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Cycle oxidation behavior and 
anti-oxidation mechanism of hot-
dipped aluminum coating on TiBw/
Ti6Al4V composites with network 
microstructure
X. T. Li2, L. J. Huang1,2, S. L. Wei2,3, Q. An2, X. P. Cui2 & L. Geng1,2

Controlled and compacted TiAl3 coating was successfully fabricated on the network structured TiBw/
Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network 
structure of the composites was inherited to the TiAl3 coating, which effectively reduces the thermal 
stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the 
TiAl3 coating which can effectively improve the bonding strength between the coating and composite 
substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 
100 h were investigated. The results showed the coating can remarkably improve the high temperature 
oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the 
Al2O3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide 
scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division 
effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction 
between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl2 formed 
next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network 
structured coating was also discussed.

Titanium matrix composites (TMCs) possessed superior characteristics such as the low density, good mechanical 
properties and high-temperature durability1. Specially, the TMCs with network distribution of reinforcements 
fabricated by Huang et al.2 exhibited superior mechanical properties compared to the conventional composites 
with homogeneous microstructure3–7, which is potential candidate for further application in the fields of aero-
space, military and commercial automobile. However, the applications of the TMCs at high temperatures have 
been seriously restricted due to their poor oxidation resistance8–12. Hence, it is a subject concern to improve the 
oxidation resistance of the TMCs without changing the bulk properties. Surface coating is an alternative method 
to improve the oxidation resistance of the TMCs. Several coatings such as aluminide13–15, Ti–Al–X (X = Cr, 
Nb)16,17, MCrAlY-type18,19 and silicide/ceramics20–22 were fabricated on the Ti-based alloy surface, which can 
provide protection against the oxidation. Among these coatings, aluminide coating which could form a protective 
Al2O3 scale had been widely applied because of the practical superiority over others.

The TiAl3 coating and the Pt-modified coating prepared by packing aluminizing process improved the oxida-
tion resistance of Ti-based IMI-834 alloy under high temperature23,24 and the effect of through-thickness cracks 
on long-time oxidation properties of the coating was also discussed25. The studies by Zhou et al.26,27 showed that 
the Al-Si coating produced by low oxygen pressure fusing technology provides good protection against oxidation 
and the prolong fuse time was adverse to the oxidation resistance. The interrupted and isothermal oxidation 
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behaviors of the hot-dipped aluminum coatings on Ti6Al4V alloy28 showed the TiAl3 coating markedly decreased 
the oxidation rate compared to the alloy. Jeng29 further investigated the oxidation behavior and microstructure 
evolution of the hot-dipped aluminum coating at 1073 K for different isothermal oxidation time. However, the 
aluminide coatings formed on Ti alloy surface are liable to make cracks after long-time oxidation due to the great 
thermal stress of the coatings.

According to the previous investigation30, the network structured TiBw/Ti6Al4V composites showed superior 
high-temperature mechanical properties, but its oxidation resistance is destructed due to the strong affinity of Ti 
alloy towards oxygen and increased interface between reinforcement and matrix31. However, there is no study 
reported about the oxidation resistance of coating on the TMCs up to now. Hence, it is very meaningful to investi-
gate coating of the TiBw/Ti6Al4V composites. Moreover, the network structure distribution of the TiB reinforce-
ments maybe beneficial to improve the oxidation resistance of the coatings. The objective of the present work 
was to investigate the high temperature oxidation behavior and anti-oxidation mechanism of the hot-dipped 
aluminum coating fabricated on the network structured TiBw/Ti6Al4V composites.

Results and Discussion
Microstructure of the hot-dipped coating.  After hot-dip aluminizing and interdiffusion treatment, 
a surface coating was produced on the TiBw/Ti6Al4V composite substrate. The surface morphology and the 
cross-section image of the coating are shown in Fig. 1. The Fig. 1(a) with the EDS analysis shows a network 
structured TiAl3 coating was successfully fabricated on the TiBw/Ti6Al4V composite substrate, this is due to the 
network structure distribution of the TiB reinforcements in the composites. The thermal expansion coefficients of 
Ti6Al4V alloy were 9.0 × 10−6K−1 at 573 K and 10.0 × 10−6 K−1 at 773 K measured by Zhang et al.32. There are no 
available experimental values for TiAl3, but the theoretical value of 15.0 × 10−6 K−1 at 293 K was reported in pre-
vious study33. Hence, there were cracks generated in the coating by the mismatch of thermal expansion coefficient 
between the TiAl3 coating and Ti6Al4V alloy reported in the previous article28. According to the rule of mixture, 
the thermal expansion coefficient of TiBw/Ti6Al4V is very similar to the value of Ti6Al4V. In our study, the 
network structure of the coating actually divided the whole coating into many network cells with small size, and 
this division can effectively reduce the thermal stress caused by the mismatch in thermal expansion coefficient 
between the TiAl3 coating and the composite substrate, which avoid the existence of cracks in the TiAl3 coating.

From the Fig. 1(b), it can be seen that the average thickness of the coating is about 95 μm. It is worth notice 
that there are TiB whiskers inserting into the TiAl3 coating, and the TiB whiskers in the coating still maintains 
the network structure, which can effectively improve the bonding strength of the coating and intensify the effect 
of network structure. In addition, it can also be found the interface between the coating and the TiBw/Ti6Al4V 
composite substrate is not smooth, and the interfaces of TiB whiskers located are more inward diffusion than 
other locations, this is mainly due to the different diffusion methods of Al atom and Ti atom in the Ti6Al4V sub-
strate and TiB whisker location. The diffusion method in Ti6Al4V substrate is mainly bulk diffusion, and in the 
location of TiB whisker is bulk diffusion and interface diffusion, which leads to the faster diffusion speed in the 
location of TiB whisker. This is the reason for the network structure formation of the TiAl3 coating. A compacted 
coating was formed and there are no pores and cracks in the coating, which is attributed to the division effect of 
the network structure and the pinning effect of the TiB whiskers. The surface XRD pattern of the coating after the 
hot-dip aluminizing and treatment is shown in Fig. 2. Only TiAl3 diffraction peaks are detected, which indicates 
that only TiAl3 is formed on the TiBw/Ti6Al4V composites. This phenomenon is further confirmed by the SEM 
results as shown in Fig. 2 and Table 1.

Oxidation kinetics of the coated and uncoated TiBw/Ti6Al4V composites.  The cycle oxidation 
kinetic curves of the coated and uncoated specimens at 873 K, 973 K and 1073 K in air are shown in Fig. 3. It 
is obvious that the oxidation rate of the TiAl3 coated composites significantly reduces compared to the TiBw/
Ti6Al4V composites under high temperatures, especially for 973 K and 1073 K. The oxide scales of both the TiAl3 
coated and uncoated TiBw/Ti6Al4V composites don’t spall and their oxidation kinetic curves obey parabolic law 
at the temperature of 873 K. Moreover, the mass gain of the coated and uncoated composites are 0.09 mg/cm2 and 

Figure 1.  The SEM images of the coating on TiBw/Ti6Al4V composites (a) the surface image (b) the cross-
section image.
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Figure 2.  The surface XRD pattern of the coating on TiBw/Ti6Al4V composites.

Point Ti Al

A 25.60 74.40

B 26.01 73.99

C 24.39 75.61

D 25.49 74.51

Table 1.  Chemical compositions of the coating marked in Fig. 2 (at%, EDS).

Figure 3.  The cycle oxidation kinetic curves of the coated and uncoated TiBw/Ti6Al4V composite specimens 
(a) 873 K, (b) 973 K, (c) 1073 K.
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1.23 mg/cm2 after 100 h, respectively, implying the TiAl3 coating has little oxidation and the degree of oxidation 
for the TiBw/Ti6Al4V composites is not very severe at 873 K for 100 h. When the temperature reaches 973 K and 
1073 K, the cycle oxidation kinetic curves of the coated composites still follow the parabolic law but the uncoated 
composites follow the linear law. It was well known the reason of the parabolic law is that oxide scales prevent oxi-
dation and reduce the oxidation rate of the substrate, and the linear law is due to the non-protective oxide product 
is formed which can’t protect the substrate. The oxide scales of the uncoated composites start to partially spall at 
30 h for 973 K and at 20 h for 1073 K, respectively, however the oxide scales of the coated composites still haven’t 
any spallation phenomenon. The mass gain of the coated composites is 0.19 mg/cm2 and 1.04 mg/cm2 for 100 h at 
973 K and 1073 K, and that of the uncoated composites is 7.21 mg/cm2 and 22.17 mg/cm2, respectively. It can also 
be found that the oxidation rate of the TiBw/Ti6Al4V composites quickly increases with increasing temperature, 
but the oxidation rate of the coated composites is very slowly increased with increasing temperature. Therefore, it 
can be concluded that the TiAl3 coating can significantly improve the oxidation resistance of the TiBw/Ti6Al4V 
composites under high temperatures.

Surface morphology of the oxidized TiBw/Ti6Al4V composites.  Figure 4 shows the surface morphology 
of the TiBw/TC4 composites oxidized at different temperatures for 100 h. As shown in Fig. 5(a), it’s obvious that the 
oxide scale don’t spall during the oxidation process, indicating the degree of oxidation of the composites is not severe 
at 873 K for 100 h. When the temperature reaches 973 K, the oxide scales spallation happened, implying the oxidation 
degree is very serious at 973 K. Moreover, it can be also seen the spallation degree of oxide scales is more serious at 
1073 K, which means that the oxidation resistance of the composites is the worst at 1073 K. Combining with the com-
position analysis of points listed in Table 2, it can be concluded the TiO2 oxide particles were formed on the composites. 
From the enlarged images in Fig. 4, it can be seen that the size of TiO2 oxide particles increases with increasing temper-
ature, which could further explain the oxidation kinetic law of the composites under high temperature. The very tiny 

Figure 4.  The surface morphology of the TiBw/Ti6Al4V composites oxidized at different temperatures for 
100 h.

Figure 5.  The XRD patterns of oxide scales of the TiBw/Ti6Al4V composites in different temperatures for 
100 h.
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TiO2 oxide particles are formed at the temperature of 873 K, and the oxide film is very thin that it wouldn’t spall during 
the oxidation process, so the oxidation degree of the composites is not serious, which is consistent with the results of 
the parabolic law of the oxidation kinetic curve in Fig. 3(a). The sizes of TiO2 oxide particles begin to grow up when the 
temperature reaches 973 K, and the TiO2 oxide scales formed on the surface of composites become thick and it can’t 
protect the composite substrate, the protective Al2O3 oxide film also can’t be formed owing to the low content of Al in 
the composites. Hence, the spallation of thick non-protective oxide scales would happen at 973 K, and the fresh exposed 
surface would continue to the oxidation process again, so the oxide scales have a multilayer spallation phenomenon at 
973 K for 100 h, that is why the cycle oxidation kinetic curve of the composites follows the linear law at 973 K as shown 
in Fig. 3(b). The sizes of TiO2 oxide particles have a drastic growth during oxidation process at 1073 K, the oxide scales 
become more thick and it would spall more easily, so the multilayer spallation of oxide scales is more serious, which is 
consistent with the results obtained by the oxidation kinetic curves in Fig. 3. The XRD patterns of the oxide scales on 
TiBw/Ti6Al4V composites in different temperatures for 100 h are displayed in Fig. 5. It can be seen that only TiO2 oxide 
detected on the surface of the composites under high temperatures oxidation for 100 h, which further explains the poor 
oxidation resistance of the composites during the high temperature oxidation process.

Surface morphology and microstructure of the oxidized coating.  Figure 6 displays the SEM mor-
phologies of the oxidized surface of the TiAl3 coated TiBw/Ti6Al4V composites at different temperatures for 
different oxidized times. As seen in Fig. 6(a,b and e), it can be observed that the network structured oxide scales 
were formed after 100 h oxidation. It is clearly seen the thickness of oxide film with network structure gradually 
increases with increasing temperature, and there is no oxide scale spallation happened. Further observation in 
Fig. 6(a) shows the TiAl3 particles produce slightly oxidation, and the tiny Al2O3 oxides in the shape of whisker 
are generated on the TiAl3 particles. Meanwhile, it can be also seen that the Al2O3 oxides have different orienta-
tion which means the growth of the Al2O3 oxides possess preferential growth orientation. In addition, it is worth 
noting that both the sizes and the quantities of Al2O3 have obvious change with increasing temperature. When 
the coating is oxidized at 973 K, the quantities of the Al2O3 increase obviously and the size has grown to some 
extent, indicating the oxidation degree of the coating is more serious compared to that at 873 K.The size of Al2O3 
has drastic growth condition when the oxidation temperature rises up to 1073 K, which is in good agreement with 
the results obtained by the cycle oxidation kinetic curves in Fig. 3.

It can be seen from Fig. 6(c–e) that the oxide scales with network structure on the surface of the TiAl3 coating 
become more and more thick as the oxidation time prolong at 1073 K. At the beginning of the oxidation process, 
there are also Al2O3 oxides with the shape of whisker produced on the TiAl3 particles, and the preferential growth 
orientation of Al2O3 oxides still maintain. Further observation displays the sizes of Al2O3 oxides are bigger than 
these oxidized at 873 K for 100 h, which suggests the temperature on oxidation resistance of the coating is more 
serious than the oxidation time. The drastic growth phenomenon of partial oxide has taken place in the middle 

Point Ti Al O

A 34.41 1.26 64.33

B 33.21 1.01 65.78

C 25.26 1.52 73.22

Table 2.  Composition analysis of different points of oxidized TiBw/Ti6Al4V composites marked in Fig. 5  
(at%, EDS).

Figure 6.  The morphology of the oxidized surface on TiAl3 coating at 873 K for 100 h (a), 973 K for 100 h (b), 
1073 K for 5 h (c), 1073 K for 50 h (d), 1073 K for 100 h (e).
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period of oxidation at 1073 K, implying the oxidation condition is more serious compared to that at 973 K for 
100 h. When the oxidation time prolong to 100 h, the Al2O3 oxides size has further grown, but the oxide film still 
keeps the network structure and don’t have any spallation happened, implying the TiAl3 coating still possesses 
better oxidation resistance at 1073 K, and this is in good agreement with the results by the cycle oxidation kinetic 
curves in Fig. 3(c). This can be attributed to that the network structure can reduce the thermal stress and the pin-
ning effect of TiB whiskers can improve the bonding strength.

The XRD patterns of the oxide scales on TiAl3 coating oxidized in different temperatures for different times 
are displayed in Fig. 7. It can be seen from Fig. 7(a) that only TiAl3 existed on the surface of coating oxidized 
in 873 K for 100 h, this is ascribed to the very slight oxidation occurred on the coating, and the quantity of the 
oxides is so few that it can’t be detected by XRD, which further confirm the conclusion that the TiAl3 coating have 
very good oxidation resistance at 873 K. In addition, it can be noted that there are a large number of TiAl3 and a 
few of TiAl2 and Al2O3 on the surface in the early stage of oxidation at 1073 K, this is mainly due to the reaction 
2TiAl3 + 3/2O2 = 2TiAl2 + Al2O3 happened between the TiAl3 and O2 in the oxidation process34, suggesting the 
oxidation of coating become serious compared to that at 873 K, which is consistent with the analysis results by 
Figs 3 and 6.

Further observation shows that a few of TiO2 can be detected with the increase of oxidized time, which is due 
to an amount of O2 inward diffuse continuously during the oxidation process in long term, the TiAl2 and O2 make 
further reaction TiAl2 + 5/2O2 = Al2O3 + TiO2. Therefore, it’s reasonable to assume that a mixture of Al2O3 + TiO2 
was formed below the dense and continuous Al2O3 oxide film, because the dense Al2O3 layer has good protec-
tion for the coating in long time oxidation, hence the TiAl3 coating still has good oxidation resistance at 1073 K. 
Similar oxidation products are detected on the surface at 973 K for 100 h, but the diffraction peaks intensities and 
quantities of Al2O3 and TiO2 reduce obviously compared to those at 1073 K for 100 h, which further indicates that 
the degree of oxidation on TiAl3 coating gradually becomes serious with increasing temperature, this is in good 
agreement with the results obtained by the cycle oxidation kinetic curves and surface morphologies analysis.

The cross-sectional microstructure of the TiAl3 coating after 100 h oxidation at 973 K is displayed in Fig. 8. The 
oxidized coating becomes a multilayer structure and still has good adhesion to the TiBw/Ti6Al4V composite sub-
strate. It is noticeable that the oxidized coating is still free of cracks and different with the previous results23,25,27–29, 
which is attributed to the network structure of the coating after oxidation. The BSE image shows that the oxidized 
coating divides into four different layer, according to the line scan in Fig. 8 and EDS analysis in Table 3, it can 
be concluded that the oxide film about 12 μm was formed in the outmost layer of the oxidized coating, and the 

Figure 7.  The XRD patterns of oxide scales of TiAl3 coating at different temperatures for different times.
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oxide film should consist of a great of Al2O3 and a few TiO2. According to the EDS analysis of point C listed in 
Table 3, the composition of the layer next to oxide film is still TiAl3, indicating the oxide scales effectively keep 
O element from entering into the coating, which confirms the good oxidation resistance of the coating at 973 K 
for 100 h. Furthermore, the interfacial reaction zone with layered structure about 5 μm is observed between the 
TiAl3 coating and composite substrate as shown in the insert image. The layer next to composite substrate is made 
up of TiAl and the other layer is composed of TiAl2 according to the EDS analysis results of points A and B, this 
is mainly due to diffusion reaction of Ti atom and Al atom in the interface between the TiAl3 coating and TiBw/
Ti6Al4V composite substrate.

Figure 9 displays the cross-section image of the TiAl3 coating oxidized at 1073 K for 100 h. It is evident that the 
oxidized coating morphology is similar to that at 973 K and still divides into four different layers. The whole oxidized 
coating also keeps good adhesive to the composite substrate. Moreover, there are also no cracks appeared, which is 
mainly due to that the oxidized coating at 1073 K for 100 h still maintains the network structure as shown in Fig. 6(e). 
It can be clearly seen that the thickness of the outmost oxide scale is about 33 μm, and the oxide scale also effectively 
prevents O element into the coating according to the line scan in Fig. 10 and EDS analyze results of points C and 
D in Table 4. It can be concluded that the coating still maintains the good protection for the composite substrate 
at 1073 K, but the oxidation is more serious than that at 973 K. In addition, it is also observed that the thickness of 

Figure 8.  The cross-section morphology and EDS line scan of TiAl3 coating after 100 h cycle oxidation at 973 K.

Point Ti Al O

A 47.50 52.50 0

B 35.27 64.73 0

C 26.09 73.91 0

D 8.11 36.07 54.82

Table 3.  Composition analysis of different points of the oxidized TiAl3 coating marked in Fig. 9 (at%, EDS).

Figure 9.  The morphology of cross-section and EDS line scan on the TiAl3 coating after 100 h oxidation at 
1073 K.
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interface reaction zone which is made up of TiAl2 and TiAl layer is increased to 15 μm. Therefore, it is reasonable to 
deduce that TiAl3 coating is mainly consumed by the oxidation reaction in the outmost layer and interface reaction 
in the interface between the coating and the composite substrate during the high temperature oxidation. Owing to 
the faster outward diffusion speed of Al atom compared to Ti atom and the high content of Al atom in the coating, 
the continuous and dense oxide scales can be formed during the high temperature oxidation, which can effectively 
protect the composites against the oxidation. The outward diffusion of Ti atom in the composite substrate can lead to 
the diffusion reaction in the interface between the coating and composite substrate, so the TiAl2 and TiAl layer can 
be formed in the interface during the high temperature oxidation. Moreover, it can be observed that the thickness 
of oxidation layer and interface reaction zone at 1073 K is bigger than that at 973 K, which is mainly ascribe to the 
diffusion rates of Ti atom and Al atom increase with increasing temperature.

Mechanism of anti-oxidation.  Figure 10 shows the high temperature oxidation schematic diagram of the TiAl3 
coated TiBw/Ti6Al4V composites. The TiB reinforcements with network distribution are inserted the coating, which 
can effectively improve the bonding strength between the coating and composite substrate and divide the whole coating 
into small network cells, moreover, the network structure is also inherited to the dense and continuous oxide scale of 
Al2O3. The spallation of oxide scale is an important factor that can affect the cycle oxidation kinetics and microstructure 
evolution, and it often induces through the thermal stress caused by the mismatch of thermal expansion coefficient 
between the oxide scale and the coating. Because the thermal stress is difficult to measure by experiment method, and 
it can be predicted through a dual thin-scale model proposed by Timoshenko35, and the formula can be expressed as:

σ
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where αOx, αM, δOx, δM, μOx, μM, EOx, EM and ΔT represent the thermal expansion coefficient, thickness, Poisson 
ratio, Young’s modulus of the oxide scale and coating and the temperature difference between oxidation and room 
temperature, respectively.

Hence, it is reasonable to assume the thermal stress between the oxide scale and the coating is in direct pro-
portion to the difference values of thermal expansion coefficients between the coating and oxide scale. Owing 
to the insertion of TiB whisker, the network structured oxide scale and TiAl3 coating can be supposed as the 
composite of the oxide scale and TiB, the TiAl3 and TiB, respectively. The thermal expansion coefficients of the 
composites can be empirically estimated by the Turner’s model36, which is expressed as follows:
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where Ki, Vi, Gi and αi are the bulk modulus, volume fraction, shear modulus and thermal expansion coefficient 
for different phase. The parameters used in the calculations are summarized in Table 5. The calculated thermal 

Figure 10.  The schematic diagram of oxidation process of the TiAl3 coated TiBw/Ti6Al4V composites under 
high temperature.

Point Ti Al O

A 52.22 47.78 0

B 33.81 66.19 0

C 25.93 74.07 0

D 9.67 24.97 65.36

Table 4.  Composition analysis of different points of the oxidized TiAl3 coating marked in Fig. 10 (at%, EDS).
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expansion coefficients of network structured Al2O3 oxide scale and TiAl3 coating is 6.69 K−1 and 14.68 K−1, respec-
tively, and the difference value between the network structured oxide scale and coating becomes smaller compared 
to that in the whole structure. It can be concluded that the network structure by the insertion of TiB whiskers can 
reduce the thermal stress between the oxide scale and coating, which further decrease the tendency of cracking even 
spalling about oxide scale. Therefore, the Al2O3 oxide scales with network structure can effectively prevent the O 
element into the coating and have a good protection for the composites during the cycle oxidation process.

The thermal expansion coefficients of titanium aluminum compound decrease with the decrease of Al com-
position in the Ti-Al system33. Therefore, the formation of TiAl2 beneath the oxide scales also can reduce properly 
the thermal stress between the oxide scales and coating, which is contributed to improving the bonding strength 
of oxide scales to the coating. In addition, there is reaction zone composed of TiAl layer and TiAl2 layer existed 
in the interface between the coating and composite substrate, this is mainly due to the interdiffusion reaction of 
Ti atom and Al atom in the interface during the high temperature oxidation process. The bilayer structure can 
decrease thermal stress between the coating and composite substrate, which is beneficial to avoid the cracks 
appeared in the coating during the oxidation process. In conclusion, the network structured TiAl3 coating pro-
vides very good protection for the TiBw/Ti6Al4V composites during the high temperature oxidation process.

Methods
The substrate used for this study was the network structured TiBw/Ti6Al4V composites of TiB in 5% vol-
ume fraction fabricated by the reaction hot pressing sintering. The specimens which had dimensions of 
10 mm × 10 mm × 3 mm were ground to 1000 grit with different grid sizes of SiC papers, and cleaned ultrasoni-
cally in ethanol, then dried immediately. As shown in Fig. 11(a) and (b), in order to increase the bonding strength 
of the coating, TiBw/Ti6Al4V composites were firstly corroded to expose the TiB whiskers in the acid solution of 
5%HF and 15%HNO3 for 7–10 s, followed by rinsed in a stream of water and cleaned with ethanol ultrasonically, 
and then were dried.

In order to keep the surface of TiBw/Ti6Al4V composites from oxidizing in air, the specimens were immersed 
in 6%NaCl + 4KF% solutions at 353 K for 10 min, which lead a protection film on surface of the composite spec-
imens. Furthermore, 50% KCl, 37.5% NaCl, 12.5% KF with mass ratio were covered in the aluminum melt in 
advance. The pretreated specimens were immersed in the molten aluminum at 1123 K for 10 min, and withdrawn 
from the aluminum melt and cooled in air (Fig. 11(c)). Because the coating with single step high temperature 
immersing is not compacted and controlled, therefore, the diffusion annealing treatment of the hot-dipped spec-
imens were subsequently carried out in the muffle furnace at 923 K for 6 h and then cooled in the furnace to 
room temperature (Fig. 11(d)). The adherent aluminum material on the surface of the heat treated specimen was 
removed by immersing in the 15% NaOH solution (Fig. 11(e)).

The oxidation behaviors of the uncoated and coated specimens were examined by the cycle oxidation tests 
at 873 K, 973 K and 1073 K for 100 h, respectively. During the oxidation tests, all the specimens were heated in a 
muffle furnace at desired temperature in ambient air, then removed from the furnace every 10 h and air-cooled 
to room temperature. The specimens were placed in alumina crucible separately, thus the spalling oxide scales 
were also weighted. Their weight changes were measured at regular intervals using an electronic balance with a 
sensitivity of 0.1 mg.

Before and after the oxidation tests, the surface and cross-section morphologies of the specimens were char-
acterized by the scanning electron microscopy in a SUPRA55 instrument equipped with energy dispersive 

Materials α, 10−6 K−1 K, GPa G, GPa

Al2O3 6.6 247 155

TiAl3 15 105 93

TiB 8.6 206 184

Table 5.  Parameters used to calculated the thermal expansion coefficients of composites33,37–39.

Figure 11.  The schematic diagram of the TiAl3 coating fabrication process.
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spectroscopy (EDS). The phase compositions of the coatings were analyzed by the Empyrean X-ray diffraction 
(XRD) with Cu Kα radiation in a step of 0.02° and a range of 2θ from 20° to 90°.

Data availability statement.  The authors promise all of data in this paper are available.

Conclusions

	(1)	 The compacted TiAl3 coating on the TiBw/Ti6Al4V composites with network structure was successfully 
fabricated by hot-dip aluminum and interdiffusion treatment. The inherited network structure of the TiAl3 
coating can effectively reduce the thermal stress generated by the mismatch of thermal expansion coeffi-
cient between the coating and composite substrate, which avoids cracks appeared in the coating. Moreover, 
the spinning effect of the TiB whiskers can remarkably improve the bonding strength between the coating 
and the composite substrate.

	(2)	 Cycle oxidation tests of the coated and uncoated specimens showed the TiAl3 coating significantly improve 
the oxidation resistance of the composites, this is mainly due to the dense and continuous Al2O3 oxide 
scales and Al2O3 + TiO2 transition layer produced during the high temperature oxidation process.

	(3)	 The network structure was also inherited to the oxide scale during the oxidation process, which can effec-
tively reduce thermal stress of the oxide scales and decrease the tendency of cracking even spalling about 
oxide scales, therefore, the oxide scale with network structure can provide good protection against the 
oxidation.

	(4)	 The interfacial reaction zone with layered structure of TiAl and TiAl2 was observed between the coating 
and the composite substrate, which can further decrease the thermal stress of the coating and avoid the 
cracking even spallation in the coating during the long-time oxidation process.
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