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Abstract

Introduction: Predicting the postoperative neurological function of cervical

spondylotic myelopathy (CSM) patients is generally based on conventional magnetic

resonance imaging (MRI) patterns, but this approach is not completely satisfactory.

This study utilized radiomics, which produced advanced objective and quantitative

indicators, and machine learning to develop, validate, test, and compare models for

predicting the postoperative prognosis of CSM.

Materials and methods: In total, 151 CSM patients undergoing surgical treatment and

preoperative MRI was retrospectively collected and divided into good/poor outcome

groups based on postoperative modified Japanese Orthopedic Association (mJOA)

scores. The datasets obtained from several scanners (an independent scanner) for the

training (testing) cohort were used for cross-validation (CV). Radiological models based

on the intramedullary hyperintensity and compression ratio were constructed with

14 binary classifiers. Radiomic models based on 237 robust radiomic features were con-

structed with the same 14 binary classifiers in combination with 7 feature reduction

methods, resulting in 98 models. The main outcome measures were the area under the

receiver operating characteristic curve (AUROC) and accuracy.

Results: Forty-one (11) radiomic models were superior to random guessing during CV

(testing), with significant increased AUROC and/or accuracy (PAUROC < .05 and/or

Paccuracy < .05). One radiological model performed better than random guessing dur-

ing CV (Paccuracy < .05). In the testing cohort, the linear SVM preprocessor + SVM,

the best radiomic model (AUROC: 0.74 ± 0.08, accuracy: 0.73 ± 0.07), over-

performed the best radiological model (PAUROC = .048).

Conclusion: Radiomic features can predict postoperative spinal cord function in CSM

patients. The linear SVM preprocessor + SVM has great application potential in

building radiomic models.
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1 | INTRODUCTION

Cervical spondylotic myelopathy (CSM), an age-related degenerative

disease that is common worldwide,1 is mainly caused by the compres-

sion of the spinal cord and may possibly lead to disability.2–4 Surgery to

reduce direct compression of the spinal cord might alleviate disease

progression1; however, due to individual differences, some patients do

not benefit from surgery.5 Prognostic prediction is important because it

affects subsequent treatment decision making. Currently, prognosis is

generally based on magnetic resonance imaging (MRI) with a detailed

macrostructural evaluation of the spinal cord.6 Unfortunately, the use

of conventional MRI indicators (eg, increased intensity signal [ISI]) to

predict CSM outcomes has been controversial5,7 because of their sub-

jectivity or the insufficient information contained therein.

Radiomics, which makes full use of medical images with objective

measurements, has contributed greatly to the study of predictive

models.8,9 Machine learning (ML) effectively utilities radiomic features

and has the potential to build effective and reliable models. Recent

studies revealed that radiomics and corresponding models demon-

strated advantages in multiple tumor diseases,10–12 however, their

application in nontumor diseases are still in the initial stage. To date,

radiomic studies in CSM are still lacking.

In this article, we constructed radiological and radiomic models

based on classifiers with/without feature reduction methods and vali-

dated, tested, and compared these models. We aimed to utilize preop-

erative MRI and identify the optimal model to predictive postsurgical

spinal cord function in CSM patients.

2 | MATERIALS AND METHODS

2.1 | Patients

The study design was approved by the appropriate ethics review board,

which waived the requirement of informed consent due to the retro-

spective nature of the study. A total of 151 patients (99 men and

52 women) who underwent surgical treatment in our hospital from

January 2017 to June 2017 were included in our study. The inclusion

criteria were (a) diagnosed with CSM and operated on by a specific

team which was led by one senior orthopedist; (b) available preopera-

tive MRI results; (c) high-quality image data with no motion artifacts;

and (d) preoperative and long-term follow-up (≥3 years) modified

Japanese Orthopedic Association (mJOA) score. The exclusion criteria

were as follows: (a) prior head or neck surgery; and (b) a history of nota-

ble additional diseases (spinal cord tumor, multiple sclerosis, syringomy-

elia, spinal cord injury, or motor neuron disease). Clinical data collected

included age, sex, symptom duration, and surgery. Neurological impair-

ment was measured using mJOA. Participants were classified into a

poor outcome group (postoperative mJOA score < 16) and a good out-

come group (postoperative mJOA score ≥ 16), as patients with a post-

operative mJOA score less than 16 still have severe residual deficits.5,13

2.2 | MRI methods

MR scans were performed with 3 T MR (GE Healthcare, Waukesha Wis-

consin and Siemens Medical Solutions, Erlangen, Germany) and 1.5 T

MR (GE Healthcare, Waukesha, Wisconsin) scanners with patients in the

head-first supine position. The parameters are shown in Table S1.

The dataset obtained from one scanner (n = 41) was regarded as the

testing cohort, and the dataset obtained from the rest scanners (n = 110)

was regarded as the training cohort.

2.3 | Radiologic evaluation

ISI in T2
*WI was classified into four types14: type 0, no ISI; type 1, ISI with

a diffuse boundary (≥2/3 spinal cord); type 2: ISI with a diffuse boundary

(<2/3 spinal cord); and type 3: ISI with a distinct boundary (<2/3 spinal

cord). Two radiologists classified ISI on axial images independently under

the supervision of a senior radiologist without knowledge of preoperative

and postoperative neurological function, and disagreements were discussed

until a consensus was reached. The compression ratio (CR) was computed

automatically with the help of spinal cord toolbox (SCT) to describe the

severity of the compression of the spinal cord,15–17 defined as follows:

Compression ratio CRð Þ¼Anterior-posterior diameter
Right-to-left diameter

The details of the automatic computation are described in the follow-

ing section. The slice with the lowest CR, which indicated the most

severe compression,15–17 over the whole spine was chosen as the

maximum compressed level (MCL).

2.4 | Image preprocessing

To limit the differences among images, we applied a standardized MRI

preprocessing pipeline.18 First, resample the images to ensure the same

resolution. Second, pre-crop images around the centerline of the spinal

cord were taken to ensure the same size. Third, the intensity of images

was normalized to ensure that the intensity of the same tissue was consis-

tent. Fourth, the 2D image at the MCL was selected, and the Z-score was

used to standardize the image. Steps 1 to 3 were achieved by SCT

(Version 4.0.0; https://github.com/neuropoly/spinalcordtoolbox)19

(Figure 1). Z-score standardization was achieved by setting parameters in
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PyRadiomics (Version 3.0, git://github.com/Radiomics/pyradiomics)20

when extracting radiomic features.

2.5 | Radiomics: Segmentation

The spinal cord in T2
*WI was segmented automatically by SCT and then

manually corrected by two independent radiologists supervised by a

senior radiologist. Based on two radiologists' segmentations, the dice

coefficient score (DCS, a measurement of similarity) was (median [IQR,

interquartile range]) 0.93 (0.90-0.95), as were the intercorrelation coeffi-

cients (ICCs) of CR. For each patient, the slice with the minimum average

CR was referred to as the MCL. Under the supervision of a senior radiol-

ogist, two independent radiologists checked the selection of MCL and

finally confirmed the location of MCL.

2.6 | Radiomics: Region of interest

The region of interest (ROI), whose border is widely accepted for

radiomic analysis, should include sufficient pixels, refined and effec-

tive information, and repeated segmentation; this is the case for the

area covered by the spinal cord at the MCL on axial T2
*WI.21–23

Therefore, we referred to this area as the ROI. In contrast, it is difficult

to find an accurate, repeatable, and widely acceptable region on sagit-

tal images, which is why we focused our study on T2
*WI.

2.7 | Radiomics: Feature extraction

For the preprocessed T2
*WI at the MCL, three class features (shape,

first-order statistics, and textures [e.g., gray level co-occurrence matrix

(GLCM), gray level size zone matrix (GLSZM), gray level run length

matrix (GLRLM), neighboring gray-tone difference matrix (NGTDM),

and gray level dependence matrix (GLDM)]) were extracted from the

ROI with/without seven built-in suitable filters (wavelet, square,

square root, logarithm, exponential, gradient, and local binary pattern)

for a small ROI, resulting in 1032 features. Related details are available

online (https://pyradiomics.readthedocs.io/en/latest/index.html).

Excellent robust features (ICC ≥0.90 between the two radiologists'

segmentations) were enrolled for subsequent analysis.

2.8 | Machine learning

Machine learning (ML) is defined as programming computers to opti-

mize a performance criterion based on previous experience or

example dataset.24 ML is recommended to handle the high-

dimensional data provided by radiomics.1 To apply ML in radiomic

studies, a general pipeline is widely accepted, including feature

reduction, modeling methodology, and evaluation.12 Essential infor-

mation is kept after feature reduction and serves as input to build a

model; finally, the application value of the model is assessed.12 For

excellent robust radiomic features, 14 widely applied built-in binary

classifiers combined with 7 compatible feature reduction methods,

totaling 98 radiomic models, were constructed by auto-sklearn

(a Python package that can preprocess the input dataset, reduce the

number of features, construct and validate the ML model automati-

cally, Version 0.12.0; https://github.com/automl/autosklearn). The

same classifiers were applied for the radiological features, including

CR and the types of ISI, resulting in 14 radiological models. A list of

the methods and their abbreviations are presented in Table 1. Five-

fold cross-validation (CV) is a method to effectively use the small

sample data. It randomizes the training set into 5-folds and uses

4-folds for training and the rest for validation, then repeated five

times. CV was applied to train, and validate models. The testing

dataset was kept unseen during the whole procedure. The pipeline

of radiomic analysis is shown in Figure 2.

2.9 | Model evaluation

The area under the receiver operating characteristic (AUROC) and

accuracy, widely used overall indicators in medicine and computer

science, were regarded as the main evaluation index in our study. A

random guessing model whose AUROC (accuracy) equals 0.5

(no information rate [NIR], denoting the best guessing given no

information beyond the overall distribution of binary classes), was

referred to as the baseline. We arbitrarily subdivided model perfor-

mance into three groups based on their AUROC and accuracy com-

pared with the random guessing model: (1) high potential clinical

application value with significantly increased AUROC and accuracy

(PAUROC < .05, Paccuracy < .05); (2) low potential clinical application

value with significantly increased AUROC or accuracy ([PAUROC

< .05, Paccuracy > .05] or [PAUROC > .05, Paccuracy < .05]); and (3) no

F IGURE 1 Image preprocessing pipeline. The left (right) column
represents images collected from a 1.5 T scanner (3 T scanner). After
resampling, cropping, and intensity normalization, images were
comparable across scanners. Corresponding automatic segmentation
of the spinal cord (yellow line) is shown
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potential clinical application value with comparable or decreased

AUROC and accuracy. If the grading of performance during CV and

testing showed disagreement, the performance on the testing

cohort was considered, as the performance on this cohort is more

meaningful.

2.10 | Model selection and comparison

For overall radiomic or radiological models, the Technique for Order

Preference by Similarity to Ideal Solution (TOPSIS), a multiple criteria

decision-making method, was used by the package PyTOPS in Python

TABLE 1 Abbreviations for the feature reduction methods and classifiers

Feature Preprocessor Classifiers

Select percentile DT Decision tree

Select rates RF Random forest

Linear SVM preprocessor Linear support vector machine preprocessor ET Extra trees

ET preprocessor Extra trees preprocessor Adaboost Adaptive boosting

Fast ICA Fast independent component analysis GBDT Gradient boosting decision trees

FA Feature agglomeration BNB Bernoulli naïve Bayes

PCA Principal component analysis GNB Gaussian naïve Bayes

PA Passive aggressive

QDA Quadratic discriminant analysis

LDA Linear discriminant analysis

Linear SVM Linear support vector machine

SVM Support vector machine

KNN K-nearest neighbors

SGD Stochastic gradient descent

F IGURE 2 Radiomics
analysis pipeline. Radiomic
features were extracted from the
spinal cord at the MCL of
preprocessed images with or
without filters. Feature reduction
methods combined with binary
classifiers resulted in ML models.
Models were trained and cross
validated on the training dataset
and tested on the testing dataset.
ML, machine learning; MCL,
maximum compression level
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(Version 0.1; http://home.iitb.ac.in/~skarmakar/index.html). This method

determines the best solution from a set of alternatives with certain attri-

butes. The best alternative is chosen based on its Euclidean distance from

the ideal solution. We used PyTOPS to select the best radiomic or radio-

logical model based on the AUROC and accuracy. The AUROC, accuracy,

corresponding standard deviation (SD), and relative SD (RSD, the ratio of

SD to the mean value), as well as the sensitivity, specificity, precision and F1

score, were measured and compared. The SDs were measured by a propor-

tion test based on the binomial distribution or bootstrapping 1000 times.

2.11 | Statistical analysis

2.11.1 | Clinical factors and radiological evaluation

For normally (nonnormally) distributed continuous variables, we

applied Student's t-test (Mann-Whitney U test). To compare categori-

cal variables, we used the chi-square test.

2.11.2 | Model comparison

AUROCs (accuracy, sensitivity, specificity, precision) were compared

by the DeLong test (paired or unpaired proportion test).

2.11.3 | Analysis software

Overall, the above statistical analyses were performed using Python

modules (SciPy, Version 1.15.0, https://www.scipy.org; Statsmodels,

Version 0.13.0, https://www.statsmodels.org; Mlxtend, Version

0.18.0, https://rasbt.github.io/mlxtend/) and R language (pROC,

Version 1.17.0.1, https://cran.r-project.org/web/packages/pROC/

index.html; caret, Version 6.0.88, https://cran.r-project.org/web/

packages/caret/vignettes/caret.html). RSDAUROC and RSDaccuracy were

compared by the Forkman J method (MedCalc, Version 0.20.3,

MedCalc Software Ltd, Belgium).

3 | RESULTS

3.1 | Patient characteristics and conventional MRI
features

Images from 80 patients with good outcomes and 71 patients

with poor outcomes, comprising a total of 151 subjects, were

divided into the training and testing cohorts. No significant differ-

ences in clinical factors or radiological factors were observed

between the training and testing groups (P > .05) (Table 2).

3.2 | Model application value: Models vs random
guessing

3.2.1 | Radiological model

Radiological models yielded AUROCs and accuracy ranges of 0.51 to

0.61 and 0.51 to 0.58 (0.36-0.53 and 0.49-0.59) during CV (testing).

The SVM revealed potential clinical application value during CV

(PAUROC = .049, Paccuracy = .255) (Figure 3 and Figure S1). However,

TABLE 2 Clinical and radiological
factors of 151 subjects

Train (n = 110) Test (n = 41) P

Clinical factors

Age (years)a 54.1 ± 10.6 56.5 ± 8.1 .194

Sex (F/M) 37/73 15/26 .883

Symptom duration (months)b 12.0 (3.3-37.2) 12.0 (6.0-48.0) .359

Preoperative mJOAa 13.5 ± 2.0 13.2 ± 2.1 .435

Operation (anterior/posterior) 65/45 24/17 .901

Outcome (good/poor) 60/50 20/21 .654

Radiological factors

CRa 0.37 ± 0.08 0.38 ± 0.10 .859

ISI .054

Type 0 23 6

Type 1 20 8

Type 2 58 17

Type 3 9 10

Abbreviations: CR, compression ratio; IQR, interquartile range; ISI, increased signal intensity; mJOA,

modified Japanese Orthopedic Association score.
aNormally distributed continuous variables (mean ± SD) were statistically analyzed by Student's t-test.
bNonnormally distributed continuous variables (median [IQR]) were statistically analyzed by the Mann-

Whitney U test.
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no radiological models showed potential clinical application value in

the testing cohort (Figure 4 and Figure S2).

3.2.2 | Radiomic model

In total, 237 excellent robust features (108 first-order features,

9 shape features, and 120 texture features) were retained from 1032

features with ICC ≥ 0.9. During CV, 25 radiomic models demonstrated

high potential clinical application value, with AUROC and accuracy

ranged 0.61 to 0.74 and 0.64 to 0.72, respectively. Meanwhile,

16 radiomic models demonstrated low potential clinical application

value on CV. The remaining 57 models had no potential clinical appli-

cation value (Figure 3 and Figure S1). In the testing cohort, three

radiomic models (linear SVM preprocessor + SVM, FA + SVM, and

PCA + RF) were observed to have high potential clinical application

value, with AUROCs and accuracies ranging from 0.68 to 0.74 and

0.66 to 0.73. A total of eight radiomic models had low potential clini-

cal application value, while the remaining models had no potential

clinical application value (Figure 4 and Figure S2).

F IGURE 3 Heatmaps of AUROC and accuracy through 5-fold CV. R1 (R2) referred radiological (radiomic) models. (A) AUROC; (B) accuracy.
CV, cross-validation; AUROC, area under the receiver operating characteristic curve

F IGURE 4 Heatmaps of AUROC and accuracy on the testing cohort. R1 (R2) referred radiological (radiomic) models. (A) ROC-AUC;
(B) accuracy. AUROC, area under the receiver operating characteristic curve

6 of 9 ZHANG ET AL.



3.3 | Model comparison: The best radiological
model vs the best radiomic model

With TOPSIS, the linear SVM preprocessor + SVM (SVM) was

selected as the best radiomic (radiological) model, with an F1 score of

0.72 ± 0.08 (0.45 ± 0.11). The performance of the models is summa-

rized in Table 3. The best radiomic model, based on 13 radiomic

features ([filters] feature names), including five shape features

([no filters] pixel surface, minor axis length, maximum diameter,

elongation), seven first-order features ([wavelet-LL, HL, and gradi-

ent] range, [wavelet-LL] 10 percentiles, [wavelet-HL] energy, [local

binary pattern] mean, and [exponential] variance), and one texture

feature ([wavelet-LL] GLCM cluster prominence), overperformed

the best radiological model, showing significantly higher AUROC,

stability, and sensitivity (PAUROC = .048, PRSDAUROC = .008,

PRSDAccuracy = .024, Psensitivity = .039).

4 | DISCUSSION

In our study, we utilized radiomics and advanced ML to predict the

postoperative prognosis of patients with CSM, compared radiomic

models to radiological models, reported the advantages of the radio-

mic models, and demonstrated the potential clinical application value

of the linear SVM preprocessor + SVM, which was identified as the

best algorithm for radiomic models.

The preprocessing of images and the choice of ROI are the cor-

nerstones of this research. The repeatability of radiomics is an essen-

tial problem, as the signal intensity of MRI varies among scanners and

scanning protocols.25 Normalization is a common solution to increase

the reproducibility of images and has been applied in a multi-center

study in the spinal cord.18 After normalization, some radiomic models

performed well cross multi-scanners in our study, which might due to

the reduced variation of signal intensity. The choice of ROI is also cru-

cial; it is a feasible and practical way to predict the prognosis of CSM

by extracting the imaging features from the spinal cord at MCL of T2
*

WI rather than ISI. Although ISI is regarded as the lesion of CSM, its

size is generally small. Due to the partial volume effect, the boundary

is unreliable, and the radiomic features are unstable,26 indicating that

ISI is not suitable for radiomic analysis. The cross-section of the spinal

cord is an alternative, as the reproducibility and repeatability of ROI

and radiomic features is increased along with the increasing size of

the ROI.26,27 The information contained in the ROI includes informa-

tion on not only small lesions but also the influence and changes

around the ISI and over the whole spinal cord section, which are

meaningful and useful.21–23 We have proven that the morphology,

first-order, and some texture features extracted from ROI are stable

and can be used for the effective prediction of CSM.

Model selection is another important part to consider.28 Multiple

algorithms are recommended and applied in spinal diseases,28 how-

ever, the best ML for radiomics in CSM remained unknown. In our

study, we propose a protocol to select the best radiomic model. As

the reproducibility of radiomic models determines their value for

extensive application, the performance with the testing dataset is

more meaningful.29 In addition, various indicators, with their specific

advantages and disadvantages, can be used to measure the perfor-

mance of models from different aspects, but no one alone can synthe-

size all metrics and comprehensively measure the performance of the

models.30–32 Our study also confirmed that the changes in the

AUROC and accuracy are not exactly consistent. The TOPSIS method,

which has been applied in engineering, marketing management and so

on,33 provides an alternative method to select models based on vari-

ous criteria.34 In TOPSIS analysis, various dimensional criteria are

converted into nondimensional criteria, the positive ideal solution

with maximum benefits and minimum costs and the negative ideal

solution with minimum benefits and maximum costs are formed, and

an alternative is evaluated and selected based on its distance to

these solutions.33,35 Therefore, we applied a model selection method

based on the AUROC and accuracy of the testing cohort and compre-

hensively evaluated the performance of the model. The selected

model reported the highest AUROC and accuracy, consistent with our

expectation.

Our work recommends linear SVM preprocessor + SVM as the

best algorithms for radiomics in CSM. ML makes it possible to handle

complex and numerous data, however, the optimal ML for radiomics

is under debated36,37 and the selection of ML depends on researchers'

TABLE 3 Comparison between the
best radiological and radiomic models in
the testing cohort

The best radiological model The best radiomic model P

AUROCa 0.53 ± 0.09 0.74 ± 0.08 .048

RSDAUROC
b 0.17 0.11 .008

Accuracyc 0.59 ± 0.08 0.73 ± 0.07 .181

RSDAccuracy
b 0.13 0.09 .024

Sensitivityc 0.33 ± 0.10 0.67 ± 0.10 .039

Specificityc 0.85 ± 0.08 0.80 ± 0.09 1.000

Precisiond 0.70 ± 0.14 0.78 ± 0.10 .645

Abbreviations: AUROC, area under the receiver operating characteristic curve; RSD, relative SD.
aAUROCs (mean ± SD) were compared by DeLong test.
bRSDs were compared by Forkman J methods.
cProportion indicators (mean ± SD) were compared by paired proportion test (i.e., McNemar's test).
dProportion indicators (mean ± SD) were compared by nonpaired proportion test.
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preference.11,12 Although tree-based models (eg, RF and Adaboost)

combined with feature reduction were reported to be more

preferable,8,38 the SVM combined with the linear SVM preprocessor

was observed to be the best in our study. The core reason is the

nonlinear nature of medical problems; along with nonlinear kernels,

which could transform linear input into nonlinear input, SVM has been

reported to have the ability to solve nonlinear problems,8,39,40 similar

to tree-based models. As suggested by Gu et al, radiomic models

based on SVM with nonlinear kernels performed better than the one

with a linear kernel.41 Additionally, SVM has special advantage for the

small-size samples.42

In conclusion, we utilized radiomics to predict CSM prognosis

using numerous ML methods, validated and tested the models, and

identified the optimal model, namely, the linear SVM preprocessor +

SVM, which was superior to radiological models. We acknowledge

that there are still some limitations to this study. Our radiomic models

were trained on limited sample from a single center. Normalization

and an independent testing dataset were applied to enhance models'

applicability. The method can be used in future multi-center data col-

lection when standardization is needed. Meanwhile, we conservatively

used the spinal cord on axial T2
*WI but not sagittal T2WI as the ROI in

radiomic analysis. Compared with the sagittal spinal cord, the axial spi-

nal cord at the MCL is a widely recognized ROI with better gray mat-

ter contrast, including a high intramedullary signal and the potential to

provide even more information.21–23 Referring to it as the ROI can

enhance the repeatability and reliability of radiomics. Our models

based on multiple scanners suggested the credibility of this ROI and

the ability of the models to be extensively used, thereby providing a

foundation for further prospective multi-center studies. Additionally,

the comparisons performed in this study offer a potential reference

for the development of new models that may be useful for other

radiomics studies.

5 | CONCLUSION

Radiomics has high potential application value for the preoperative

prediction of CSM outcomes. The optimal model, the linear SVM pre-

processor + SVM, provides an alternative approach for physicians to

use in their clinical practice.
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