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ABSTRACT 
 
To understand how aging affects functional decline and increases disease risk, it is necessary to develop 
accurate and reliable measures of how fast a person is aging. Epigenetic clocks measure aging but require 
DNA methylation data, which many studies lack. Using data from the Dunedin Study, we introduce an 
accurate and reliable measure for the rate of longitudinal aging derived from cross-sectional brain MRI: 
the Dunedin Pace of Aging Calculated from NeuroImaging or DunedinPACNI. Exporting this measure to 
the Alzheimer’s Disease Neuroimaging Initiative and UK Biobank neuroimaging datasets revealed that 
faster DunedinPACNI predicted participants’ cognitive impairment, accelerated brain atrophy, and 
conversion to diagnosed dementia. Underscoring close links between longitudinal aging of the body and 
brain, faster DunedinPACNI also predicted physical frailty, poor health, future chronic diseases, and 
mortality in older adults. Furthermore, DunedinPACNI followed the expected socioeconomic health 
gradient. When compared to brain age gap, an existing MRI aging biomarker, DunedinPACNI was similarly 
or more strongly related to clinical outcomes. DunedinPACNI is a “next generation” MRI measure that will 
be made publicly available to the research community to help accelerate aging research and evaluate the 
effectiveness of dementia prevention and anti-aging strategies. 
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Aging is the gradual, progressive, and correlated decline of multiple organ systems over decades. 
Longitudinal studies provide evidence for substantial individual variation in the rate of aging; people born 
in the same year can age slower or faster than their peers1–3. Furthermore, aging itself is increasingly 
regarded as a potentially preventable cause of chronic disease. Accordingly, accurate and reliable 
measures of how fast a person is aging are needed to effectively study how individual variation in the rate 
of aging contributes to disease risk and to evaluate interventions intended to slow aging before 
irreversible decline4–8. 
 
Age-sensitive alterations in DNA methylation, referred to as “epigenetic clocks,” are currently the most 
widely used measures for estimating individual differences in aging4,9,10. First-generation epigenetic clocks 
were trained on chronological age11,12, but the more precisely they predicted chronological age, the less 
well they predicted clinical outcomes13,14. In response, second-generation clocks were trained on 
measures of health that predict mortality in older people15–17. However, these clocks were trained on 
cross-sectional phenotypes in multi-age samples, not on longitudinal observations of the same person as 
has been recommended in geroscience5,18. This limitation led to the development of a third-generation, 
longitudinal approach to measuring aging. 
 
We previously adopted this longitudinal approach in the Dunedin Study, which has followed a population-
representative sample of 1,037 people born in the same year (1972-1973) from birth to age 4519. Across 
two decades (ages 26, 32, 38, and 45 years), we repeatedly measured 19 biomarkers of cardiovascular, 
metabolic, renal, immune, dental, and pulmonary functioning. By averaging the decline in the trajectories 
of these biomarkers, we operationalized the theoretical construct of biological aging into a specific 
measure that we called the Pace of Aging2. We subsequently developed an epigenetic clock that 
accurately and reliably estimates the Pace of Aging: the Dunedin Pace of Aging Calculated from the 
Epigenome or DunedinPACE20. Because DunedinPACE is calculated from a single timepoint measurement 
of DNA methylation, it has been rapidly adopted by aging studies where it has been associated with signs 
of accelerated brain aging, morbidity, and mortality20–25. However, it has not been possible to export 
DunedinPACE or other epigenetic clocks to studies lacking DNA methylation data. This includes many 
neuroimaging studies of brain aging and neurodegenerative diseases such as Alzheimer’s disease. 
 
Current neuroimaging-based approaches to measure aging, akin to first-generation epigenetic clocks, 
involve training models to predict chronological age from variability in MRI measures of brain structure in 
large multi-age samples26–30. Researchers then typically quantify a “brain age gap,” which reflects the 
difference between a participant’s predicted and actual chronological age. A positive brain age gap is 
interpreted as evidence of accelerated brain aging. As with first-generation epigenetic clocks, these age-
deviation approaches unavoidably mix model error (e.g., historical differences in environmental 
exposures, survivor bias, disease effects, measurement bias) with a person’s true rate of biological aging31–

34. 
 
Here, using a single T1-weighted MRI scan collected at age 45 in the Dunedin Study, we describe the 
development and validation of a novel brain MRI measure for the Pace of Aging (Figure 1A-C). We call this 
measure the Dunedin Pace of Aging Calculated from NeuroImaging or “DunedinPACNI.” Using data from 
the Human Connectome Project we evaluated the test-retest reliability of DunedinPACNI. Exporting the 
measure to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and UK Biobank, we conducted a 
series of preregistered analyses (link: https://rb.gy/b9x4u6) designed to evaluate the utility of 
DunedinPACNI for predicting multiple aging-related health outcomes (Figure 1D). To benchmark our 
findings, we compared effect sizes for DunedinPACNI to those for brain age gap35. DunedinPACNI is the 
first brain-based measure trained to directly estimate longitudinal aging of non-brain organ systems. If 
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DunedinPACNI does indeed estimate individual differences in the rate of aging, it would add evidence for 
close links between brain integrity and whole-body aging and establish neuroimaging as a powerful tool 
for measuring aging; not just of the brain, but of the entire body36. 

 

Figure 1. Schematic overview of study methods. A. Plot of mean scores for all 19 biomarkers comprising the Pace 
of Aging across four waves of observation at ages 26, 32, 38, and 45 years in the Dunedin Study. Hypothetical 
individual trajectories are shown for a person with relatively Slow, Average, and Fast Pace of Aging from ages 26 to 
45. B. Distribution of Pace of Aging composite scores in Dunedin Study members at age 45. Warmer colors represent 
a faster Pace of Aging and cooler colors represent a slower Pace of Aging. C. A single T1-weighted MRI scan collected 
from 860 Dunedin Study members at age 45 was used to train an elastic net regression model to predict the Pace of 
Aging. We call the resulting measure the Dunedin Pace of Aging Calculated from NeuroImaging, or DunedinPACNI. 
D. Regression weights from the DunedinPACNI model developed in the Dunedin Study were applied to T1-weighted 
MRI scans collected in the Alzheimer’s Disease Neuroimaging Initiative and UK Biobank datasets to derive 
DunedinPACNI scores. Those scores were then related to aging-related phenotypes. Abbreviations: ADNI = 
Alzheimer’s Disease Neuroimaging Initiative. 
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RESULTS 
 
DunedinPACNI: a Brain MRI Measure of Longitudinal Aging 
We trained an elastic net regression model to predict the longitudinal Pace of Aging measure using T1-
weighted MRI scans collected in a subsample of 860 Dunedin Study members when they were 45 years 
old. This subsample maintains the population-representativeness of the full cohort (see Supplemental 
Figures S1-S2). Specifically, the elastic net regression model used 315 MRI-derived structural measures 
for each Study member including regional cortical thickness, surface area, gray matter volume, and gray-
white signal intensity ratio as well as subcortical gray matter and ventricular volumes37. We performed 
10-fold cross-validation to identify optimal tuning parameters38. This optimized model was used to create 
DunedinPACNI. 
 
The in-sample correlation between DunedinPACNI and the longitudinal Pace of Aging was r=0.60 (Figure 
2A). We performed a cross-validation analysis by splitting the sample into training and testing subsets 100 
different times. Each time, we used 90% of the sample for training and held out the remaining 10% for 
testing. Across all 100 different splits, the average correlation between DunedinPACNI and Pace of Aging 
in the testing sample was r=0.42. Of note, for both DunedinPACNI and the longitudinal Pace of Aging, 
higher scores indicate faster aging. Associations between faster DunedinPACNI scores and measures of 
physical functioning, cognitive functioning, and facial aging were similar to those previously observed with 
the Pace of Aging2. Specifically, DunedinPACNI effect sizes for 12 out of the 15 measures were within the 
95% confidence intervals of the original Pace of Aging (Figure 2B, full results in Supplemental Table S1). 
This was expected given the high internal correlation between DunedinPACNI and Pace of Aging. Dunedin 
Study members with faster DunedinPACNI scores had worse balance, slower gait, weaker lower- and 
upper-body strength, and poorer coordination; they also reported worse health and more physical 
limitations; performed more poorly on tests of cognitive functioning; experienced greater childhood-to-
adulthood cognitive decline; and looked older. These results indicate that DunedinPACNI accurately 
estimates the longitudinal Pace of Aging within the Dunedin Study dataset. 
 
DunedinPACNI Reflects Canonical Patterns of Brain Aging 
The optimized model used to derive DunedinPACNI included 99 regional brain measures. Due to 
difficulties in interpreting multivariable model coefficients, we used the Haufe transformation to estimate 
feature importance scores from the covariance between each brain measure and the Pace of Aging39. 
Given that many of the MRI-derived measures are highly correlated, our elastic net model reduced 
overfitting by setting the weights for many of them to 0 (visualized in Supplemental Figure S3). Faster 
Pace of Aging covaried with thinner cortex, smaller cortical surface area, smaller cortical gray matter 
volume, lower cortical gray-white intensity ratio, smaller subcortical gray matter volumes, and larger 
ventricular volumes (Figure 2C). We also observed positive covariance between calcarine cortical 
thickness and gray-white signal intensity ratio, though not calcarine gray matter volume. This is likely due 
to known aging-related effects on gray and white matter signal intensity that have been previously 
demonstrated45–48. These structural features overlap with the MRI signatures of both normal brain aging 
and neurodegenerative diseases40–44, suggesting that faster DunedinPACNI reflects, at least in part, 
canonical patterns of brain aging.  
 
DunedinPACNI has Excellent Test-Retest Reliability 
If DunedinPACNI is to be used as a measure of aging, it must exhibit sufficient measurement reliability 
when exported to novel datasets. We used test-retest MRI data (N=45) from the Human Connectome 
Project49 to estimate the reliability of DunedinPACNI. The test-retest reliability was excellent (ICC=0.94, 
95% CI: [0.89-0.97], Supplemental Figure S4). 
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Figure 2. DunedinPACNI model validation and feature importance. A. In-sample correlation between Pace of Aging 
and DunedinPACNI. Warmer colors represent a faster Pace of Aging and cooler colors represent a slower Pace of 
Aging. B. Comparison of absolute effect sizes for associations between DunedinPACNI and Pace of Aging with 
physical functioning, cognition, and subjective aging measures within the Dunedin Study. Error bars represent the 
95% confidence interval. C. Covariance between MRI-derived brain features and Pace of Aging. Of the 315 brain 
features used in model training, 216 were set equal to 0 due to the high correlation between brain measures in order 
to reduce overfitting. The 99 features included in the final model are visualized in Supplemental Figure S3. Warmer 
colors represent features that positively predicted DunedinPACNI scores (i.e., larger value indicates faster aging) 
while cooler colors represent features that negatively predicted DunedinPACNI scores (i.e., larger value indicates 
slower aging). Features that did not contribute to the accuracy of DunedinPACNI predictions are gray. Abbreviations: 
CC = corpus callosum, DC = diencephalon, L = left, R = right, IQ = Intelligence Quotient. 
 
DunedinPACNI is Associated with Worse Cognitive Functioning 
Having established both internal validity and test-retest reliability, we sought to examine whether 
DunedinPACNI generalizes to novel datasets to detect aging-related outcomes. Specifically, we first tested 
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for associations with cognitive functioning in ADNI and UK Biobank. We generated DunedinPACNI scores 
from T1-weighted MRI scans collected in 1,737 ADNI participants (mean age=74.3 SD=7.2; range: 52-97 
years) and 42,583 UK Biobank participants (mean age=64.4, SD=7.7; range: 44-82 years). In ADNI, 
participants with faster DunedinPACNI performed worse on mental status exams used to screen for 
dementia as well as tests of memory, psychomotor speed, and executive functions; they also reported 
more impairment in cognitively demanding activities of daily living such as maintaining finances or 
preparing a meal (Figure 3A). Absolute standardized effect sizes across all cognitive measures in ADNI 
ranged from β=0.18 to 0.39 (all p-values<0.001, full results in Supplemental Table S2). Similarly, UK 
Biobank participants with faster DunedinPACNI performed more poorly on tests of executive functions 
and psychomotor speed (Figure 3B). Absolute standardized effect sizes across all cognitive measures in 
UK Biobank ranged from β=0.05 to 0.17 (all p-values<0.001, full results in Supplemental Table S3). 

 
Figure 3. DunedinPACNI predicts cognition, cognitive impairment, and conversion to dementia. Cross-sectional 
associations between DunedinPACNI and cognitive test scores in A. ADNI and B. the UK Biobank. We visualize 
absolute effect sizes to aid visual comparison and clarity (see supplemental Tables S2 and S3 for raw effect sizes). 
Error bars represent the 95% confidence interval. C. Group differences in DunedinPACNI scores amongst ADNI 
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participants according to cognitive status at scanning. Center lines represent the median. Lower and upper hinges 
represent the 25th and 75th percentiles. Whiskers extend 1.5 times the inter-quartile range from the hinges. Data 
beyond the whiskers are plotted as individual outliers. D. Survival curve of the relative proportion of cognitively 
normal ADNI participants at baseline who remained cognitively normal during the follow-up window grouped by 
slow, average, and fast baseline DunedinPACNI scores. Abbreviations: ADAS-Cog = Alzheimer’s Disease Assessment 
Scale – Cognitive Subscale 13, DSST = Digit Symbol Substitution Task, FAQ = Functional Activities Questionnaire, HR 
= hazard ratio, MMSE = Mini-Mental State Exam, MoCA = Montreal Cognitive Assessment, RT = Reaction Time, RAVLT 
= Rey Auditory Visual Learning Test, SD = standard deviation, Tower = Tower Rearranging, VM = Visual Memory, WM 
= Working Memory, CN = cognitively normal, MCI = mild cognitive impairment. 
 
DunedinPACNI Predicts Cognitive Decline and Dementia Conversion 
We next tested if DunedinPACNI differentiates between normal and clinically impaired cognitive 
functioning in ADNI (Figure 3C). Participants with mild cognitive impairment (MCI) had faster 
DunedinPACNI compared to cognitively normal participants (β=0.27, p<0.001, 95% CI: [0.18, 0.35]). 
Participants with dementia had faster DunedinPACNI than both participants with MCI (β=0.54, p<0.001, 
95% CI: [0.43, 0.65] and cognitively normal participants (β=0.81 p<0.001, 95% CI: [0.69, 0.92]). 
 
We further tested whether DunedinPACNI predicts future cognitive decline among people without 
cognitive impairment. Specifically, we analyzed a subsample of 624 ADNI participants who were 
cognitively normal at the time of their first scan, 112 of whom converted to either MCI or dementia during 
up to 16-years of follow-up. Cognitively normal participants with faster DunedinPACNI at baseline were 
more likely to develop MCI or dementia and to do so earlier during the follow-up window (HR=1.49, 
p=0.005, 95% CI: [1.12, 1.97]; Figure 3D), meaning those in the top 10% had a 61% increased risk of 
developing MCI or dementia compared to participants with average DunedinPACNI. We conducted a 
similar analysis among the 701 participants who were diagnosed with MCI at the time of their first scan, 
271 of whom converted to dementia during the follow-up window. MCI participants with faster 
DunedinPACNI at baseline were more likely to convert to dementia (HR=1.44, p<0.001, 95% CI: [1.26, 
1.65]). These effect sizes were similar when controlling for APOE e4 allele carriership, a well-established 
genetic risk factor for sporadic, late-onset Alzheimer’s disease (baseline cognitively normal: HR=1.49, 
p=0.005, 95% CI: [1.13, 1.96]; baseline MCI: HR=1.42, p<0.001, 95% CI: [1.23, 1.62]). Because only a very 
small number of UK Biobank participants with MRI data received diagnoses of dementia during follow-up 
observation (N=73), we were underpowered to report parallel results in this dataset. 
 
DunedinPACNI Predicts Accelerated Brain Atrophy 
As an estimate of how fast a person is aging, DunedinPACNI should reflect longitudinal trajectories of 
brain decline33. We tested whether faster baseline DunedinPACNI predicted accelerated hippocampal 
atrophy, which is an established risk factor for cognitive decline and dementia onset in older adults50. 
Specifically, we computed longitudinal trajectories of hippocampal atrophy among 1,302 ADNI 
participants who had MRI data at multiple time points (average number of scans=4.4, range=2 to 13 scans) 
as well as 4,628 UK Biobank participants who had MRI data at two timepoints. Participants with faster 
baseline DunedinPACNI exhibited accelerated hippocampal atrophy, in both ADNI (β=-0.15, p<0.001, 95% 
CI: [-0.21, -0.10]; Figure 4B) and the UK Biobank (β=-0.09, p<0.001, 95% CI: [-0.12, -0.05]; Figure 4B). This 
result was consistent while controlling for APOE e4 allele carriership (Supplemental Table S4). 
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Figure 4. DunedinPACNI predicts accelerated hippocampal atrophy. A. Individualized trajectories of hippocampal 
atrophy in ADNI and UK Biobank. Warmer colors represent accelerated atrophy. B. Forest plot of associations 
between baseline DunedinPACNI scores and accelerated hippocampal atrophy in ADNI and UK Biobank. Error bars 
represent 95% confidence intervals and effect sizes. Abbreviations: mm3 = cubic millimeters. 
 
DunedinPACNI Predicts Frailty, Poor Health, Chronic Disease, and Mortality 
As a measure of aging derived from longitudinal assessments of multiple biomarkers, DunedinPACNI 
should capture instances of declining health across all organ systems, not just the brain. To test this 
hypothesis, we used the UK Biobank to map DunedinPACNI scores onto measures of frailty, subjective 
overall health, incident aging-related chronic diseases, and all-cause mortality. 
 
We used the Fried Frailty Index to quantify the degree of vulnerability to common stressors associated 
with aging-related decline in energy reserves and functioning. When treating index scores as a continuous 
measure ranging from 0 to 5 with higher scores indicating greater frailty51,52, we found that participants 
with faster DunedinPACNI were more frail (N=42,583; β=0.17, p<0.001, 95% CI:[0.16, 0.18]). Participants 
with faster DunedinPACNI also self-reported poorer overall health (N=42,235; β=-0.17, p<0.001, 95% CI:[-
0.18, -0.16]; Figure 5A), which predicts mortality even independently of objective health measures53. 
 
Similar patterns emerged when considering clinical diagnoses of chronic aging-related diseases including 
myocardial infarction, chronic obstructive pulmonary disease, dementia, and stroke. Participants with a 
lifetime prevalence of one of these chronic diseases had faster DunedinPACNI compared to those 
reporting no diagnoses (β=0.19, p<0.001, 95% CI: [0.16, 0.23]). Participants with a lifetime prevalence of 
two or more chronic diseases had faster DunedinPACNI than those with a single chronic disease (β=0.25, 
p<0.001, 95% CI: [0.12, 0.38] and those with no chronic disease (β=0.44, p<0.001, 95% CI: [0.31, 0.57]; 
Figure 5B). 
 
Extending beyond contemporaneous associations, we assessed whether faster DunedinPACNI at baseline 
predicted future myocardial infarction, chronic obstructive pulmonary disease, dementia, or stroke in UK 
Biobank participants who were diagnosis-free at the time of scanning (N=40,753). 827 participants 
reported a new diagnosis of at least one of these aging-related chronic diseases over a maximum follow-
up period of 9.7 years after scanning (i.e., baseline). Consistent with the above contemporaneous 
associations, healthy participants with faster DunedinPACNI at baseline were more likely to be later 
diagnosed with chronic aging-related diseases (HR=1.14, p<0.001, 95% CI: [1.05, 1.23]; Figure 5C), 
meaning those in the top 10% had an 18% or greater increased risk for developing a chronic disease 
compared to participants with average DunedinPACNI. 
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Figure 5. DunedinPACNI predicts frailty, poor health, multimorbidity, future chronic diseases, and mortality, and 
reflects social gradients of health inequities. A. Forest plot of absolute associations between DunedinPACNI and 
self-rated health and frailty in the UK Biobank. Error bars represent 95% confidence intervals. B. Group differences 
in DunedinPACNI scores according to lifetime number of aging-related chronic disease diagnoses including 
myocardial infarction, chronic obstructive pulmonary disease, dementia, and stroke in the UK Biobank. C. Survival 
curve of the relative proportion of disease-free UK Biobank participants at time of MRI who remained disease-free 
during the follow-up window, grouped by slow, average, and fast baseline DunedinPACNI scores. Of note, we 
excluded participants who had chronic disease prior to scanning from this analysis. D. Survival curve of the relative 
proportion of UK Biobank participants who remained alive during the follow-up window grouped by baseline 
DunedinPACNI scores. E. Group differences in DunedinPACNI according to education level among ADNI participants. 
F. Group differences in DunedinPACNI according to education level in the UK Biobank. For boxplots in B, E, and F, 
Center lines represent the median. Lower and upper hinges represent the 25th and 75th percentiles. Whiskers extend 
1.5 times the inter-quartile range from the hinges. Data beyond the whiskers are plotted as individual outliers. 
Abbreviations: ADNI = Alzheimer’s Disease Neuroimaging Initiative, HR = hazard ratio, SD = standard deviation. 
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Given the increased mortality rates amongst people with chronic aging-related diseases, we asked if 
baseline DunedinPACNI scores predicted all-cause mortality. Of the 42,583 UK Biobank participants 
included in our dataset, 757 died over the follow-up period after their baseline MRI scan. Participants with 
faster baseline DunedinPACNI scores died earlier (HR=1.32, p<0.001, 95% CI: [1.22, 1.43]; Figure 5D), 
meaning those in the top 10% were at least 41% more likely to die compared to participants with average 
DunedinPACNI. Taken together, these findings suggest that DunedinPACNI is useful for gauging general 
physical health and assessing risk for future chronic disease and death. 
 
DunedinPACNI Reflects Social Gradients of Health Inequities 
People who are less advantaged in their socioeconomic position experience a wide range of chronic 
diseases and earlier mortality54–56, and DunedinPACNI should reflect such gradients of health inequities. 
We used information about educational attainment and income to test this prediction. Faster 
DunedinPACNI was observed for participants who either had fewer years of formal education (ADNI: β=-
0.10, p<0.001, 95% CI: [-0.15, -0.05]; UK Biobank: β=-0.06, p<0.001, 95% CI: [-0.07, -0.05]) or lower income 
(UK Biobank: β=-0.09, p<0.001, 95% CI: [-0.10, -0.08]), reflecting the expected socioeconomic health 
gradient (Figure 5E-F). 
 
DunedinPACNI is Distinct from Brain Age Gap 
Lastly, we compared DunedinPACNI with existing age-deviation approaches for measuring aging using 
brain MRI data. Specifically, we compared effect sizes for DunedinPACNI from all of the aforementioned 
analyses in ADNI and UK Biobank with brain age gap generated using brainageR35. We selected this 
algorithm due to its high accuracy and test-retest reliability compared to other brain age gap algorithms57. 
Compared to brain age gap, the effect sizes for DunedinPACNI were similar or larger across measures of 
cognitive function, cognitive decline, brain atrophy, frailty, disease risk, mortality, and socioeconomic 
health gradients (Figure 6, full results in Supplemental Tables S2-S3, S5-S8). DunedinPACNI and brain age 
gap were only modestly correlated (ADNI: r=0.17, p <0.001; UK Biobank: r=0.31, p<0.001; Supplemental 
Figure S5). Commensurate with this low correlation, when we included both DunedinPACNI and brain age 
gap in a single model, each measure explained unique variance in clinical outcomes with only minor 
reductions in effect sizes. Moreover, using both DunedinPACNI and brain age gap together in a single 
model generally increased prediction of these outcomes (Supplemental Figure S6). For example, the 
combined hazard ratio of DunedinPACNI and brain age gap predicting mortality risk was 1.50 (95% CI: 
[1.36, 1.65]), compared to the independent hazard ratios of 1.32 for DunedinPACNI and 1.24 for brain age 
gap. 
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Figure 6. Comparison of DunedinPACNI and brain age gap associations with aging-related phenotypes. A. Forest 
plots of DunedinPACNI and brain age gap absolute effect sizes in ADNI and UK Biobank. B. Forest plots of 
DunedinPACNI and brain age gap hazard ratios in ADNI and UK Biobank. Error bars represent 95% confidence 
intervals. Lighter shades represent the effect size for each measure while controlling for the other measure (i.e., 
effect of DunedinPACNI when controlling for brain age gap, and vice versa). Abbreviations: ADAS-Cog = Alzheimer’s 
Disease Assessment Scale – Cognitive Subscale 13, CN = cognitively normal, DSST = Digit Symbol Substitution Task, 
FAQ = Functional Activities Questionnaire, HR = hazard ratio, Hipp. = hippocampus, MCI = mild cognitive impairment, 
MMSE = Mini-Mental State Exam, MoCA = Montreal Cognitive Assessment, RT = Reaction Time, RAVLT = Rey Auditory 
Visual Learning Test, Tower = Tower Rearranging, VM = Visual Memory, WM = Working Memory. 
 
DISCUSSION 
 
DunedinPACNI is an accurate and reliable measure of how fast a person is aging derived from a single 
brain MRI scan. Using data from ADNI and UK Biobank, we demonstrate that people with faster 
DunedinPACNI had not only worse cognitive and brain health (i.e., poorer cognition, faster hippocampal 
atrophy, and greater dementia risk) but also worse general health (i.e., greater frailty, poorer self-
reported health, greater risk of chronic disease and mortality). Across all analyses, the effect sizes for 
DunedinPACNI were similar or larger than the effect sizes for brain age gap, an existing age-deviation 
measure derived from the same structural MRI data. Moreover, DunedinPACNI and brain age gap were 
only weakly correlated, and DunedinPACNI accounted for incremental variance in aging-related health 
outcomes. While weak correlations between neuroimaging-based measures of aging may appear 
surprising, they mirror findings that different epigenetic clocks are also weakly correlated, and multiple 
clocks are useful for predicting disease and death58,59. Aging remains a construct in search of measurement 
tools4,5, and DunedinPACNI represents a “next-generation” measure of aging that is distinct from existing 
approaches. 
 
DunedinPACNI is not without limitations. First, the Dunedin Study, ADNI, and UK Biobank consist of data 
collected primarily from participants of European ancestry. Furthermore, ADNI and UK Biobank may over 
sample participants from higher socioeconomic backgrounds60. Neuroimaging-based predictive models 
sometimes perform poorly when tested on people who demographically differ from the training sample 
(e.g., low socioeconomic status and non-White people)61. More generally, there is a growing awareness 
of the need for improved representativeness in neuroimaging research62,63. Notably, we found that 
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associations with DunedinPACNI were consistent when tested among low-income or non-White 
participants in the UK Biobank (Supplemental Tables S9-S10). The findings in ADNI and UK Biobank 
demonstrate that the predictive utility of DunedinPACNI generalizes to older adults. A priority for future 
work is to further evaluate the generalizability of DunedinPACNI to older adults from different ethnic and 
socioeconomic backgrounds. Second, DunedinPACNI only uses structural brain measures derived from a 
T1-weighted MRI scan. We chose this strategy because these scans are collected in nearly every MRI study, 
thereby maximizing the potential adoption of DunedinPACNI. It is possible that the performance accuracy 
reported here could be improved by including additional structural and/or functional MRI measures (e.g., 
white matter microstructural integrity from diffusion weighted images, BOLD signal from T2*-weighted 
images). Third, by design, DunedinPACNI is a measure of the longitudinal rate of the aging of the body 
derived from a single MRI scan and is not designed to replace longitudinal measurement of brain aging 
through repeated MRI assessments. Fourth, DunedinPACNI is estimated through observed correlations 
between measures of brain structure and longitudinal aging, which could reflect multiple causal pathways. 
For example, faster aging of non-brain organs might cause poorer brain health or vice versa. Alternatively, 
both may be driven by a third factor. Fifth, although we found robust associations with aging phenotypes 
across both ADNI and UK Biobank, we generally observed larger effect sizes in ADNI. This could suggest 
that DunedinPACNI is especially sensitive to dysfunction among patients with neurodegenerative 
diseases. Further evaluation is needed to establish the degree to which DunedinPACNI is sensitive to 
individual organ systems. 
 
Several unique features of the Dunedin Study contribute advantages to DunedinPACNI compared to other 
aging biomarkers. First, DunedinPACNI was developed in a cohort of people all born in the same year and 
studied at the same ages throughout their lives, thereby avoiding biases that are introduced by differences 
in historical exposures across generations and across time. Second, DunedinPACNI is trained on 19 
biomarkers that were each assessed over two decades and thus is not influenced by short-term illnesses 
that can cause aberrant biomarker signals at a single assessment. Third, DunedinPACNI was derived from 
participants followed from birth to age 45 before the onset of chronic, aging-related diseases that cause 
divergence from typical trajectories of aging. Fourth, because the Dunedin Study cohort is population-
representative with very low attrition and mortality rates, DunedinPACNI does not suffer from 
oversampling of healthy volunteers, attrition bias (i.e., people with worse health being more likely to drop 
out), or survivor bias (i.e., people with worse health dying earlier). Indeed, our results align with prior 
research showing that DunedinPACE, which like DunedinPACNI was trained on the longitudinal Pace of 
Aging, is associated with dementia, morbidity, and mortality20,22,23. Our results, alongside the fast-growing 
literature on DunedinPACE, suggest that these unique design characteristics of the Dunedin Study make 
it a powerful training sample for longitudinal aging biomarkers. 
 
The scope of geroscience has rapidly expanded with the proliferation of -omic clocks that can measure 
how fast people age10. DunedinPACNI is poised to further this growth by allowing individual differences 
in the rate of longitudinal aging to be estimated from a single noninvasive MRI scan that can be collected 
in just a few minutes. Indeed, the requisite MRI data to estimate DunedinPACNI have already been 
collected in many psychiatric, neurologic, and brain-health cohorts, from tens of thousands of research 
participants across the lifespan and around the world. DunedinPACNI offers an opportunity to enrich such 
studies and deepen understanding of the causes of individual differences in the rate of longitudinal aging, 
including genetics64, childhood adversities65, environmental exposures (e.g., lead66,67), and lifestyle factors 
(e.g., physical inactivity, social isolation68). DunedinPACNI may also be adopted as a surrogate endpoint 
to accelerate our ability to develop, prioritize, and evaluate potential anti-aging interventions that slow 
aging and prevent disease69,70. The algorithm for DunedinPACNI will be made publicly available to the 
research community to facilitate these and other future research directions.  
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METHODS 
 

The premise and analysis plan for this study were pre-registered (link: https://rb.gy/b9x4u6). All analyses 
and code were checked for accuracy by an independent analyst. Analyses were conducted on data 
collected through the Dunedin Study, Human Connectome Project, Alzheimer’s Disease Neuroimaging 
Initiative, and UK Biobank. Details for each study and dataset are described below. 
 

DATA SOURCES 
Dunedin Study 
Participants are members of the Dunedin Study, a longitudinal investigation of health and behavior in a 
representative birth cohort. The 1,037 participants (91% of eligible births, 48% female) were all people 
born between April 1972 and March 1973 in Dunedin, New Zealand, who were residents in the province 
and who participated in the first assessment at age 3 years19. The cohort represented the full range of 
socioeconomic status in the general population of New Zealand’s South Island and, as adults, matches the 
New Zealand National Health and Nutrition Survey on key adult health indicators (e.g., body mass index, 
smoking, and general practitioner visits) and the New Zealand Census of citizens of the same age on 
educational attainment19,71. The overall cohort is primarily New Zealand European/White (7.5% self-
identifying as Māori).  
 
General assessments were performed at birth as well as ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, and 38 
years; and, most recently (completed April 2019), at age 45 years, when 938 of the 997 living Study 
members (94.1%) participated. At each assessment, Study members were brought to the Dunedin Study 
Research Unit at the University of Otago for interviews and examinations. In addition, staff provided 
standardized ratings, informant questionnaires were sent to people who the Study members nominated 
as people who knew them well, and administrative records were searched. The Dunedin Study was 
approved by the University of Otago Ethics Committee and Study members gave written informed consent 
before participating. 
 
MRI 
As a component of the age 45 assessments, Study members were scanned using a Siemens MAGNETOM 
Skyra (Siemens Healthcare GmbH) 3T scanner equipped with a 64-channel head/neck coil at the Pacific 
Radiology Group imaging center in Dunedin, New Zealand. High resolution T1-weighted images were 
obtained using an MP-RAGE sequence with the following parameters: TR=2400 ms; TE=1.98 ms; 208 
sagittal slices; flip angle, 9°; FOV, 224 mm; matrix =256×256; slice thickness=0.9 mm with no gap (voxel 
size 0.9×0.875×0.875 mm); and total scan time=6 min and 52 s. 3D fluid-attenuated inversion recovery 
(FLAIR) images were obtained with the following parameters: TR=8000 ms; TE=399 ms; 160 sagittal slices; 
FOV=240 mm; matrix=232×256; slice thickness=1.2 mm (voxel size 0.9×0.9×1.2 mm); and total scan 
time=5 min and 38 s. Additionally, a gradient-echo field map was acquired with the following parameters: 
TR=712 ms; TE=4.92 and 7.38 ms; 72 axial slices; FOV=200 mm; matrix=100×100; slice thickness=2.0 mm 
(voxel size 2 mm isotropic); and total scan time=2 min and 25 s. Of the 938 Study members seen at Phase 
45, 63 declined to participate in MRI scanning, meaning 875 Study members completed the MRI scanning 
protocol. Scanned Study members did not differ significantly from other living participants in terms of 
childhood neurocognitive functioning or childhood SES (see attrition analysis in the Supplemental Figures 
S1-S2). Of these 875 Study members for whom data was available, 4 were excluded due to major 
incidental findings or previous injuries (e.g. large tumors or extensive damage to the brain/skull), 9 due to 
missing FLAIR or field map scans, 1 due to poor surface mapping yielding, and 1 due to missing the Pace 
of Aging variable. This yielded a final training sample of 860 Study members (see Supplemental Figure S7 
for inclusion details).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2024. ; https://doi.org/10.1101/2024.08.19.608305doi: bioRxiv preprint 

https://rb.gy/b9x4u6
https://doi.org/10.1101/2024.08.19.608305
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 
Structural MRI data were analyzed using the Human Connectome Project (HCP) minimal preprocessing 
pipeline as detailed elsewhere72. Briefly, T1-weighted and FLAIR images were processed through the 
PreFreeSurfer, FreeSurfer, and PostFreeSurfer pipelines. T1-weighted and FLAIR images were corrected 
for readout distortion using the gradient echo field map, coregistered, brain-extracted, and aligned 
together in the native T1 space using boundary-based registration73. Images were then processed with a 
custom FreeSurfer recon-all pipeline that is optimized for structural MRI with a higher resolution than 1 
mm isotropic. 
 
Pace of Aging 
Participants’ pace of biological aging was measured as changes in 19 biomarkers of cohort members’ 
cardiovascular, metabolic, pulmonary, kidney, immune and dental systems across ages 26, 32, 38, and 45 
years. This measure quantifies participants’ rate of aging in year-equivalent units of physiological decline 
per chronological year. The average participant experienced 1 year of physiological decline per year, a 
mean (SD) Pace of Aging of 1 (0.3)2 . See the Statistical Analysis section for more details. 
 
Physical Functioning 
One-legged balance was measured using the Unipedal Stance Test as the maximum time achieved across 
three trials of the test with eyes closed76–78. Gait speed (meters per second) was assessed with the 6-m-
long GAITRite Electronic Walkway (CIR Systems, Inc) with 2-m acceleration and 2-m deceleration before 
and after the walkway, respectively. Gait speed was assessed under 3 walking conditions: usual gait speed 
(walk at a normal pace from a standing start, measured as a mean of 2 walks) and 2 challenge paradigms, 
dual-task gait speed (walk at a normal pace while reciting alternate letters of the alphabet out loud, 
starting with the letter “A,” measured as a mean of 2 walks) and maximum gait speed (walk as fast as 
safely possible, measured as a mean of 3 walks). Gait speed was correlated across the 3 walk conditions75. 
To increase reliability and take advantage of the variation in all 3 walk conditions (usual gait and the 2 
challenge paradigms), we calculated the mean of the 3 highly correlated individual walk conditions to 
generate our primary measure of composite gait speed. The step in place test was measured as the 
number of times the right knee was lifted to mid-thigh height (measured as the height half-way between 
the knee cap and the iliac crest) in 2 minutes at a self-directed pace80. Chair rises were measured as the 
number of stands with no hands completed in 30 seconds from a seated position79. Handgrip strength was 
measured for each hand (elbow held at 90°, upper arm held tight against the trunk) as the maximum value 
achieved across three trials using a Jamar digital dynamometer80,81. Analyses using handgrip strength 
controlled for BMI. Visual-motor coordination was measured as the time to completion of the Grooved 
Pegboard Test. Scores were reversed so that higher values corresponded to better performance. Physical 
limitations were measured with the RAND 36-Item Health Survey 1.0 physical functioning scale. Responses 
(“limited a lot”, “limited a little”, “not limited at all”) assessed difficulty with completing various activities 
(e.g., climbing several flights of stairs, walking more than 1 km, participating in strenuous sports). Scores 
were reversed to reflect physical limitations so that a high score indicates more limitations. 
 
Subjective Health and age appearance 
We obtained reports about Study members’ health and age appearance from three sources: self-reports, 
informant impressions, and staff impressions. We obtained reports about Study members’ age 
appearance from three sources: self-reports, informant impressions, and staff impressions. Self-reports – 
We asked the Study members about their own impressions of how old they looked, “Do you think you 
LOOK older, younger, or about your actual age?” Response options were younger than their age, about 
their actual age, or older than their age. We also asked Study members to rate their age perceptions in 
years, “How old do you feel?” Informant impressions - Informants who knew a Study member well (94% 
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response rate) were asked: “Compared to others their age, do you think he/she (the Study member) looks 
younger or older than others their age? Response options were: “much younger”, “a bit younger”, “about 
the same”, “a bit older”, or “much older”. Staff impressions - Four members of the Dunedin Study Unit 
staff completed a brief questionnaire describing each study member. To assess age appearance, staff used 
a 7-item scale to assign a “relative age” to each Study member (1=young looking, 7=old looking). 
Correlations between self-, informant-, and staff-ratings ranged from 0.34–0.52. All reporters rated the 
Study member’s general health using the following response options: excellent, very good, good, fair, or 
poor. Correlations between self-, informant-, and staff-ratings ranged from r=0.48–0.55. 
 
Cognitive Functioning 
The Wechsler Adult Intelligence Scale-IV (WAIS-IV) was administered at age 45, yielding adult IQ. In 
addition to full-scale IQ, the WAIS-IV yields indexes of four specific cognitive function domains: Processing 
Speed, Working Memory, Perceptual Reasoning, and Verbal Comprehension. The Wechsler Intelligence 
Scale for Children–Revised (WISC–R) was administered at ages 7, 9, and 11 years. To increase baseline 
reliability the three scores were averaged yielding childhood IQ. We measured cognitive decline by 
studying adult IQ scores after controlling for childhood IQ scores. We focus on change in overall IQ given 
evidence that aging-related slopes are correlated across all cognitive functions, indicating that research 
on cognitive decline may be best focused on a highly reliable summary index, rather than focused on 
individual functions74. 
 
Facial Age 
Facial Age was based on two measurements of perceived age by an independent panel of eight people. 
First, age range was assessed by an independent panel of four raters, who were presented with 
standardized (non-smiling) digital facial photographs of Study members when they were 45 years old. 
Raters, who were kept blind to the actual age of Study members, used a Likert scale to categorize each 
Study member into a 5-year age range (i.e., from 20–24 years old up to 70+ years old). Interrater reliability 
was 0.77. Scores for each Study member were averaged across all raters. Second, relative age was 
assessed by a different panel of four raters, who were told that all photos were of people aged 45 years 
old. These raters then used a 7-item Likert scale to assign a “relative age” to each participant (i.e., 1 = 
“young looking,” to 7 = “old looking”). Interrater reliability was 0.79. The measure of perceived age at 45 
years (i.e., Facial Age) was derived by standardizing and averaging age range and relative age scores. 
 
Human Connectome Project (HCP) 
The HCP is a publicly available dataset that includes 1,206 participants with extensive MRI data49. HCP 
data access is managed by the WU-Minn HCP consortium. All participants provided informed consent. 
Specifically, we used data from 45 participants who completed the scan protocol a second time (with a 
mean interval between scans of approximately 140 days) allowing for calculation of test-retest reliability. 
All participants were free of current psychiatric or neurologic illness and were between 25 and 35 years 
of age. 
 
MRI 
Structural MRI data were analyzed using the Human Connectome Project minimal preprocessing 
pipeline72. Briefly, T1-weighted images were processed using a custom FreeSurfer recon-all pipeline that 
is optimized for structural MRI with a higher resolution than 1 mm isotropic. Details on HCP MRI data 
acquisition have been described elsewhere72. 
 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
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The primary goal of ADNI is to test whether serial MRI, PET, other biological markers, and clinical and 
neuropsychological assessments can be combined to measure the progression of neurodegeneration in 
participants with mild cognitive impairment, Alzheimer’s disease, and cognitively normal older adults 
(adni.loni.usc.edu)82. For further information, see adni.loni.usc.edu. Cognitive and diagnostic data were 
downloaded on June 12th, 2022. MRI data curated from the Alzheimer’s Disease Sequencing Project 
(ADSP) collection were downloaded on December 7th, 2023. ADNI was approved by the Institutional 
Review Boards of all the participating institutions. All participants provided written informed consent. 
ADNI sample demographic information can be found in Supplemental Table S11. 
 
MRI 
T1-weighted scans were collected using either 1.5T or 3T scanners. MRI acquisition parameters varied 
across ADNI sites and waves; however, the targets for acquisition were isotropic 1mm3 voxels.83. Raw T1-
weighted images were processed using longitudinal FreeSurfer version 6.0. Scans were excluded for low 
quality if they did not have a QC rating of ‘Pass’ from ADNI investigators or if segmentation failed visual 
inspection. Scans were also excluded if participants were missing demographic data such as age, sex, or 
diagnosis (Supplemental Figure S8). Further details on MRI methods in ADNI can be found at 
adni.loni.usc.edu. 
 
Cognitive and Behavioral Functioning 
ADNI participants completed several cognitive and behavioral assessments at the time of scanning. The 
Alzheimer’s Disease Assessment Scale – Cognitive Subscale 13 (ADAS-Cog) is a structured scale that 
evaluates memory, reasoning, language, orientation, ideational praxis, and constructional praxis84. 
Delayed Word Recall and Number Cancellation are included in addition to the 11 standard ADAS Items85. 
The test is scored for errors, ranging from 0 (best performance) to 85 (worst performance). The Mini 
Mental State Exam (MMSE) is a screening instrument that evaluates orientation, memory, attention, 
concentration, naming, repetition, comprehension, and ability to create a sentence and to copy 2 
overlapping pentagons86. The MMSE is scored as the number of correctly completed items ranging from 
0 (worst performance) to 30 (best performance). The Montreal Cognitive Assessment (MoCA) is designed 
to detect people at the MCI stage of cognitive dysfunction87. The scale ranges from 0 (worst performance) 
to 30 (best performance). The Rey Auditory Verbal Learning Test is a list learning task which assesses 
learning and memory. On each of 5 learning trials, 15 unrelated nouns are presented orally at the rate of 
1 word per second and immediate free recall of the words is elicited. After a 30-minute delay filled with 
unrelated testing, free recall of the original 15-word list is elicited. Both immediate recall and the percent 
forgotten are used. The Logical Memory tests I and II (Delayed Paragraph Recall) is from the Wechsler 

Memory Scale–Revised. Free recall of 1 short story is elicited immediately after being read aloud to the 
participant and again after a 30-minute delay. The total bits of information recalled after the delay interval 
(maximum score = 25) are analyzed. The Trail Making Test, Part B, consists of 25 circles, either numbered 
(1 through 13) or containing letters (A through L). Participants connect the circles while alternating 
between numbers and letters (e.g., A to 1; 1 to B; B to 2; 2 to C). Time to complete (300 seconds maximum) 
is the primary measure of interest. The Functional Assessment Questionnaire (FAQ) is a self-report 
measure of instrumental activities of daily living such as preparing meals, performing chores, keeping a 
schedule, and traveling outside of one’s neighborhood88. Each unique cognitive testing measure was 
paired with the participant’s most temporally proximate brain scan within 6 months of cognitive testing. 
 
Cognitive Status 
ADNI participants were classified into cognitively normal (CN), mild cognitive impairment (MCI), or 
dementia groups by ADNI study physicians based on subjective memory complaints, multiple 
neurocognitive and behavioral assessment scores, and level of impairment in activities of daily living. 
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Complete diagnostic criteria can be found at adni.loni.usc.edu. Each individual scan was categorized 
according to the most temporally proximate cognitive diagnosis received by that participant. 
 
Education 
Education level was measured according to self-reported years of education. For the purposes of 
visualization in Figure 5E, participants were grouped according to the following thresholds: Less than high 
school: < 12 years; High school: 12 years; Some college: 12-15 years; College: 16 years; More than college: 
>16 years. 
 
UK Biobank 
The UK Biobank is a United Kingdom population-based prospective study of 502,486 participants between 
the ages of 40 and 69 at baseline assessment89. We analyzed data from 42,583 participants who 
underwent brain MRI. Data used in these analyses were downloaded in April 2023. The UK Biobank was 
approved by the North West Multi-centre for Research Ethics Committee. All participants provided 
written informed consent. UK Biobank sample demographic information can be found in Supplemental 
Table S11. 
 
MRI 
MRI methods for the UK Biobank have been described in detail elsewhere90. Briefly, MRI data were 
collected using 3 identical 3T Siemens Skyra scanners with a 32-channel Siemens head coil. T1-weighted 
images were obtained using a 3D MP-RAGE with the following parameters: TR = 2000 ms; TI = 880 ms; 
208 sagittal slices, matrix =256×256; slice thickness = 1 mm with no gap; and total scan time = 4 min and 
52 s. Our study made use of imaging-derived phenotypes generated by an image-processing pipeline 
developed and run on behalf of the UK Biobank90. As part of this pipeline, raw T1-weighted images were 
processed using the cross-sectional FreeSurfer version 6.0. All brain measures used in the cross-sectional 
analyses presented here were derived from the outputs of this FreeSurfer pipeline. We excluded UK 
Biobank participants with very low signal-to-noise ratio and highly unusual summary morphometrics 
indicative of low-quality reconstruction (Supplemental Figure S9).  
 
To analyze the longitudinal UK Biobank MRI data, we reprocessed all T1-weighted images using the 
longitudinal FreeSurfer version 6.0 pipeline91. This allowed us to avoid the known biases that can be 
introduced by different processing stages of the longitudinal pipeline on different hardware and software 
environments. Specifically, we reprocessed both time points of each participant’s T1-weighted scans with 
the cross-sectional recon-all pipeline92. Then we built an unbiased within-subject template93 using robust, 
inverse consistent registration94 and reprocessed each T1-weighted scan through the automated 
longitudinal pipeline91. 
 
Cognitive Functioning 
UK Biobank participants completed a battery of cognitive tests at the time of MRI. We investigated 
cognitive functioning using the following measures: Reaction Time (Field ID = 20023), Fluid Intelligence 
(Field ID = 20016), Numeric Memory (Field ID = 4282), Trails A (Field ID = 6348) and B (Field ID = 6350), 
Symbol Digit Substitution (Field ID = 23324), Tower Rearranging (Field ID = 21004), and Matrix Completion 
(Field ID = 6373). The details of these cognitive tests have been described elsewhere95. 
 
Frailty and Self-Reported Health 
To further investigate aging-related health, we used the Fried Frailty Index52. Briefly, the Fried Frailty Index 
is based on meeting criteria for declining functioning across five domains: unintentional weight loss, 
exhaustion, weakness, physical inactivity, and slow walking speed. Index scores range from 0 to 5 with 
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higher scores indicating greater frailty96. During their imaging visit, UK Biobank participants were also 
asked to rate their overall health as “Poor,” “Fair,” “Good,” or “Excellent.” We used these ratings to 
investigate self-reported overall health (Field ID = 4548). 
 
Disease and Mortality Records 
To assess the influence of DunedinPACNI on aging-related disease and mortality risk in UK Biobank we 
used variables from algorithmically defined health outcomes. Briefly, algorithmically defined outcomes 
are generated by combining information from baseline assessments (self-reported medical conditions, 
operations, and medications) with linked data from hospital admissions and death registries. Due to the 
relatively small number of aging-related disease diagnoses at follow-up, we defined aging-related 
morbidity as being diagnosed with myocardial infarction (Field ID = 42000), chronic obstructive pulmonary 
disease (Field ID = 42016), dementia (Field ID = 42018), or stroke (Field ID = 42006). Furthermore, we 
defined risk of chronic disease as the emergence or one or more of these diagnoses among participants 
who were healthy at the time of scanning (i.e., baseline). Mortality was quantified during follow-up from 
death records (Field ID = 40000). 
 
Education, Income, and Ethnicity 
To test the association between DunedinPACNI and socioeconomic gradients of health, we tested whether 
UK Biobank participants differed in DunedinPACNI scores as a function of educational attainment and 
household income. We grouped participants into three categories according to their self-reported 
educational qualifications (Field ID = 6138) following prior work97. Specifically, these groups were: high 
(college or university degree), medium (A/AS levels or equivalent or O/levels/GCSEs or equivalent), and 
low (none of these). We also tested whether UK Biobank participants differed in DunedinPACNI scores as 
a function of household income (Field ID = 738). 
 
We also conducted sensitivity analyses while restricting the UK Biobank sample to either only low income 
or only non-White participants. We considered participants low income if they reported making < £18,000 
per year in household income. We considered participants to be non-White if they did not report their 
ethnic background (Field ID = 21000) as “Any other white background,” “British,” “Do not know,” “Irish,” 
“Prefer not to answer,” or “White.” 
 

STATISTICAL ANALYSES 
 
Pace of Aging 
The derivation of the Pace of Aging has been described elsewhere1,2. Briefly, we measured a panel of the 
following 19 biomarkers (Figure 1A) at ages 26, 32, 38, and 45: body mass index (BMI), waist-hip ratio, 
glycated hemoglobin, leptin, blood pressure (mean arterial pressure), cardiorespiratory fitness (VO2max), 
forced vital capacity ratio (FEV1/FVC), forced expiratory volume in one second (FEV1), total cholesterol, 
triglycerides, high-density lipoprotein (HDL), lipoprotein(a), apolipoprotein B100/A1 ratio, estimated 
glomerular filtration rate (eGFR), blood urea nitrogen (BUN), high sensitivity C-reactive protein (hs-CRP), 
white blood cell count, mean periodontal attachment loss (AL), and the number of dental-caries-affected 
tooth surfaces (tooth decay). To calculate each Study members Pace of Aging, we first transformed the 
biomarker values to a standardized scale. For each biomarker at each wave, we standardized values 
according to the age-26 distribution. Next, we calculated each Study member’s slope for each of the 19 
biomarkers using a mixed-effects growth model that regressed the biomarker’s level on age. Finally, we 
combined information from the 19 slopes of the biomarkers using a unit-weighting scheme. We calculated 
each Study member’s Pace of Aging as the sum of age-dependent annual changes in biomarker Z-scores. 
Biomarker standardization was performed separately for men and women. 
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DunedinPACNI 
A schematic of DunedinPACNI model development can be found in Figure 1. We trained an elastic net 
regression model to estimate the Pace of Aging from structural neuroimaging phenotypes in 860 Dunedin 
Study members at age 45 (for attrition analysis and inclusion criteria see Supplemental Figures S1-S2, S7). 
We selected 315 variables as predictors from the following categories: regional cortical thickness (CT), 
regional cortical surface area (SA), regional cortical gray matter volume (GMV), regional cortical gray-
white matter signal intensity ratio (GWR), and ‘ASEG’ volumes (i.e., regional subcortical gray matter 
volumes, ventricular volumes, and bilateral volume of white matter hypointensities). All cortical data were 
parcellated according to the Desikan-Killainy Atlas98. Four phenotypes from the ‘ASEG’ volumes were 
excluded due to insufficient variance in the Dunedin Study (left and right white matter hypointensities, 
left and right non-white matter hypointensities). Model training was performed using the caret package 
in R. We conducted a grid search across a range of a and l values. We used 100 repetitions of 10-fold 
cross-validation to estimate model performance in held-out participants. The effect of sex was regressed 
from the Pace of Aging prior to model training. To prevent information leak during cross-validation, we 
regressed sex from each training set and applied the resulting beta weights to each test set. This approach 
ensured that our model only used information from the training set, including covariate regression, when 
calculating predictions in each test set. We selected optimal tuning parameters according to highest 
variance explained and lowest mean absolute error. The optimal tuning parameters were a = 0.214 and 
l = 0.100. Using these parameters, we fit the model to the entire N=860 sample. The raw elastic net 
regression model weights can be found in Supplemental Table S12.  
 
To generate DunedinPACNI scores in HCP, ADNI, and UK Biobank participants, we applied the regression 
weights from the DunedinPACNI model to FreeSurfer-derived phenotypes within each dataset and 
summed the products and model intercept. In ADNI and UK Biobank, DunedinPACNI scores were 
correlated with chronological age (ADNI: r=0.37; UK Biobank: r=0.50; Supplemental Figure S10). 
 
In addition, we conducted the same procedure again without GWR as this measure is not always 
distributed in public datasets. We observed slightly reduced model accuracy when GWR was not included. 
DunedinPACNI estimates without GWR phenotypes showed excellent test re-test reliability in HCP. 
DunedinPACNI estimates were similar with and without GWR phenotypes in ADNI and UK Biobank (see 
Supplemental Figure S11 for more details). 
 
Brain Age Gap 
We submitted raw T1-weighted images from ADNI and UK Biobank to the publicly available brainageR 
algorithm. This model, which has been described in detail elsewhere99, was selected because it generates 
the most reliable estimates amongst published algorithms57. Briefly, brainageR is estimated by first 
segmenting and normalizing T1-weighted images using SPM12. Next, coefficients derived from a Gaussian 
Process regression model predicting chronological age in a training dataset (N=2,001) are applied to 
morphometric features from brain segmentations to predict participants’ chronological age. Brain age gap 
was subsequently estimated by subtracting actual chronological age from predicted age99. Of note, 15 
scans failed the brain age gap pipeline (14 failed visual inspection of segmentation, 1 error computing 
predicted age). These scans were excluded from all brain age gap analyses, including comparative analyses 
with DunedinPACNI. 
 
Dunedin Study Validation Analyses 
To first test the validity of DunedinPACNI within the Dunedin Study training sample, we tested for linear 
associations between DunedinPACNI scores and one-legged balance, gait speed, step in place, chair 
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stands, grip strength, visual-motor coordination, subjective physical limitations, subjective health, 
cognitive function, child-to-adult cognitive decline, and facial aging while controlling for sex. We 
compared these effect sizes to associations between each of these measures and the original, 20-year 
Pace of Aging. 
 
Test-Retest Reliability 
We used the HCP dataset to assess the test-retest reliability of DunedinPACNI. Reliability was quantified 
using a two-way mixed-effects ICC (3,1) with session modeled as a fixed effect, subject as a random effect, 
and test-retest interval as an effect of no interest100. 
 
Cognitive and Physical Functioning 
We first used linear regression models to test for associations between DunedinPACNI and scores on tests 
of cognition, physical function, and health in ADNI and UK Biobank. All analyses controlled for age and 
sex. In ADNI, we calculated robust standard errors to account for non-independence from repeated 
observations. In addition, we conducted a sensitivity analysis while controlling for APOE e4 carriership, 
which conveys genetic risk for AD. We also tested the standardized differences in DunedinPACNI scores 
between three groups based on cognitive status: cognitively normal (CN), mild cognitive impairment 
(MCI), and dementia. All group difference comparisons controlled for age and sex. We again calculated 
robust standard errors to account for non-independence and conduced a sensitivity analysis while 
controlling for APOE e4 carriership. We repeated these analyses with brain age gap. Of note, when 
conducting analyses on the combined effects of DunedinPACNI and brain age gap on cognitive outcomes 
in ADNI, we restricted the sample to the first timepoint of each measure. This included only one 
observation per participant, allowing us to more easily combine effect sizes and confidence intervals. 
 
Dementia Survival Analysis 
We conducted a Cox-proportional hazard regression using ADNI participants’ baseline DunedinPACNI 
scores to predict their probability of cognitive decline or clinically conversion to dementia during the 
follow-up window. Conversion among cognitively normal participants was defined as having a diagnosis 
of CN at baseline but a diagnosis of MCI or dementia at the end of follow-up. Conversion among MCI 
participants was defined as having a diagnosis of MCI at baseline and a diagnosis of dementia by the end 
of follow-up. Participants who had a baseline diagnosis of dementia or transitioned from MCI to CN were 
not included in this analysis. The analysis controlled for sex, age at baseline, and length of observation 
window. We investigated the influence of AD genetic risk on these results by conducting all analyses while 
additionally controlling for APOE e4 carriership. We repeated these analyses for brain age gap. 
 
Prediction of Hippocampal Atrophy Rates 
We used repeated MRI measurements from the ADNI (N = 1,302) and UK Biobank (N = 4,628) to generate 
estimates of change in hippocampal gray matter volume. We ran longitudinal ComBat on ADNI MRI data 
to remove differential scanner effects101. Next, using all available timepoints for each participant, we 
generated multilevel linear models for bilateral hippocampal volume with random effects for both 
participant and age. Using these models, we derived trajectories to track change in hippocampal gray 
matter volume for each participant. We then tested whether each participant’s baseline DunedinPACNI 
scores could predict their subsequent rate of hippocampal atrophy. These analyses controlled for age, 
sex, and length of observation period. We investigated the influence of AD genetic risk on these results 
by conducting these analyses while additionally controlling for APOE e4 carriership. We repeated these 
analyses for brain age gap. 
 
Morbidity and Mortality Survival Analyses 
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To investigate the association between DunedinPACNI and morbidity, we used UK Biobank data to 
calculate the standardized differences in DunedinPACNI scores between three groups based on number 
of lifetime chronic disease diagnosis (0, 1, 2+). Next, we conducted a Cox-proportional hazard regression 
using UK Biobank participants’ baseline DunedinPACNI scores to predict the onset of a chronic aging-
related disease (N=827 emergent diagnoses: myocardial infarction, chronic obstructive pulmonary 
disease, dementia, or stroke) in participants who had never previously received any of these diagnoses at 
the time of scanning (N=40,753). Similarly, to investigate the association between DunedinPACNI and 
mortality we conducted a Cox-proportional hazard regression using UK Biobank participants' baseline 
DunedinPACNI scores to predict death (N=757 deaths). Both models controlled for baseline age, time to 
onset, and sex. We repeated these analyses for brain age gap. 
 
Socioeconomic Inequality Analyses 
To investigate whether DunedinPACNI reflected gradients of socioeconomic inequality56, we first tested 
for linear relationships between DunedinPACNI and years of education in ADNI and UK Biobank. We also 
tested for a linear relationship between DunedinPACNI and household income in UK Biobank. These 
analyses controlled for sex and age. In ADNI, we included only the first MRI observation per participant.  
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DATA AVAILABILITY 
Dunedin Study data is available via managed access at https://sites.duke.edu/moffittcaspiprojects/data-
use-guidelines/. The Human Connectome Project data are publicly available at 
http://www.humanconnectomeproject.org/data/. Alzheimer’s Disease Neuroimaging Initiative data are 
publicly available at https://adni.loni.usc.edu/. Researchers can apply to access all UK Biobank data at 
https://ams.ukbiobank.ac.uk/ams/. 
 
CODE AVAILABILITY 
The DunedinPACNI algorithm will be made available for download upon publication. All scripts used in the 
analyses presented here are available at https://github.com/etw11/WhitmanElliott_2024. 
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