomes of novel samples are reconstructed as paths through the graph using an 

efficient hidden Markov model, allowing for recombination between different haplotypes and 

additional variants. By applying the method to the 4.5Mb extended MHC region on human 

chromosome 6, combining eight assembled haplotypes, sequences of known classical HLA alleles 

and 87,640 SNP variants from the 1000 Genomes Project, we demonstrate, using simulations, 

SNP genotyping, short-read and long-read data, how the method improves the accuracy of genome 

inference and reveals regions where the current set of reference sequences is substantially 

incomplete.
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Introduction

The current paradigm for analyzing human genomes using high throughput sequence (HTS) 

data is to map to a single haploid reference sequence in which there is no representation of 

variation1-3. Across much of the genome, such exclusion has little effect on the accuracy of 

genome inference because of the relatively low genetic diversity of humans4. However, for 

some regions, such as the major histocompatibility complex (MHC) on chromosome 6, 

which contains the human leukocyte antigen (HLA) genes, there is very substantial sequence 

and structural variation5. Such diversity can result in poor genomic characterization in 

individuals who carry sequence that is either missing or highly divergent from the single 

reference. Other locations of high diversity include the KIR6 region, olfactory gene 

clusters7, ancient inversions such as that on 17q21.318-10 and regions of recurrent genomic 

rearrangement11, many of which have substantial influence on phenotype and disease risk. 

In many of these cases, multiple alternative haplotypes have been characterized and are 

available. For example, there are seven alternative, plus one primary (PGF), MHC 

haplotypes in the human reference (GRCh37). More generally, sequencing projects have 

greatly advanced our understanding of human genetic variation12-14 and using such 

information to help characterize human genomes represents an important and unsolved 

problem

The problem of the single reference approach and the potential for using known MHC 

variation is demonstrated in Figure 1. When mapping to the standard reference (the PGF 

MHC haplotype) results in large fluctuations in coverage and many poorly-mapped reads 

(Fig. 1a). However, when the reference is augmented with an additional haplotype, 

identified by comparing the classical HLA genotypes of the sample with those of the eight 

reference haplotypes and noting that one of the eight haplotypes was a close match, read 

coverage and alignment is greatly improved (Fig. 1b, c).

Using prior information about variation raises five main challenges. First, a data structure 

for representing genomic variation must be defined, which can accommodate multiple 

sources of information, from assembled reference sequence (such as the ALT paths in 

GRCh37) to catalogues of small variants such as the 1000 Genomes Project12,14. Second, 

algorithms must exist for matching high-throughput sequencing (HTS) data to the variation 

aware reference structure. Third, and potentially simultaneously with step two, additional 

variation not yet represented in the reference data structure must be detected. Fourth, 

because most functional information (such as gene location and structure) uses the 

coordinates of a single linear reference, information from a variation-aware reference must 

be projected onto a primary sequence. Finally, benchmarks must be established to validate 

and compare the output from a variation aware reference tool-chain to that provided by 

existing approaches.

To date, these challenges have only been partially addressed. Traditional multiple sequence 

alignments, representing inter- and intra-species genetic variation, have been generalized to 

partial order alignment (POA) graphs15 to represent shared sequence and to represent 

mosaic sequences arising from recombination, and then further to A-Bruijn graphs16 and 

cactus graphs17 to support rearrangements and duplications. However, these graphs have not 
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been used in the assembly of individual genomes from HTS data. Conversely, multiple 

approaches of mapping individual reads to variation-aware data structures have been 

proposed18-22. However, none of these are practical for representing a heterogeneous 

catalogue of population variation with large and small events and the additional mutation 

and recombination-driven differences found between reference material and the sample 

being studied.

Here, we present a solution to these challenges. We describe a structure for representing 

known variation called a population reference graph (PRG) and a series of algorithms that 

enable characterization of the genomes present in an individual from HTS data. We build on 

previous work for using coloured de Bruijn graphs for analyzing sequence variation23, but 

also take advantage of the existing tool chain for read mapping and variant calling3,19. To 

demonstrate the value of the method we develop a PRG for the MHC region and combine 

simulation with analysis of empirical data on SNP genotypes, classical HLA types, short-

read and synthetic long-read Moleculo data.

Results

The population reference graph

A population reference graph (PRG) is a directed acyclic graphical model for genetic 

variation generated by using known allelic relationships between sequences (Figs. 2a, 2b; 

Supplementary Fig 1). The graph is constructed in three steps (see Supplementary Note for 

details). First, reference sequences are aligned using standard multiple sequence alignment 

(MSA) methods24,25. Second, a graph structure is generated from the MSA by collapsing 

aligned regions with sequence identity over a defined kmer size. This structure is related to 

the POA graph15, though differs in preserving more information about local haplotype 

structure, which is important for read alignment in regions of high sequence diversity. Third, 

small variants, defined (as in VCF) by a reference position and alternative alleles, are added 

to all valid paths (i.e., a SNP cannot be added to a path with a deletion). Here, we use the 

primary assembly and seven MHC ALT sequences from GRCh37, along with SNPs from 

Phase 1 of the 1000 Genomes Project and f classical HLA allele sequences from the 

International Immunogenetics Information System (IMGT26) at key HLA Class I and Class 

II loci (Supplementary Table 1). The resulting graph structure can be thought of as a 

generative model for genomes. From a limited set of input sequences, many different paths 

through the graph are possible, capturing the effect of recombination..

Using the PRG to infer individual genomes

The use of HTS in humans largely relies on genome(s) being closely related to the reference, 

thus enabling reads to be mapped accurately and with appropriate certainty. We extend this 

idea by inferring the (diploid) path through the PRG that most closely resembles the two 

haplotypes of the sample. Specifically, by comparing the HTS data from a sample to the 

PRG we construct a diploid personalized reference genome, here referred to as a 

chromotype (which could be generalized to higher ploidies or mixtures). To infer novel 

variation, we map reads to the chromotype and use existing variant calling software19. A 

Dilthey et al. Page 3

Nat Genet. Author manuscript; available in PMC 2015 December 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



chromotype for a diploid is best understood as a bifurcating/merging sub-graph of the PRG, 

analogous to paired homologous chromosomes with bubbles at regions of divergence.

To infer chromotypes we exploit the computational efficiency of hidden Markov models. 

Briefly, HTS data is summarized (using Cortex23) by the counts of each string of length k 

(kmer). Similarly, the set of kmers that can be emitted from the PRG is enumerated, 

eliminating those that occur at more than one level within the PRG (i.e. are paralogous), 

hence uninformative (Fig. 2c). Finally, by using a probabilistic model for the emission of 

kmers (Methods), the Viterbi-algorithm infers the maximum-likelihood (ML) chromotype 

(Fig. 2d). Note that this approach does not preserve long-range haplotype phase information 

and cannot detect variants absent from the PRG. In addition, the focus on diagnostic kmers 

limits our ability to analyze low-complexity regions, such as segregating segmental 

duplications, where read-depth information is required for genotyping.

To detect novel variation, the inferred chromotype is decomposed into two haplotypes (with 

arbitrary phasing between adjacent bubbles), which then replace the homologous region in 

the primary reference. Reads are mapped to the two resulting reference genomes and placed 

at their best position across the two reference genomes, as measured by mapping quality, or 

uniformly if mapping qualities are identical. A standard variant caller19 is used to discover 

new alleles independently in the two mappings and a heuristic algorithm modifies the 

chromotype, incorporating novel variants. We have also developed an algorithm for 

mapping reads directly to the chromotype, however this is currently too slow for analyzing 

millions of reads and hence only used for Moleculo validation, see below.

Validation and comparison to other methods

To assess the value of the PRG approach in characterizing variation within samples we used 

simulations and empirical data analysis. We compare four approaches to characterizing 

variation.

1. As a base-line we use a single reference (the PGF haplotype within the MHC 

region from GRCh37) and look at the effect of calling a sample as everywhere 

homozygous-reference (“PGF Reference”).

2. We use a read-mapping approach (Stampy3 followed by Platypus19) in which the 

components were designed explicitly for high sensitivity detection and genotyping 

of short INDELs and clustered variants (“Platypus”). The resulting VCF is 

converted into a chromotype (see Methods) for comparison.

3. From the PRG, we assess the Viterbi chromotype, representing a “best guess” 

diploid path through the PRG (“PRG-Viterbi”). These are also reported as VCF.

4. From the PRG, we assess the mapping-modified Viterbi chromotypes, containing 

variants not represented in the PRG (“PRG-Mapped”). These are also reported as 

VCF.
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Simulations

To verify that the method and implementation can work, prior to validation based on 

empirical data, we simulated high coverage HTS data (101bp paired-end reads from a 30x 

genome with an empirical error distribution) for 20 individuals. Each simulated diploid 

genome consists of two random paths through the PRG for the extended MHC (xMHC). The 

simulated genomes carry a mixture of recombination events between the original eight MHC 

haplotypes, SNPs and structural variants of varying size (insertions and deletions from 1 – 

125,000bp). From the simulated data, we infer, for each sample, the pair of paths through 

the PRG using the HMM and measure allele concordance with the simulated paths at each 

level within the PRG (Supplementary Table 2). Across all levels (broadly corresponding to 

positions in the sequence), 99.89% of alleles are correctly recovered. Accuracy at 

heterozygous SNP positions is similar (99.83%) and drops slightly for INDEL positions 

(ranging from 95.8% to 100%, Figs. 3a, 3b).

Experiment 1: Comparison to SNP array data

To assess the ability of the PRG approach to genotype variation at sites of high uniqueness 

within the genome, we measured allele concordance at SNP positions within the xMHC 

region independently interrogated through array genotyping and HTS: one sample 

(NA12878) at 60x coverage with 100bp paired end-reads / Illumina Omni 2.5M array data 

and five clinical samples (CS2-6) at 30x coverage with 90bp paired-end reads / Illumina 1M 

array data (Methods).

The accuracy of all approaches is high (Fig. 3a); ≥97.38% allele concordance with the 

Illumina Omni 2.5M array (NA12878) and ≥99.53% allele concordance with the Illumina 

1M array (CS2-6). Comparing the array genotype concordance of Platypus-generated 

genotypes and PRG-generated genotypes (PRG-Viterbi and PRG-Mapped), we find that 

both approaches yield comparable accuracies (97.75% vs 97.45% for the 2.5M array and 

99.57% versus 99.66% for the 1M array; Fig. 3c, Supplementary Table 3).

Of the 285 sites at which the array genotypes for NA12878 disagree with the Viterbi 

chromotype, in 55 cases this difference is driven by the Viterbi chromotype specifying a gap 

character suggesting the presence of an indel that could interfere with array genotyping. We 

manually inspected the alignment1 of NA12878 reads for these sites, and found clear 

evidence for the presence of a deletion in 33 of the 55 cases (visualizations of read mapping 

at all positions are provided as Supplementary Data). These findings suggest that a 

significant fraction of the discrepancy between array and PRG approaches results from array 

errors at polymorphic indels. The cause of the remaining discrepancies is not understood.

Because almost all variant sites reported in NA12878 are present within the PRG, we also 

assessed accuracy of variant detection and genotyping for sites by comparing calls to an 

independent call set on the same data generated through de novo assembly with Cortex23. At 

sites within the graph we find that all methods perform well (allele concordance for 

Platypus: 96.7%, PRG-Viterbi: 96.7%, PRG-Mapped: 97.2%). At sites not in the PRG, all 

methods show poorer performance, though the mapped step improves accuracy substantially 

(Platypus: 65.9%, PRG-Viterbi: 40.2%, PRG-Mapped: 55.1%).
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Experiment 2: Comparison to classical HLA data

In regions of high sequence diversity, such as the classical HLA alleles, single-reference 

mapping and variant calling methods may perform poorly because of the density of 

mismatches to the reference. To assess the accuracy of different methods at the classical 

HLA loci, we compared the per-base diploid genotypes inferred by mapping and PRG 

approaches to those expected from the results of sequence-based typing of the highly 

polymorphic exons of Class I (HLA-A, -B and –C) and Class II (HLA-DQA1, -DQB1 and –

DRB1) genes in NA12878 and CS2-6. We analyzed agreement with the reference sequence 

for the reported allele (in HLA nomenclature this means XX:XX:01 or XX:XX:01:01 at 6 or 

8 digit resolution respectively, though we note that typing was not carried out at this 

resolution). This analysis is distinct from classical HLA typing, where the presence of a 

particular set of haplotypes is inferred.

For Class I loci (HLA-A, -B and –C), we find comparable and high (typically ≥ 99%) 

accuracy for all methods (no comparison has P < 0.01 by paired t-test; Fig. 3d, 

Supplementary Table 4). In contrast, for Class II loci, PRG methods are significantly more 

accurate at HLA-DQB1 (P = 0.001) and HLA-DRB1 (P = 0.002) than Platypus, with no 

difference between the PRG-Viterbi and PRG-Mapped methods. For example, at DRB1, we 

find 97.19% allele concordance with the PRG-Mapped genotypes versus 89.85% 

concordance with mapping-based genotypes in the CS2-6 samples). The main difference 

between Class I and Class II loci is the existence of polymorphic paralogues and 

pseudogenes, which are likely to confuse approaches that map to a single reference, but 

which are represented in the GRCh37 ALT haplotypes. The very modest gain in accuracy 

from the mapping step (<1%) likely reflects the very extensive characterization of genetic 

variation within classical HLA alleles.

Experiment 3: kmer recovery from high coverage samples

A key notion of the PRG is that it contains the majority of sequence likely to be found in any 

individual. In the absence of full and independent de novo assemblies, we can nevertheless 

assess chromotype accuracy by measuring the recovery of kmers from HTS data; i.e. the 

proportion of kmers implied by the inferred chromotype that are found in the sample’s 

sequence data. We apply this benchmark to NA12878 and the CS2-6 samples.

Across the 4.75 Mb xMHC region, the PGF reference contains 4.52M distinct kmers (k = 

31) of which 4.8% are not recovered in the HTS data from NA12878 (Fig. 4a). The mapping 

approach (Platypus) predicts 4.94M distinct kmers, of which 1.2% are not recovered, while 

the two PRG approaches predict 4.98M (PRG-Viterbi) and 4.97M (PRG-Mapped) distinct 

kmers respectively and 0.63% and 0.57% are not recovered. Results are comparable though 

slightly lower for all methods in the CS2-6 samples (Supplementary Table 5). Consequently, 

the PRG approaches both predict greater sequence diversity than the mapping approach and 

achieve a higher rate of sequence recovery. Although the majority of the xMHC is 

accessible to all methods, there is substantial spatial heterogeneity in the rate of kmer 

recovery (Fig. 4b). Particularly, in the HLA class II region, the PRG approaches 

considerably outperform mapping (Fig. 5), consistent with knowledge of genomic 

complexity involving the HLA-DRB paralogues. We also note that in some regions, in 
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particular around HLA-DRB5, all approaches perform poorly in terms of kmer recovery (Fig. 

5), suggesting that current catalogues of sequence within the xMHC are substantially 

incomplete.

Within the classical HLA loci, all methods perform well for class I loci, recovering 98-100% 

of kmers compared to 80-95% from the PGF reference haplotype (Supplementary Fig. 2). At 

Class II loci, however, the advantage of the PRG methods (PRG-Viterbi and PRG-Mapped) 

is pronounced, with approximately 99% of all kmers recovered for HLA-DQA1, -DQB1 and 

-DRB1 (for both PRG methods), compared to 88-95% for Platypus (against a base-line of 

37-85% for the PGF reference haplotype).

Experiment 4: Comparison to synthetic long-read Moleculo data

To assess accuracy over longer physical distances than kmers, we analyzed alignments of 

synthetic long-read Moleculo data (25x coverage) from NA12878 to chromotypes generated 

by each approach (Methods). We first identified 29,429 reads (median read length 3,165 bp; 

for convenience, we refer to the Moleculo sequences as reads, although they involve an 

assembly procedure) likely to have arisen from the xMHC region through the presence of 

diagnostic kmers (Online Methods). Read-to-chromotype alignment was performed with a 

Needleman-Wunsch-like algorithm that aligns to gapped graphs instead of sequence, 

implemented using dynamic programming (see Supplementary Note). We measure the 

scaled edit distance between reads and the chromotype (the number of non-identical 

characters in read to chromotype global alignment, including gap characters, divided by read 

length in kmers) as an indicator of chromotype accuracy.

We find that the mapping (Platypus) approach achieves the highest number of read 

alignments with zero mismatches (11,338 versus 10,071 for PRG-Mapped). However, both 

PRG approaches result in significantly fewer reads with many mismatches and/or gaps (Fig. 

6a, Supplementary Table 6). For example, the total number of alignment columns indicating 

a deletion in the chromotype decreases from 1,017,231 (Platypus) to 586,852 (PRG-

Mapped). Likewise, the number of reads with very bad alignments (more than 150,000 gaps 

in the aligned read or ≥33% of the aligned chromotype string consisting of novel gaps) 

decreases from 303 to 134. The modified chromotype (PRG-Mapped) has a modest benefit 

over the Viterbi chromotype (PRG-Viterbi), increasing the number of perfectly mapped 

reads from 8,359 to 10,071. Across the DRB5 region (identified from the kmer recovery 

analysis as being most poorly represented by the PRG) we find reads that suggest the 

presence of an inversion relative to known sequence (Fig. 6b).

Discussion

Within a species (or even within an individual), the effects of mutation, recombination and 

selection can result in a great diversity of genomes, differing through events ranging from 

single nucleotide changes to major rearrangements and gains or losses of sequence. Our 

hypothesis was that using information about known diversity would aid in the reconstruction 

of individual genomes from HTS data, particularly within regions of high sequence and 

structural variation. To this end, we devised a graph structure for representing such reference 

variation, a method for using the structure to interrogate short read HTS data so as to infer 
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the diploid sequence of an individual and a series of benchmarking tests to evaluate 

accuracy compared to a standard mapping pipeline. By applying the approach to variation 

within the MHC region, we identified regions where genome inference is improved, 

sometimes substantially. This work demonstrates the feasibility and potential of using 

known variation in genome inference from HTS data and represents an important 

intermediary between mapping to a single reference and full de novo assembly23,27,28. Our 

method has immediate application for researchers looking to understand the role of genetic 

variation within the MHC for disease risk and drug response, and also builds a framework 

for analyzing complex variation more generally, not least those regions with alternative 

assemblies in humans.

There are, however, many important choices concerning how to represent known variation, 

the set of variants to be included and how best to use such information in genome inference. 

These choices must be taken in the light of potential applications, ranging from microbial 

populations with highly mobile accessory genomes to common rearrangements in cancer. 

Below, we discuss the key considerations and how the approach described here could be 

extended or modified.

Choices about the structure and construction of a reference variation graph are intimately 

linked to its desired functions. Fundamentally, we see two functions of such a structure. 

First, it should provide a general and intuitive way of referring to variation, in a manner 

analogous to that of an rsID for SNPs and in a manner that is incremental over the current 

state (e.g. where an rsID or HGVS description retain a precise meaning). Second, it should 

be a generative model for new genomes, reflecting recombination between sequences in a 

manner that closely matches the true distribution of genomes. Our approach was to base the 

structure on a multiple sequence alignment of known material, allowing for recombination 

between sequences at aligned regions of identity. As such, the structure makes no attempt to 

model explicitly events such as duplication or rearrangement that lead to difficulties or 

ambiguities in alignment. For example, an inversion would be represented by a bubble in the 

same way as would a region of high divergence. Similarly, the homology within a copy-

number-variable region would also not be recognized explicitly. To represent such events, 

and the more complex rearrangements and amplifications observed in bacteria and cancer, 

alternative structures would need to be developed, such as the A-Bruijn16 or cactus graphs17. 

However, whether such structures are well-suited to the problem of inference from HTS 

remains to be explored.

In constructing the PRG, we chose to include a wide catalogue of information including 

short variants, long haplotypes and lists of alleles at classical HLA loci. The comparison 

with the standard mapping approach suggests that over much of the xMHC, the use of such 

information under the current implementation leads to little or no gain in accuracy. The 

choice about what material to include in a graph is a balance between wanting to describe 

the space of genomic variation most fully and the practical issue of building and using a 

graph that represents many small and/or rare events, whose inclusion is not necessary and 

potentially damaging to inference (for example a duplication seen just once of an otherwise 

unique region). A pragmatic approach is to say that material should be included if, on 

average, it leads to better genome inference (here, for example, structural variation in the 
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Class II region and Class II alleles). However, there are other possible advantages to 

including more sequence, for example in reducing the heterogeneity in how complex 

variants, or those in low complexity regions, are reported.

Perhaps the greatest limitation of the approach developed here is in terms of the inference 

algorithm. By summarizing HTS data as kmers, we lose longer range information within a 

read and between read pairs. In addition, while the HMM for inferring the underlying 

reference chromotype is efficient, the approach of mapping reads separately to each of the 

arbitrarily phased haplotypes is ad hoc. Ideally reads should be aligned directly to the graph 

structure, keeping track of the quality of mapping both within and across different levels in 

the graph. In principle, as demonstrated with the Moleculo data, graph mapping is feasible. 

However there is a major challenge in making the process comparable in efficiency to 

algorithms for to mapping to a linear reference. However, if direct mapping of reads to the 

graph can be achieved, the same HMM structure can be used for genome inference, though 

we note that the current structure is not well suited to analyzing polymorphic regions with 

extended identity where the ability to reconstruct the exact underlying sequence (as opposed 

to some summary, such as copy number) is limited. In theory, it would also be possible to 

use longer-range information about haplotype structure as a prior on paths through the PRG 

(such as is used in imputation29 and refinement of low-coverage sequencing data30).

Finally, we wished to know how unusual the Class II MHC region is within the human 

genome in being poorly served by the paradigm of mapping to a single reference. To assess 

this, we calculated a genome-wide kmer recovery map for the Platypus call set on NA12878 

(provided as a track for the UCSC browser; see Methods). We find that 1% of the human 

genome has low kmer recovery (10kb regions with <90% predicted kmers recovered; 

Supplementary Fig. 3) and these regions affect multiple genes and gene families 

(Supplementary Table 7). Although some of these regions may reflect large homozygous 

deletions with respect to the reference, these results suggest that there is an important 

minority of the genome where identification and representation of alternative sequences 

would substantially improve genome inference.

Online Methods

Algorithms

A full description of the PRG algorithms can be found in the Supplementary Note, including 

(i) the algorithms used to build PRGs from a set of reference data, (ii) the algorithmic and 

statistical methods for inferring a best diploid path (chromotype) through the PRG, (iii) the 

algorithm to discover novel variation not presented in the PRG, (iv) the graph-mapping 

algorithm used for the contig analysis.

Data for PRG construction

We define the extended MHC (xMHC) as the genomic region spanned by the “PGF” xMHC 

haplotype (identical to the primary human reference in the region – in GRCh37 coordinates: 

chr6:28,702,185-33,451,429, GenBank ID for GRCh37 chromosome 6: CM000668.1). In 

addition to the PGF xMHC haplotype, we used seven xMHC haplotypes from the MHC 
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haplotype project5 (GRCh37, ALT_REF_LOCI_1 – ALT_REF_LOCI_7). We created a 

multiple sequence alignment (MSA) for the eight haplotypes using the programs FSA25 and 

MAFFT for refinement24. We used the SNPs identified by the 1000 Genomes Project, Phase 

1 release 3, to augment the MHC haplotypes.

We also included all available aligned genomic (i.e. .X_gen.txt files) HLA allele sequences 

from IMGT/HLA31 for the classical HLA alleles at the loci HLA-A, -B, -C, -DQA1, -DQB1, 

-DRB1 as additional scaffold haplotypes. These haplotypes cover all exons and introns of 

the genes. For many alleles the genetic sequences are not completely specified over all 

exons and introns; however, the PRG construction algorithm removes most of the wildcard 

characters found at the unspecified positions.

The edge probability distributions at each vertex in the PRG are improper; specifically, we 

assign probability 1 to each edge. This is motivated by the downstream parts of our pipeline, 

which rely on the Viterbi algorithm for inferring Maximum Likelihood personalized 

haplotypes. With the improper parameterization, each path through the model is equally 

likely under the Viterbi algorithm, irrespective of how many potential branching points 

(vertices where there is more than one possible edge to follow) it contains. We use kmer 

length k = 31 for creating the kmer-PRG.

In the process of examining the eight xMHC haplotypes, we discovered an inconsistency in 

the Ensembl database 32. On the SSTO haplotype, HLA-DRB1 and HLA-DRB4 were mapped 

to the same start coordinate, likely caused, according to Ensembl, by a mis-mapping of 

exonic sequence of the two transcripts ENST00000549627 and ENST00000548105 (HLA-

DRB4 and HLA-DRB1 exon sequence is similar). The two transcripts will be deleted in 

release 72 or release 73 (pers. comm.).

Whole genome sequencing data

Subjects CS1 and CS2-6 were from four GSK sponsored clinical studies; EGF100151, 

EGF30008, EGF105485 and EGF106708. Germ-line DNA was extracted from peripheral 

blood samples collected from consented clinical trial subjects, previously determined to 

have evidence of a Class II HLA risk marker for drug induced liver injury33. DNA was 

fragmented and size selected to create 2 × 180 base pair (bp) libraries and 2 × 800 bp 

libraries. These libraries were sequenced on a HiSeq 2000 to generate 90bp paired end (PE) 

reads at the BGI (Shenzen, China). For the CS1 sample approximately 200 Gb, and for each 

of the 5 samples in CS2-6 approximately 100Gb, of sequence was generated. Access to 

anonymized patient-level data underlying this study can be made available to independent 

researchers, following review by an independent panel, and execution of a data sharing 

agreement. Applications will be considered if they aim to understand the variation in the 

MHC region in these individuals so as to determine if additional variants in this region may 

contribute to a specific adverse drug response. To submit a request or enquiry, please visit 

www.clinicalstudydatarequest.com.

For Fig. 1, CS1 data were initially aligned to GRCh37 (excluding the alternative loci) on the 

CLC Genomics Workbench (version 6.5.1) and coverage and intact and broken PE read 

numbers determined for ~180 kb surrounding HLA-DRB1. This process was repeated with 
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the addition of the MANN alternative MHC haplotype (identifier ‘ALT_REF_LOCI_4′, 

Genbank ID GL000253.1). For all remaining analyses on CS2-6, reads were mapped to 

GRCh37 (excluding the alternative loci) using Stampy3 following BWA1 and variants were 

called using Platypus 0.1.819.

Read data for NA12878 from the Illumina Platinum genomes project (HiSeq 2000, ~60x 

coverage, 100bp paired-end reads) was obtained from the EBI. Reads were aligned to 

GRCh37 (excluding the alternative loci) using BWA 0.6.21 and variants were called with 

Platypus 0.1.819.

For Platypus 0.1.8-based variant calling in the MHC, we used the command line

python ${platypus_executable} callVariants --bamFiles=${bam_path} --

output=${output_VCF} --refFile=${HGref} --regions=6:28000000-

34000000 --logFileName=$logfile --nCPU=12 --mergeClusteredVariants=1

, with the variables substituted with their per-samples values.

For NA12878 mapping with BWA 0.6.2 (and for the re-mapping step), we used BWA-

backtrack (aln / sampe) with parameter -q10 for aln (all other parameters standard values).

For Stampy alignment, we used (in addition to file input and output parameters) the 

following command line options:

--bwaoptions=-t 2 -q10 /tmp/hs37d5 --keepreforder -v0 -solexa

Simulations

Genomes were simulated from the PRG by independently sampling two paths with uniform 

choices at junctions. We concatenated the edge labels induced by each path, removed “gap” 

characters and used the strings thus generated as a sample’s two haplotypes from which to 

generate reads. The number of starting reads (read length 101bp) at each position is Poisson 

distributed with mean such that the average depth is 30x. Accuracy was assessed by 

comparing the true underlying genotype at each level of the PRG with the genotype inferred 

from the Viterbi path. Specifically, we used the scoring system shown in Supplementary 

Table 8 to measure the number of correct alleles:

Allele concordance is the sum over sites of the score obtained divided by the maximum 

possible score (i.e. 2x the number of sites analyzed). The same table was used to measure 

‘accuracy’ in the empirical data analysis. In the ‘reads with error’ case, we used an empirical 

error model based on the PCR-free data from NA12878, which achieved and average per-

base error rate c. 0.1%. Our simulations are limited in that we treat the simulated paths as a 

sample’s complete genome; i.e. we do not include additional variation.
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Validation data

SNP arrays—Individual SNP array data were provided by GSK for samples CS1-6 

(Illumina 1M array). We used publically-available Illumina Omni 2.5M SNP array data 

from the 1000 Genomes Project for NA12878.

HLA genotypes—Individual HLA genotypes (reported to 4-digit accuracy using ‘g’ 

nomenclature) are given In Supplementary Table 9.

Kmer recovery from short read data—See Supplementary Note for details of how 

kmer recovery was estimated.

Synthetic long-read Moleculo data—For the Moleculo-based validation, identified 

contigs likely to have originated from the xMHC region using the following strategy

1. We computed the set of all kmers (k = 31) occurring in the kmerified xMHC PRG. 

We call all kmers occurring in this set “xMHC kmers”.

2. We computed the set of all kmers (k = 31) occurring in the human reference 

genome, excluding the region covered by the xMHC PRG. We call all kmers in this 

set “reference kmers”. Note that some kmers are both xMHC kmers and reference 

kmers. We call kmers which are xMHC kmers but not reference kmers “xMHC-

unique kmers”.

3. We filtered Moleculo reads according to the following criteria:

a. Fraction of xMHC kmers >= 0.8.

b. ≥ 2 xMHC-unique kmers spanning a stretch of at least 50 bases (in between 

the two kmers). For each read, we select the maximum stretch 

MAXSTRETCH spanned by two such xMHC-unique kmers.

c. Within MAXSTRETCH, fraction of xMHC-unique kmers >= 0.5.

d. Within MAXSTRETCH, fraction of reference kmers <= 0.3

e. If a read passed these tests, we truncated the read to MAXSTRETCH and 

aligned it to the PRG.

Runtime—Most algorithms are multithreaded (openMP); hence total effective runtime 

depends on local system configuration. We give example runtimes for generating the VCFs 

for NA12878 on a multi-core machine: VCF generation (PRG-Viterbi) takes 1.8h wall time 

(6.6h CPU time), while VCF generation (PRG-Mapped) takes c. 5h wall time (5h CPU 

time). Note that this does not include the actual whole-genome re-mapping process (2x), 

which is typically carried out on a cluster.

Genome-wide analysis of kmer recovery in NA12878—Genome-wide kmer 

recovery from the Platypus VCF was measured as for xMHC-specific kmer recovery, with 

the exception that we counted kmers that contained undefined characters (‘N’s) as 

recovered, whereas we counted them as absent for xMHC validation. We provide a wiggle 
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plot with results from the genome-wide kmer recovery analysis (200bp bins) (see URLs) 

that can be used within the UCSC genome browser.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Read-mapping in the MHC Class II region
a. Summary of read alignment to a single reference (GRCh37 without alternative loci, 

containing the ‘PGF’ haplotype in the xMHC) for a single sample (CS1) in the MHC Class 

II region (around HLA-DRB1) showing coverage (grey profile) and the proportion of 

‘broken’ read-pairs (red line; defined as mapping to different chromosomes, incompatible 

strands, or implausible insert size). b The same metrics as for part a, where mapping has 

been performed to a reference augmented with the MANN (ALT_REF_LOCI_4, Genbank 

ID GL000253.1) haplotype (i.e. in addition to PGF), chosen because the combined classical 
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HLA genotypes from PGF and MANN match those of the sample. c. Number of mapped 

intact (blue) and broken (red) read pairs for experiments underlying panels a and b (results 

from the latter split according to which haplotype reads map to, and a combined metric), 

demonstrating that the augmented reference results in many more well-mapped and many 

fewer broken read-pairs.
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Figure 2. Schematic illustration showing the construction and application of a population 
reference graph
a. Multiple sources of information about genetic variation, including alternative reference 

haplotypes (lines), classical HLA alleles (rectangles) and SNPs / short indels (triangles) are 

aligned. Colours indicate divergent sequence, dashes indicate gaps. b. A population 

reference graph (PRG) is constructed from the alignment, resulting in a generative model for 

variation within the region. SNPs, indicated by diamonds, are added as alternative paths to 

all valid backgrounds (i.e. excluding sequence with gaps or a third allele at the position). c. 

The PRG is compared to the de Bruijn graph constructed from reads obtained from a 

sample. Informative kmers (i.e. those that are found at only one level in the PRG) are 

identified (dark blue). Those found elsewhere in the genome (yellow) are ignored. d. A 

hidden Markov model is used to infer the most likely pair of paths through the PRG, 

allowing for read errors, resulting in an individualized reference chromotype for the sample. 

e. Two haploid genomes are constructed from the reference chromotype, with arbitrary 

phasing between adjacent bubbles, and reads (light blue lines) from the sample are aligned 

and assigned (on the basis of mapping quality) to a reference, thus identifying places where 

the sample contains novel variation (red circles; only one path through the chromotype is 

shown). f. Newly-discovered variants modify the reference chromotype, resulting in the 

inferred chromotype for the sample.
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Figure 3. Simulation study and empirical validation
a. Allele concordance between simulated data (20 simulated diploid individuals; 101bp 

reads at 30x diploid coverage with empirical error distribution) and Viterbi path through the 

PRG stratified by simulated variant type (SNP or structural variant; SV) and genotype. b. 

Allele concordance in simulations at sites heterozygous for structural variants of different 

lengths. c. Allele concordance between SNP array genotypes and chromotypes from each 

method for NA12878 (squares; Illumina Omni 2.5M array) and the CS2-6 samples (stars; 

Illumina 1M array), stratified by whether the array specifies the genotype as homozygous or 
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heterozygous. Results are shown for the mapping-based approach (Platypus, red), the 

Viterbi-path through the PRG (PRG-Viterbi, pink) and after mapping to the reference 

chromotype (PRG-Mapped, blue). d. Allele concordance between classical HLA genotypes 

at HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1 and HLA-DRB1 (measured at a per-

base level) and chromotypes from each method for NA12878 and the CS2-6 samples (range 

of accuracy across CS2-6 displayed as vertical bars). Classical HLA genotypes were inferred 

from sequence-based HLA typing (see Methods).
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Figure 4. Recovery of chromotype kmers from high throughput sequencing data
a. Number of recovered (blue) and non-recovered (red) kmers present in chromotypes 

inferred by the four methods (as for Fig. 3c with addition of single reference represented by 

the PGF MHC haplotype). A kmer is counted as recovered if it appears in HTS data from 

NA12878 (c. 60x coverage of 100bp paired-end reads represented by an un-cleaned Cortex 

graph; k = 31). Chromotypes within regions of clustered variants are disentangled using a 

greedy algorithm prior to evaluation, optimizing for the disentangled haplotypes to contain 

as many kmers recovered in the sample as possible (see Supplementary Note). b . Spatial 
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pattern of kmer recovery along the extended MHC region for each of the four chromotypes 

showing the location of classical HLA loci. Recovery fraction averaged over 1 kb windows.
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Figure 5. Spatial recovery of kmers within the HLA Class II region
a. Blow-up of kmer recovery in Fig 4b in the MHC Class II region for the chromotypes 

inferred by the four approaches. b. Fraction of kmers predicted to be present along region 

that are also presented in the PGF reference haplotype (1 kb windows; PGF reference not 

shown). c. Fraction of positions in chromotype that correspond to gaps in the multiple 

sequence alignment used to construct the PRG (1 kb windows). Note that PRGComplete 

chromotype is effectively identical to the PRG-Viterbi path. d. Fraction of positions in 
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inferred chromotypes that are heterozygous (lines; note this includes sites where one allele is 

a gap character) and the ending points of chromotype bubbles (points).
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Figure 6. Alignment of synthetic long-read data to chromotypes
a. Histogram of scaled edit distance (the number of non-concordant columns in the 

alignment between read and chromotype, divided by the total number of bases in the read) 

between long-read data (Illumina NA12878 Moleculo xMHC-specific reads) to chromotypes 

inferred by four methods. Lower boundary for each interval omitted for clarity. Inset shows 

a blow-up for reads with scaled edit distance >0.01. b. Dot-plot between the sequence of a 

Moleculo contig and the sequence of the non-gap branch of the Viterbi chromotype for 

NA12878 over the region highlighted in Fig. 5a. There is a point (x, y) if and only if the 10-
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mer beginning at position x in the chromotype segment is identical to the 10-mer (or its 

reverse complement) beginning at position y in the read. Green indicates the region of the 

read which, according to the alignment, is matched to the target region (i.e. each green point 

represents a read kmer between the leftmost and the rightmost read kmers aligned to the 

target region). Blue indicates that the match between the kmer found at positions x in the 

chromotype and y in the read can be recovered from the alignment. Middle, right: 

Analogous dot-plots for the read and the chromotype against themselves, showing that there 

is no large-scale self-similarity along either sequence.
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